
SVM-Optimization and Steepest-Descent Line Search ∗

Nikolas List and Hans Ulrich Simon
Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

{nikolas.list,hans.simon}@rub.de

Abstract

We consider (a subclass of) convex qua-
dratic optimization problems and analyze
decomposition algorithms that perform, at
least approximately, steepest-descent ex-
act line search. We show that these al-
gorithms, when implemented properly, are
within ǫ of optimality after O(log 1/ǫ) it-
erations for strictly convex cost functions,
and after O(1/ǫ) iterations in the general
case.1 Our analysis is general enough to
cover the algorithms that are used in soft-
ware packages like SVMTorch and (first or
second order) LibSVM. To the best of our
knowledge, this is the first paper coming
up with a convergence rate for these algo-
rithms without introducing unnecessarily
restrictive assumptions.

1 Introduction

The term “SVM-optimization” refers to the kind of
convex quadratic optimization problems that typ-
ically arise when a learning problem (e.g., classifi-
cation or regression problem) is solved according
to the Support Vector method [16]. Among the
most widely used algorithms for SVM-optimization
are decomposition algorithms. They proceed iter-
atively and solve a lower-dimensional subproblem
in every iteration. They can be viewed as “exact
line search” algorithms provided that the dimen-
sion of the subproblems is not greater than neces-
sary. In this paper, we are particularly interested
in algorithms performing, at least approximately,
steepest-descent exact line search. For example, the
algorithms in the software packages SVMTorch [4],
and (first or second order) LibSVM [1, 6] fall in this
category. Despite of their wide usage in practice,

∗This work was supported by the Deutsche
Forschungsgemeinschaft Grant SI 498/8-1.

1See the precise bounds in the paper for the depen-
dence on various other problem parameters.

they are still not well understood from a theoretical
point of view. In particular, they seem to converge
faster (or under more general conditions) to opti-
mum than one would expect from the convergence
rates that have been proved so far. The main pur-
pose of our paper is to narrow this gap.

The result that comes closest to our results is
found in [3] and states that, loosely speaking, ap-
proximate steepest-descent exact line search algo-
rithms for C-SV Classification are within ǫ of op-
timality after O(log 1/ǫ) iterations (= linear con-
vergence) provided that the cost-function is strictly
convex and that some additional non-degeneracy
conditions are valid. However, the dependence of
the convergence rate on other problem parameters,
hidden in the big “O” notation, is left completely
unclear in [3]. We improve on this result in several
respects:

• In the case of a strictly convex function, we do
not need any additional assumption to verify
linear convergence.

• Our analysis covers the general case (where the
convex cost function need not necessarily be
strictly convex) and shows that O(1/ǫ) itera-
tions are sufficient for being within ǫ of opti-
mality.

• We reveal the dependence on the other problem
parameters explicitly.

• We prove the results in a more abstract set-
ting so that they hold for a subclass of Con-
vex Quadratic Optimization which covers var-
ious SVM-optimization problems (e.g., C-SV
Classification, ε-SV Regression, ν-SV Classifi-
cation, ν-SV Regression, 1-class SVM).

The main obstacle to a satisfactory analysis of
the Steepest-Descent heuristics is that going down-
hill quite steeply (in the landscape formed by the
cost function) does not necessarily lead to a signifi-
cant cost-reduction because we might be infinitesi-
mally close to a facet of the polyhedron containing

the feasible solutions.2 We find a surprising way
around this obstacle which might be interesting in
its own right. See Section 3 for details.

2 Definitions, Notations and Facts

In this section we fix some notation, and we briefly
call into mind some definitions and facts from the
theory of convex quadratic optimization.

Throughout the paper, we use the short-hand
[ℓ] = {1, . . . , ℓ}. The all-ones vector (all-zeroes)

is denoted as ~e (as ~0, resp.). The vector with 1
in position i and zeroes elsewhere is denoted as−→ei . Ai denotes the i-th column vector of a ma-
trix A. Let Q be a symmetric positive semidefinite
matrix. As usual, ‖y‖Q = (y⊤Qy)1/2 denotes the
seminorm induced by Q. The largest eigenvalue of
Q is denoted as λmax(Q), and the smallest-one as
λmin(Q). For a symmetric positive definite matrix
Q, κ(Q) = λmax(Q)/λmin(Q) denotes the condition
number.

An instance of (Convex) Quadratic Optimiza-
tion is given by a quadratic convex cost function
and linear equality- and inequality-constraints. We
are particularly interested in “Boxed Quadratic Op-
timization” with instances of the form

min
x∈Rℓ

f(x) s.t. Ax = b and l ≤ x ≤ u , (1)

where the following holds:

• The cost function is of the form

f(x) =
1

2
x⊤Qx − w⊤x

for some symmetric positive semidefinite ma-
trix Q ∈ Rℓ×ℓ, and some vector w ∈ Rℓ.

• A ∈ Rr×ℓ, b ∈ Rr, and l, u ∈ Rℓ. We may as-
sume that the number of equality constraints,
r, coincides with the rank of matrix A. The
inequalities of the form l ≤ x ≤ u (understood
componentwise) are called “box constraints”
(for the obvious reason).

Example 1: Consider, for example, (the dual of)
the C-SV Classification problem:

min
1

2
x⊤Qx − ~e⊤x s.t. y⊤x = 0,~0 ≤ x ≤ C~e

Here Q is a kernel-matrix and y ∈ {−1, 1}ℓ

is a vector of classification labels. Note that
we may normalize this instance by substitut-
ing yixi for xi. The normalized instance is ob-
viously still of the form (1) and has exactly one
equality constraint, namely ~e⊤x = 0.

2This is precisely why some authors [8, 11, 13, 7] were
investigating alternative approaches like “Rate Certify-
ing Pair” or “Maximum Gain”.

There are several other examples for SVM-op-
timization problems that can be written in the
form (1) so that l = ~0 and u has the form β~e
for some scalar β. Specifically, β = C for C-SV
Classification, β = 1/ℓ for ν-SV Classification,
β = C/ℓ for ε-SV Regression and ν-SV Regres-
sion, and β = 1/(νℓ) for 1-class SVM. See [15]
for the meaning of the parameters C and ν.

An algorithm for Boxed Quadratic Optimization
has to cope with arbitrary instances (f, A, b, l, u). In
what follows, we assume that an instance (f, A, b, l, u)
has been fixed.

A point x ∈ Rℓ such that Ax = b and l ≤ x ≤
u is called a feasible solution. A feasible direction
d ∈ Rℓ for a feasible solution x is a non-zero vector
d ∈ Rℓ such that Ad = ~0 and, for every i = 1, . . . , ℓ,

xi = ui ⇒ di ≤ 0 and xi = li ⇒ di ≥ 0 . (2)

(It follows that x + θd is still feasible for every suf-
ficiently small θ > 0). F (x) denotes the set of fea-
sible directions for x. Vector d is called a profitable
direction for x if

∇f(x)⊤d < 0 . (3)

(It follows that x + θd has smaller cost than x for
every sufficiently small θ > 0). Vector d is called
q-sparse if it has at most q non-zero components.

An (exact) line search strategy starts with an
initial feasible solution x(0) and improves the cur-
rent feasible (non-optimal) solution x iteratively as
follows:

1. Select a feasible and profitable direction d(x)
for x.

2. Compute a minimizer θ′ > 0 for f(x + θd(x))
s.t. l ≤ x + θd(x) ≤ u and proceed from x to
the next feasible solution x′ := x + θ′d(x).

The sequence evolving from an iterative application
of a given strategy is denoted

~X = x(0), x(1), x(2),

Throughout the paper x, x′ are used as variables
that run through the sequence x(0), x(1), x(2), . . .,
where x′ is always one step-ahead, i.e., x′ = x(r+1)

for x = x(r). Then d = d(x) is the variable that runs
through the corresponding sequence of (feasible and
profitable) directions. Whenever d(x) /∈ kernel(Q),
we shall also be concerned with an (unconstrained)
minimizer θ∗ > 0 of f(x + θd(x)). Note that, in
contrast to x′ = x + θ′d(x), x∗ := x + θ∗d(x) does
not need to satisfy the box-constraints.

By xopt, we denote an optimal feasible solution.
Function

∆(x) = f(x) − f(xopt)

measures how much x differs from optimality. For
sake of brevity, we define ∆n := ∆(x(n)). Clearly,

the sequence ∆n is strictly monotonously decreas-
ing. A central question in this paper is how fast it
converges to zero.

We close this section by noting some facts. The
ones we start with are easy to obtain from the 1st-
order optimality conditions for convex functions:

∇f(x′)⊤(x − x′) ≥ 0 (4)

∇f(x∗)⊤(x − x∗) = 0 (5)

Taylor-expansion

f(x) − f(x′) = ∇f(x′)⊤(x − x′) +
1

2
‖x − x′‖2

Q

around x′ combined with (4) leads to

f(x) − f(x′) ≥ 1

2
‖x − x′‖2

Q . (6)

Expanding around x∗ and making use of (5), we
obtain

f(x) − f(x∗) =
1

2
‖x − x∗‖2

Q . (7)

The next lemma reveals some additional equal-
ities for the unconstrained cost-reduction.

Lemma 1 Assume that d = d(x) /∈ kernel(Q). Then
the following holds:

f(x) − f(x∗) =
1

2

(∇f(x)⊤d

‖d‖Q

)2

(8)

f(x) − f(x∗) =
1

2
inf

y:d⊤∇f(y)≥0
‖x − y‖2

Q (9)

Proof: Recall that x∗ = x + θ∗d. Equality (8)
follows by calculating the minimizer θ∗ for f(x+θd)

which happens to be θ∗ = −∇f(x)⊤d
‖d‖2

Q

.

In order to show (9), first note that ∇f(y) = Qy−w.
Consider the affine hyperplane

H := {y : d⊤∇f(y) = 0} = {y : d⊤Qy = d⊤w}
and the affine halfspaces H+, H− given by d⊤∇f(y) ≥
0 and d⊤∇f(y) < 0, respectively. According to (3),
x belongs to H−, and according to (5), x∗ belongs to
H . Clearly, any y satisfying d⊤∇f(y) ≥ 0 belongs
to H+. Notice that the affine hyperplane H is Q-
orthogonal on d. It follows that x∗ is a Q-projection
of x onto H (unique modulo kernel(Q)). From this
discussion in combination with (7), equality (9) is
evident.

3 A Close Look to Boxed Quadratic

Optimization

In Section 3.1, we shall ignore the issue of choosing
direction d(x) cleverly. Instead, we shall focus on
the following two questions:

1. How does a guaranteed cost-reduction of the
form (10), taking place in every iteration, trans-
late into a guaranteed convergence rate ?

2. How does a guaranteed “unconstrained cost-
reduction” of the form (11), taking place in ev-
ery iteration, translate into a guaranteed con-
vergence rate ?

The first question simply amounts to solving recur-
sions (like in the proof of Lemma 2 below). The sec-
ond question is more challenging because the “wit-
ness” x∗ for the unconstrained cost-reduction f(x)−
f(x∗) is not necessarily a feasible solution. How-

ever, we shall show that the sequence ~X decomposes
into so-called delay-sequences and that the cumula-
tive cost-reduction achieved during all iterations of
a particular delay sequence is not much smaller than
the unconstrained cost-reduction achieved in one of
the iterations. The precise statement is found in
Lemma 4 below.

In Section 3.2, we get back to the question of
how the directions d(x) should be chosen and pro-
vide a lower bound on the unconstrained cost-reduc-
tion achieved by Steepest Descent in every iteration.

The question how to control the length of de-
lay sequences is postponed to Section 4 because the
current section is reserved for results that hold for
arbitrary instances of Boxed Quadratic Optimiza-
tion, whereas our upper bounds on the length of
delay sequences are valid for so-called “pairable”
instances only.

3.1 From Stepwise Cost-Reduction to
Convergence Rates

Let 0 < α < 1 and ν ∈ {1, 2} be fixed constants. We

say that ~X (or the strategy generating ~X) achieves

a cost-reduction of type (α, ν) if, for all x ∈ ~X ,

f(x) − f(x′) ≥ α∆(x)ν . (10)

Similarly, we say that ~X (or the strategy generating
~X) achieves an unconstrained cost-reduction of type

(α, ν) if, for all x ∈ ~X ,

d(x) /∈ kernel(Q) ⇒ f(x)−f(x∗) ≥ α∆(x)ν . (11)

The cost-reduction (either unconstrained or not) is
called weak if the term ∆(x)ν in (10) or in (11),
respectively, is replaced by ∆(x′)ν .

Lemma 2 1. If ~X achieves a weak cost-reduction
of type (α, 1), then

∆n ≤
(

1 − α

1 + α

)n

∆0 (12)

so that ∆n < ǫ for every

n ≥
(

1 +
1

α

)

ln
∆0

ǫ
.

2. If ~X achieves a weak cost-reduction of type (α, 2),
then

∆n <
1

αn
· (α∆0)

2/(n+2) (13)

so that ∆n < ǫ for every

n ≥ max

{
2

αǫ
, 2 log(α∆0)

}

.

The proof of Lemma 2 is given in Section A.
We say that x(n), . . . , x(m−1) is a delay sequence

of length m−n within ~X if, for all s, t = n, . . . , m−1,
the following holds:

∇f(x(s))⊤(x(t+1) − x(t)) < 0 . (14)

A delay sequence x(n), . . . , x(m−1) such that x(m−1)

is not yet optimal is said to be maximal if one of
the following conditions is valid:

1. There exists an s ∈ {n, . . . , m − 1} such that

∇f(x(s))⊤(x(m+1) − x(m)) ≥ 0 . (15)

2. There exists a t ∈ {n, . . . , m − 1} such that

∇f(x(m))⊤(x(t+1) − x(t)) ≥ 0 . (16)

Lemma 3 Assume that x(n), . . . , x(m−1) is a maxi-
mal delay sequence so that one of the conditions (15),
(16) is valid. Then (15) implies that d(x(m)) /∈
kernel(Q). Similarly (16) implies that d(x(t)) /∈
kernel(Q).

Proof: Note that ∇f(x)⊤d = −w⊤d for any d ∈
kernel(Q). Thus, a direction belonging to the kernel
of Q is either profitable for every x or it is unprof-
itable for every x. Condition (15) implies that di-
rection d(x(m)), which is clearly profitable for x(m),
is unprofitable for x(s) so that it cannot belong to
kernel(Q). Similarly, Condition (16) implies that
direction d(x(t)), which is clearly profitable for x(t),
is unprofitable for x(m) so that it cannot belong to
kernel(Q) either.

The sequence ~X = x(1), x(2), . . . , decomposes
into maximal delay sequences (and possibly a fi-
nal delay sequence that ends in an optimal feasible

solution) in the obvious fashion. ~X is said to have
a delay bounded by L if none of the delay sequences

in the decomposition of ~X has a length exceeding
L.

Lemma 4 For every maximal delay sequence

x(n), . . . , x(m−1)

within ~X, there exists x ∈ {x(n), . . . , x(m)} such that

f(x(n)) − f(x(m)) >
1

2
(f(x) − f(x∗)) . (17)

Moreover, if ~X satisfies (11), then

f(x(n)) − f(x(m)) >
α

2
∆(x)ν ≥ α

2
∆ν

m . (18)

Proof: Since x(n), . . . , x(m−1) is a maximal delay
sequence, Condition (14) and one of the conditions
(15), (16) must be satisfied. Let us first assume that
condition (15) holds. Observe that

f(x(n)) − f(x(m)) ≥
(f(x(s)) − f(x(m−1))) + (f(x(m−1)) − f(x(m))) .

According to (6),

f(x(m−1)) − f(x(m)) ≥ 1

2
‖x(m−1) − x(m)‖2

Q .

Taylor-expansion around x(m−1) shows that f(x(s))−
f(x(m−1)) equals

∇f(x(m−1))⊤(x(s) −x(m−1))+
1

2
‖x(s) −x(m−1)‖2

Q .

The first term written as a telescope-sum looks like

m−2∑

t=s

∇f(x(m−1))⊤(x(t) − x(t+1))

and is strictly positive according to (14). We may
now conclude that f(x(n))−f(x(m)) is greater than

1

2

(

(‖x(s) − x(m−1)‖2
Q + ‖x(m−1) − x(m)‖2

Q

)

.

An application of the triangle inequality,

‖x(s)−x(m−1)‖Q+‖x(m−1)−x(m)‖Q ≥ ‖x(s)−x(m)‖Q ,

and of some calculus yields

f(x(n)) − f(x(m)) >
1

4
‖x(s) − x(m)‖2

Q .

Let d := x(m+1) − x(m). Condition (15) reads as
d⊤∇f(x(s)) ≥ 0, whereas d⊤∇f(x(m)) < 0. We
conclude from (9) that 1

2‖x(s) − x(m)‖2
Q is an up-

per bound on the unconstrained cost-reduction at
x(m). Our discussion shows that (17) holds for x =
x(m). Note that d(x(m)) /∈ kernel(Q) according to

Lemma 3. Thus, if ~X satisfies (11), we clearly ob-
tain (18) . Finally note: if condition (16) is as-
sumed instead of (15), a similar reasoning applies
with d := x(t+1) − x(t) and x(t) in the role of x.

Lemma 2 applied to the sequence ∆nL yields the
following result:

Corollary 5 1. If ~X has a delay bounded by L
and achieves an unconstrained cost-reduction
of type (α, 1), then

∆nL ≤
(

1 − α/2

1 + α/2

)n

∆0

so that ∆n ≤ ǫ for every

n ≥
(

2

α
+ 1

)

L ln
∆0

ǫ
.

2. If ~X has a delay bounded by L and achieves
an unconstrained cost-reduction of type (α, 2),
then

∆nL ≤ 2

αn
·
(

α∆0

2

)2/(n+2)

so that ∆n ≤ ǫ for

n = max

{
4L

αǫ
, 2L log

(
α∆0

2

)}

.

3.2 Unconstrained Cost Reduction
Achieved by Steepest Descent

Let x be a feasible non-optimal solution, and let
‖ · ‖ be a vector norm on Rℓ. We say that d∗ is
a steepest-descent direction for x w.r.t. ‖ · ‖ if d∗

is a maximizer of −∇f(x)⊤d s.t. ‖d‖ ≤ 1 and to
feasibility of d. In this case, −∇f(x)⊤d∗ > 0, i.e.,
a steepest-descent direction for x is profitable for
x. Similarly, d is called a τ-approximate steepest-
descent direction for x w.r.t. ‖ · ‖ if d is feasible for
x, ‖d‖ ≤ 1 and −∇f(x)⊤d ≥ −τ∇f(x)⊤d∗.

Lemma 6 Assume that Q is positive definite so
that ‖ · ‖Q is a vector norm. Then the following
holds. If d(x) is a steepest-descent direction for x
w.r.t. ‖ · ‖Q, then f(x) − f(x∗) ≥ ∆(x). More gen-
erally, if d(x) is a τ-approximate steepest-descent
direction for x w.r.t. ‖ · ‖Q, then f(x) − f(x∗) ≥
τ2 · ∆(x)

Proof: According to (8), a steepest-descent direc-
tion for x w.r.t. ‖ · ‖Q leads to the the largest pos-
sible unconstrained cost-reduction at x, which is
certainly not smaller than ∆(x) = f(x) − f(xopt).
Similarly, a τ -approximate steepest-descent direc-
tion misses the largest possible unconstrained cost-
reduction at most by a factor of τ2.

Recall that, for any two vector norms ‖·‖A, ‖·‖B,
there exist constants 0 < c < C such that

c‖ · ‖A ≤ ‖ · ‖B ≤ C‖ · ‖A . (19)

With this notation, the following holds:

Lemma 7 If d̂B is a τ-approximate steepest-descent

direction for x w.r.t. ‖ · ‖B, then c · d̂B is a cτ
C -

approximate steepest-descent direction w.r.t. ‖ · ‖A.

Proof: For T = A, B, let dT be the direction that
maximizes −∇f(x)⊤d subject to ‖d‖T ≤ 1. Note
that ‖ dA

C ‖B ≤ ‖dA‖A ≤ 1 and ‖cdB‖A ≤ ‖dB‖B ≤
1. It follows that

−∇f(x)⊤
dA

C
≤ −∇f(x)⊤dB ≤ − 1

cτ
∇f(x)⊤(cd̂B) ,

which completes the proof.

Corollary 8 Assume that Q is positive definite. Then
the following holds. If d(x) is a τ-approximate steepest-
descent direction for x w.r.t. ‖ · ‖1, then

f(x) − f(x∗) ≥ τ2

ℓκ(Q)
· ∆(x) . (20)

Proof: From

‖d‖2
Q ≤ λmax(Q)‖d‖2

2 ≤ λmax‖d‖2
1 (21)

and

‖d‖2
Q ≥ λmin(Q)‖d‖2

2 ≥ λmin(Q)

ℓ
‖d‖2

1,

we conclude that

1
√

λmax(Q)
‖d‖Q ≤ ‖d‖1 ≤

√

ℓ

λmin(Q)
‖d‖Q .

According to Lemma 7, d(x)√
λmax(Q)

is a τ
√

λmin(Q)
λmax(Q)ℓ -

approximate steepest-descent-direction w.r.t. ‖ ·‖Q.
Now, (20) immediately follows from Lemma 6.

Corollary 9 If Q is positive definite and, for ev-

ery x ∈ ~X, d(x) is a τ-approximate steepest-descent

direction for x w.r.t. ‖ · ‖1, then ~X achieves an un-
constrained cost-reduction of type (α, 1) for

α =
τ2

ℓκ(Q)
. (22)

We move on and consider the general case of a
semidefinite matrix Q. Since ‖·‖Q is a seminorm, we
have in general no relation of the form (19) between
‖ · ‖Q and ‖ · ‖1. However, one still gets results in
the spirit of Corollaries 8 and 9:

Theorem 10 If d(x) is a τ-approximate steepest-
descent direction for x w.r.t. ‖ · ‖1, then, for every
optimal feasible solution xopt,

f(x) − f(x∗) ≥ τ2

2‖xopt − x‖2
1λmax(Q)

· ∆(x)2 .

(23)

Proof: Let d = d(x). By our assumption, ‖d‖1 ≤ 1.
From (21) we conclude that ‖d‖2

Q ≤ λmax(Q). Re-
call that x∗ is the point of minimum cost on the
ray starting from x in direction d. A straightfor-
ward calculation shows that, for every θ > 0, the
following holds:

f(x) − f(x∗) ≥ −θ∇f(x)⊤d − 1

2
θ2‖d‖2

Q

≥ −θ∇f(x)⊤d − 1

2
θ2λmax(Q)

It easily follows that

f(x) − f(x∗) ≥ (∇f(x)⊤d)2

2λmax(Q)
.

Consider the direction dopt := xopt − x. Taylor-
expansion of f(xopt) around x yields

−∇f(x)⊤dopt = f(x)−f(xopt)+
1

2
‖dopt‖2

Q ≥ ∆(x) .

Since d is a τ -approximate steepest-descent direc-
tion for x w.r.t. ‖ · ‖1, we get

−∇f(x)⊤d ≥ −τ∇f(x)⊤
dopt

‖dopt‖1
≥ τ∆(x)

‖xopt − x‖1
.

(24)
Putting everything together, we arrive at (23).

Since ‖xopt − x‖1 ≤ ‖u − l‖1 for every x, we
obtain the following

Corollary 11 If, for every x ∈ ~X, d(x) is a τ-
approximate steepest-descent direction for x w.r.t.

‖·‖1, then ~X achieves an unconstrained cost-reduction

of type (α, 2) for α = τ2

2‖u−l‖2
1
λmax(Q)

.

Note that, in practice, the upper bound ‖u − l‖1

on ‖xopt − x‖1 might be overly pessimistic. For
example, if s denotes the number of support vectors
and if x(0) = ~0, then ‖xopt −x(0)‖1 is bounded from
above by the sum of the s largest side lengths of
the box spanned by l and u (which is, in general, a
much better bound than ‖u − l‖1).

4 Steepest Descent Strategies for

SVM-Optimization

The SMO-algorithm by Platt [14] implemented with
the Violating-Pair selection rule from [9] solves C-
SV Classification by means of steepest-descent line
search. We refer to this implementation of SMO by
the short-hand MVP (= Maximum Violating Pair)
in what follows. In Section 4.1, we show that MVP
(and related algorithms including some second or-
der versions of MVP) have an ℓ-bounded (resp. 2ℓ-
bounded) delay.

In Section 4.2, these results are generalized to
pairable instances of Boxed Quadratic Optimization
so that various SVM-optimization problems can be
addressed.

4.1 C-SV Classification Revisited

Consider a normalized instance of C-SV Classifi-
cation and recall that such an instance is of the
form (1) where the equality matrix A has a single
row containing the all-ones vector ~e. Thus the set
F (x) of feasible directions consists of all non-zero
vectors d ∈ Rℓ that satisfy (2) and the equality
constraint

~e⊤d =

ℓ∑

i=1

di = 0 . (25)

If we additionally impose the condition of 2-sparsity,
d must be a scalar multiple of −→ei − −→ej for some

indices 1 ≤ i, j ≤ ℓ. A direction of this form is
profitable for x iff

∇f(x)⊤d = ∇f(x)i −∇f(x)j < 0 .

The MVP-strategy picks a 2-sparse feasible direc-
tion d(x) ∈ F (x) which maximizes ∇f(x)j −∇f(x)i

subject to ‖d‖∞ ≤ 1. Since ‖d‖1 = 2‖d‖∞ for
every 2-sparse feasible direction, we may equiva-
lently think of picking a 2-sparse feasible direction
d ∈ F (x) that maximizes ∇f(x)j −∇f(x)i subject
to ‖d‖1 ≤ 1. We call into mind the following well-
known result:

Lemma 12 Among the maximizers d of −∇f(x)⊤d
subject to (2), (25) and ‖d‖1 ≤ 1, there is always
a 2-sparse direction. It follows that MVP picks a
steepest-descent direction for x w.r.t. ‖ · ‖1.

Proof: Writing d in the form d = d+−d− such that
d+, d− ≥ 0, it is easy to rewrite the maximization
problem as a linear program in standard form with
two equality constraints so that the basic feasible
solutions (among which there is always an optimal-
one) are 2-sparse. The final conclusion about MVP
is obvious.

Another way of saying how MVP chooses a pair
(i∗, j∗) and the corresponding direction d(x) is as
follows:

1. Pick an index i∗ ∈ [ℓ] that minimizes ∇f(x)i

s.t. xi < ui.

2. Pick an index j∗ ∈ [ℓ] that maximizes ∇f(x)j

s.t. xj > lj .

3. Set d(x) = −→ei∗ −−→ej∗ .

There exist variants of MVP (e.g., the second order
variant in [6]) that fit into the following scheme:

1. Pick an index i∗ ∈ [ℓ] that minimizes ∇f(x)i

s.t. xi < ui.

2. Pick an index j∗ ∈ [ℓ] such that ∇f(x)i∗ −
∇f(x)j∗ < 0 and xj∗ > lj∗

3. Set d(x) = −→ei∗ −−→ej∗ .

In the sequel, we call such strategies “MVP-like”.

Theorem 13 Every MVP-like strategy for C-SV
Classification has 2ℓ-bounded delay. Moreover, MVP
has ℓ-bounded delay.

Proof: Consider a fixed but arbitrary delay se-
quence x(n), . . . , x(m−1). In the sequel, x denotes a
variable that runs through x(n), . . . , x(m−1), H+

k de-
notes the affine hyperplane given by equation xk =
uk, and H−

k denotes the affine hyperplane given by
equation xk = lk. If d(x) = −→ei − −→ej , we say that
x moves upward in dimension i and downward in
dimension j. If xi = ui after an upward-move in

dimension i, we say that x hits H+
i . Symmetrically,

if xj = lj after a downward-move in dimension j, we

say that x hits H−
j . We have to show that the length

m−n of the delay sequence is bounded above by 2ℓ.
This is immediate from the following two claims:

1. Consider an iteration that does not finish the
delay sequence and let −→ei −−→ej be the direction
chosen in this iteration. Then, after the next
move, x hits H+

i or x hits H−
j .

2. During one and the same delay sequence, x can-
not move downward in dimension i after it had
made an upward-move in dimension i before.

As for the first claim, it suffices to show that an iter-
ation moving x in direction −→ei −−→ej so that x neither
hits H+

i nor H−
j finishes the delay sequence. To this

end, we argue as follows. Since the chosen direc-
tion is profitable, we know that ∇f(x)i −∇f(x)j =
∇f(x)⊤(−→ei − −→ej) < 0 before the move. Since x by
assumption does not hit one of the hyperplanes H+

i ,
H−

j , we know that ∇f(x)i − ∇f(x)j = 0 after the
move. But turning a profitable direction into an
unprofitable-one is something that cannot happen
in one and the same delay sequence. Thus, the first
claim is valid.
In order to prove the second claim, we consider the
following relation on indices from [ℓ]: i≺̇j means,
by definition, that direction −→ei −−→ej is chosen in one
of the iterations during the delay sequence, say in
iteration r. Since this direction is profitable, we get

∇f(x(r))i −∇f(x(r))j = ∇f(x(r))⊤(−→ei −−→ej) < 0 ,

which implies that ∇f(x(r))i < ∇f(x(r))j . But, as
mentioned above already, a direction that is prof-
itable in one iteration of the delay-sequence is prof-
itable in all iterations of the delay-sequence. Thus,

∀s = n, . . . , m − 1 : ∇f(x(s))i < ∇f(x(s))j (26)

Let “≺” and “�” be the transitive and the reflexive-
transitive closure of “≺̇”, respectively. Since i ≺ j
implies (26), it is a partial ordering. For every r =
n, . . . , m − 1, let

Ir = {i : x
(r)
i < ui} .

The crucial observation is that, for all r = n, . . . , m−
2, the following holds:

∀j ∈ Ir+1, ∃i ∈ Ir : i � j (27)

To see why this is true, pick an arbitrary but fixed
index j from Ir+1. Since j ∈ Ir would confirm (27),

let us assume that j /∈ Ir , i.e., x
(r)
j = uj . Since

j ∈ Ir+1 implies that x
(r+1)
j < uj , iteration r makes

x moving downward in dimension j. Thus, there
exists i ∈ Ir such that this move is in direction−→ei − −→ej . But this implies that i≺̇j. Our discussion

shows that (27) is valid.
Let us get back to the proof of claim 2 above and
assume that x is moved upward in dimension i∗,
say in iteration r. We have to show that x is not
moved downward in dimension i∗ during one of the
subsequent iterations of the same delay sequence.
Note that i∗ must be a minimizer of ∇f(x(r))i sub-
ject to i ∈ Ir since the directions are chosen by an
MVP-like strategy. It follows that i∗ is among the
minimal elements of Ir. Let us assume, for sake of
contradiction, that x is moved downward in dimen-
sion i∗ during some iteration r′ > r of the same
delay sequence, say by a move in direction −→ej −−→ei∗

for some j ∈ Ir′ . It follows that j≺̇i∗. According
to (27) on the other hand, there must exist an index
i ∈ Ir such that i � j. It follows that i ≺ i∗, which
contradicts to the minimality of i∗ within Ir . Thus
Claim 2 must be valid, and the verification of the
delay-bound 2ℓ is complete.
For strategy MVP, a symmetry-argument applies
and the second claim above remains valid after an
exchange of the words “downward” and “upward”.
This immediately yields delay-bound ℓ.

Since MVP performs steepest descent and has
ℓ-bounded delay, Corollary 5 applies to MVP. Since
the resulting convergence-rate is valid not only for
C-SV Classification but also for the more general
problem “Pairable Boxed Quadratic Optimization”,
we postpone its specification to Section 4.2.

4.2 Pairable Boxed Quadratic
Optimization Revisited

List [10] introduced the following notion. An in-
stance (f, A, b, l, u) of Boxed Quadratic Optimiza-
tion is called decomposable by pairing or simply pair-
able if any collection of pairwise linear independent
columns of A is linear independent. Pairable Boxed
Quadratic Optimization means Boxed Quadratic Op-
timization restricted to pairable input instances. Sur-
prisingly many SVM Optimization problems fall in
this category (e.g., all problems mentioned in Ex-
ample 1).

For the remainder of this section, we assume
that (f, A, b, l, u) is a fixed but arbitrary pairable
instance. Let r denote the rank of A. Then, A
has r linear independent columns, say A1, . . . , Ar

(after renumbering if necessary), so that the follow-
ing holds. For every i ∈ [ℓ], there exists a unique
k := k(i) ∈ [r] and a unique constant ci such that
Ai = ciAk. Let us define

Ik := {i ∈ [ℓ] : k(i) = k} .

We may assume that ci ≥ 0 for every i ∈ [ℓ] (after
a suitable variable substitution if necessary).

Note that the set F (x) of feasible directions con-
sists of all non-zero vectors d ∈ Rℓ that satisfy (2)

together with the equality constraints Ad = ~0. If we
additionally assume 2-sparsity of d and ‖d‖1 = 1,

then d must be of the form

−→
di,j :=

1

ci + cj
(cj

−→ei − ci
−→ej) (28)

for some indices 1 ≤ i, j ≤ ℓ such k(i) = k(j). Note
that

∇f(x)⊤
−→
di,j =

1

ci + cj
(cj∇f(x)i − ci∇f(x)j)

=
cicj

ci + cj

(∇f(x)i

ci
− ∇f(x)j

cj

)

.

Strategy SD is defined to pick a 2-sparse and
feasible direction d(x) of unit L1-norm which max-
imizes −∇f(x)⊤d. In other words, it picks a maxi-
mizer (i∗, j∗) of

cicj

ci + cj

(∇f(x)j

cj
− ∇f(x)i

ci

)

(29)

s.t. xi < ui, xj > lj , and then chooses direction

d(x) :=
−−−→
di∗,j∗ . The following result generalizes Lem-

ma 12:

Lemma 14 Among the maximizers d of −∇f(x)⊤d

subject to (2), Ad = ~0 and ‖d‖1 = 1, there is al-
ways a 2-sparse direction. It follows that SD picks
a steepest-descent direction for x w.r.t. ‖ · ‖1.

Proof: Let P denote the maximization problem de-
scribed in Lemma 14 and let g∗ denote its optimal
value. For every fixed but arbitrary k ∈ [r], consider
the subproblem Pk where di is set to 0 for every
i /∈ Ik, and let gk denote its optimal value. The cor-
responding submatrix of A consists of all columns
that are scalar multiples of Ak so that it essentially
contains one equality constraint. A second equality
constraint will result from the condition ‖d‖1 ≤ 1
(that may be replaced by ‖d‖1 = 1 because an op-
timal solution satisfies ‖d‖1 ≤ 1 without slackness).
As in the proof for Lemma 12, it follows that the
basic feasible solutions for Pk are 2-sparse. On one
hand, clearly g∗ ≥ gk for every k ∈ [r]. On the other
hand, since ‖d‖1 = 1, g∗ is a convex combination of
g1, . . . , gk. Thus, there exists an index k′ ∈ [r] such
that g∗ = gk′ . Since Pk′ has 2-sparse basic feasible
solutions, P has is a 2-sparse maximizer. The final
conclusion about SD is obvious.

In the sequel, we discuss another strategy named
ASD (= Approximate Steepest Descent). It is sim-
ple to implement, and it computes a feasible and
profitable direction in O(ℓ) steps as follows:

1. For k = 1, . . . , r, choose i′(k) so as to minimize
1
ci
∇f(x)i s.t. i ∈ Ik and xi < ui.

2. For k = 1, . . . , r, choose j′(k) so as to maximize
1
cj
∇f(x)j s.t. j ∈ Ik and xj > lj .

3. Among all (i′(k), j′(k)), k = 1, . . . , r, choose
the pair which, in the sense of (28), induces
the direction vector d with the largest value of
−∇f(x)⊤d.

Any strategy that, for every k = 1, . . . , r, selects
two indices i′ = i′(k), j′ = j′(k) ∈ Ik such that the
first of the above conditions for ASD holds and such
that direction vector

−−→
di′,j′ is feasible and profitable

is called “ASD-like”.
When applied to C-SV Classification, ASD col-

lapses to MVP and, similarly, ASD-like strategies
collapse to MVP-like strategies. This follows di-
rectly from the fact that a normalized instance of C-
SV Classification has an equality matrix of the form
A = [1, . . . , 1] ∈ R1×ℓ so that c1 = · · · = cℓ = 1 and
k(1) = · · · = k(ℓ) = 1. Similarly, when applied to
ν-SV Classification, ASD collapses to the strategy
from [2]. Moreover, the following holds:

Lemma 15 Let cmin(k) := mini∈Ik
ci, cmax(k) :=

maxi∈Ik
ci, and

τ(A) := min
k=1,...,r

cmin(k)

cmax(k)
.

With this notation, it holds that ASD chooses a
τ(A)-approximate steepest-descent direction.

Proof: We have to compare the objective values
∇f(x)⊤d achieved by SD and ASD, respectively.
Since both strategies choose a 2-sparse and feasi-
ble direction of unit L1-norm, both objective values
are of the form (29). Define an auxiliary function
h(u, v) := uv/(u + v). Let i∗, j∗ ∈ Ik denote the
pair of indices chosen by SD, and let i′ = i′(k), j′ =
j′(k)) be the pair of indices in Ik determined by
ASD. The resulting directions are denoted as d∗

and d′, respectively. It suffices to show that d′ is
a τ(A)-approximate steepest-descent direction. It
follows from the definition of ASD that
(∇f(x)j′

cj′
− ∇f(x)i′

ci′

)

≥
(∇f(x)j∗

cj∗
− ∇f(x)i∗

ci∗

)

.

In view of (29), a simple computation now shows
that

−∇f(x)⊤d′ ≥ h(ci′ , cj′)

h(ci∗ , cj∗)

(
−∇f(x)⊤d∗

)
.

Since h(u, v) is monotonously increasing in both ar-
guments, it follows that

−∇f(x)⊤d′

−∇f(x)⊤d∗
≥ h(cmin, cmin)

h(cmax, cmax)
=

cmin(k)

cmax(k)
≥ τ(A) ,

which concludes the proof.

The following result is a straightforward gener-
alization of Theorem 13:

Theorem 16 Every ASD-like strategy for Pairable
Boxed Quadratic Optimization has 2ℓ-bounded de-
lay. Moreover, ASD has ℓ-bounded delay.

We briefly sketch the proof of Theorem 16. A

move in direction d(x) =
−−→
di′,j′ moves x upward in

dimension i′ and downward in dimension j′. We
have therefore a similar starting point as in the
proof of Theorem 13. The main differences to the
special case of MVP-like strategies are as follows.
First, the full set [ℓ] of dimensions splits into classes
I1, . . . , Ir. The indices i′, j′ chosen in an iteration
always belong to the same class. Second (compare
with (28)), x moves upward in dimension i′ with
speed cj′ and downward in dimension j′ with speed
ci′ (whereas, in the proof of Theorem 13, we had
speed 1 in both cases). But these differences do
not cause much trouble. One can show that (slight
adaptations of) the two central claims within the
proof for Theorem 13 are still valid (where the full
set of dimensions is discussed “classwise”). We omit
the details.

Since (according to Lemma 15) ASD performs
τ(A)-approximate steepest descent and has ℓ-bounded
delay, we may now apply Corollaries 9, 11, and 5 so
as to obtain the following convergence-rate:

Corollary 17 Assume that sequence ~X is produced
by a decomposition algorithm that applies strategy
ASD. Then the following threshold n0 makes sure
that ∆n ≤ ǫ for every n ≥ n0 provided that Q is
positive definite:

n0 =
2ℓ2κ(Q) + ℓ

τ(A)2
· ln ∆0

ǫ
(30)

In the general case of a positive semidefinite matrix
Q, threshold n0 can be chosen as the maximum of
the following two terms:

8ℓ‖u − l‖2
1λmax(Q)

τ(A)2ǫ
, log

τ(A)2∆0

2‖u − l‖2
1λmax(Q)

(31)

See the concluding remarks below for the convergence-
rates that we obtain from Corollary 17 in the special
case of SVM-optimization.

We close this section by a short discussion of the
following strategy named “2nd-order ASD”:

1. For k = 1, . . . , r, choose i′(k) ∈ Ik according to
the ASD-strategy.

2. For k = 1, . . . , r, choose j′(k) so as to maximize
the unconstrained cost-reduction in direction−−−−→
di′(k),j s.t. j ∈ Ik and xj > lj .

3. Among all (i′(k), j′(k)), k = 1, . . . , r, choose
the pair which leads to the largest unconstrained
cost-reduction.

Like ASD, it is simple to implement, and it com-
putes a feasible and profitable direction in O(ℓ) steps.
Moreover, the following holds:

1. 2nd-order ASD is ASD-like.

2. Any unconstrained cost-reduction achieved by
ASD at a given point x is, more than ever,
achieved by 2nd-order ASD.

These observations imply that the convergence rate
described in Corollary 17 carries over from ASD to
2nd-order ASD (except that n0 must be twice as
large because the calculation for ASD was based
on delay-bound ℓ but, for 2nd-order ASD, we can
guarantee delay-bound 2ℓ only). We finally would
like to mention that, for the special case of C-SV
and ν-SV Classification, 2nd-order ASD collapses
to the second order strategy from [6].

Analysis of Stopping Criteria: Let us assume
that directions d(x) are always normalized w.r.t.
‖ · ‖1. The following rule (slightly generalized to
arbitrary pairable instances) is most often used in
practice: stop and return the current feasible solu-
tion x as soon as a direction d(x) is selected such
that

δ(x) := −∇f(x)⊤d(x) < ǫ .

One can show that, under assumptions specified be-
low, δ(x) relates to the (unknown) quantity ∆(x) =
f(x) − f(xopt) according to

∆(x(n)) ≤ ‖u − l‖1δ(x
(n))

τ
, (32)

∆(x(n)) ≥ δ(xn′

)2

4λmax(Q)
, (33)

for some (properly chosen) n′ ∈ {n, . . . , n+L}. Here
is a sketch of proof. Inequality (32) is valid for any
τ -approximate steepest-descent strategy and follows
directly from (24).3 Inequality (33) is valid for
any strategy with L-bounded delay as can be seen
by the following reasoning, which makes use of an
x ∈ {x(n), . . . , x(n+L)} that is chosen in accordance
with Lemma 4:

∆(x(n)) ≥ f(x(n)) − f(x(n+L))
L. 4
≥

1

2
(f(x) − f(x∗))

(8)
=

(∇f(x)⊤d(x)

2‖d(x)‖Q

)2

Now (33) follows from (21) and the definition of δ.

Concluding Remarks: For the sake of a simple
presentation, we did not try to get the full “horse
power” out of our upper bounds on the number of
iterations. Some improvements, however, are quite
straightforward. For example, let us denote the
largest eigenvalue of any q×q principal submatrix of
Q as λmax,q(Q), and let κq(Q) := λmax,q(Q)/λmin(Q).
With this notation, some of our results can be sharp-
ened:

3In our paper, ∆(x) refers to the dual SVM-
optimization problem. Using techniques from [12], one
can show that the right-hand side in (32) even upper-

bounds ∆primal(x
(n)) + ∆dual(x

(n)).

• We may substitute κq(Q) for κ(Q) in (20) and
in (22), respectively, provided that d(x) is as-
sumed as q-sparse.

• The analogous manipulations, with λmax,q(Q)
substituted for λmax(Q), are possible in Theo-
rem 10 and Corollary 11, respectively, provided
that d(x) is assumed as q-sparse.

• Consequently, we may substitute κ2(Q) for κ(Q)
in (30), and λmax,2(Q) for λmax(Q) in (31).
For all SVM-optimization problems mentioned
in Example 1, we may furthermore substitute
1 for τ(A) in (30) and in (31), respectively
(which follows from a close inspection of the
corresponding quadratic programs in [15]).

These considerations lead to the following result:

Corollary 18 Assume that strategy ASD is applied
to one of the problems C-SV Classification, ε-SV
Regression, ν-SV Classification, ν-SV Regression,
and 1-class SVM, respectively. The the following
setting of threshold n0 makes sure that ∆n ≤ ǫ for
every n ≥ n0 (or for every n ≥ 2n0 if 2nd-order
ASD is applied):

1. If Q is positive definite, then let

n0 := 2ℓ2κ2(Q) + ℓ · ln ∆0

ǫ
= Õ(ℓ2) .

2. If Q is an arbitrary positive semidefinite ma-
trix, then n0 can be chosen as the maximum of
the terms

8
ℓ

ǫ
‖u−l‖2

1λmax,2(Q) , log
∆0

2‖u − l‖2
1λmax,2(Q)

.

Moreover, the following holds (compare with
Example 1):

• For C-SV Classification, ‖u − l‖1 = Cℓ,

which leads to n0 = Õ(ℓ3C2/ǫ).

• For ν-SV Classification, ‖u−l‖1 = 1, which

leads to n0 = Õ(ℓ/ǫ).

• For ε-SV Regression and for ν-SV Regres-
sion, ‖u − l‖1 = C, which leads to n0 =

Õ(C2ℓ/ǫ).

• For 1-class SVM, ‖u − l‖1 = 1/ν, which

leads to n0 = Õ(ℓ/(ǫν2)).

References

[1] Chih-Chung Chang and Chih-Jen Lin.
LIBSVM: a Library for Support Vec-
tor Machines, 2001. Available from
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[2] Chih-Chung Chang and Chih-Jen Lin. Train-
ing ν- Support Vector Classifiers: Theory and
Algorithms. Neural Computation, 10(9):2119–
2147, 2001.

[3] Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen
Lin. A study on SMO-type decomposition
methods for Support Vector Machines. IEEE
Transactions on Neural Networks, 17(4):893–
908, 2006.

[4] Ronan Collobert and Samy Bengio. SVM-
Torch: Support Vector Machines for large
scale regression problems. Journal of Machine
Learning Research, 6:143–160, 2001.

[5] J. Dunn. Rates of convergence for condi-
tional gradient algorithms near singular and
non-singular extremals. SIAM J. Control and
Optimization, 17(2):187–211, 1979.

[6] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen
Lin. Working set selection using second order
information for training Support vector Ma-
chines. Journal of Machine Learning Research,
6:1889–1918, 2005.

[7] Tobias Glasmachers and Christian Igel.
Maximum-gain working set selection or Sup-
port Vector Machines. Journal of Machine
Learning Research, 7:1437–1466, 2006.

[8] Don Hush and Clint Scovel. Polynomial-time
decomposition algorithms for Support Vector
Machines. Machine Learning, 51(1):51–71,
2003.

[9] S. Sathiya Keerthi, Shirish Krishnaj She-
vade, Chiranjib Bhattacharyya, and K. R. K.
Murthy. Improvements to Platt’s SMO algo-
rithm for SVM classifier design. Neural Com-
putation, 13(3):637–649, 2001.

[10] Nikolas List. Convergence of a generalized
gradient selection approach for the decomposi-
tion method. In Proceedings of the 15th Inter-
national Conference on Algorithmic Learning
Theory, pages 338–349, 2004.

[11] Nikolas List. Generalized SMO-style decom-
position algorithms. In Proceedings of the 20th
Annual Conference on Learning Theory, pages
365–377, 2007.

[12] Nikolas List, Don Hush, Clint Scovel, and Ingo
Steinwart. Gaps in Support Vector Optimiza-
tion. In Proceedings of the 20th Annual Confer-
ence on Learning Theory, pages 336–348, 2007.

[13] Nikolas List and Hans Ulrich Simon. General
polynomial time decomposition algorithms.
Journal of Machine Learning Research, 8:303–
321, 2007.

[14] John C. Platt. Fast training of Support Vec-
tor Machines using sequential minimal opti-
mization. In Bernhard Schölkopf, Christopher
J. C. Burges, and Alexander J. Smola, editors,
Advances in Kernel Methods—Support Vector
Learning, pages 185–208. MIT Press, 1998.

[15] Bernhard Schölkopf and Alexander J. Smola.
Learning with Kernels. MIT Press, 2002.

[16] Vladimir Vapnik. Statistical Learning Theory.
John Wiley & Sons, 1998.

A Proof of Lemma 2

Assume first that ~X achieves a weak cost-reduction
of type (α, 1). It follows that, for every n ≥ 0,

∆n − ∆n+1 ≥ α∆n+1 .

Solving for ∆n+1 yields

∆n+1 ≤ 1

1 + α
∆n =

(

1 − α

1 + α

)

∆n

from which (12) is obvious.

Now assume that ~X achieves a weak cost-reduction
of type (α, 2). Consider an arbitrary but fixed n
such that ∆n > 0. For every s = 0, . . . , n−1, define

ρs = ∆s+1

∆s
. Since ~X achieves a weak cost-reduction

of type (α, 2), we get

∆s+1 ≤ ∆s − α∆2
s+1 = ∆s (1 − αρ2

s∆s)
︸ ︷︷ ︸

∈(0,1)

.

It follows that

1

∆s+1
− 1

∆s
≥ 1

∆s(1 − αρ2
s∆s)

− 1

∆s

=
αρ2

s

1 − αρ2
s∆s

≥ αρ2
s .

We conclude that

1

∆n
=

1

∆0
+

n−1∑

s=0

1

∆s+1
− 1

∆s

> α

n−1∑

s=0

ρ2
s

≥ αn

(
∆n

∆0

)2/n

,

where the last inequality easily follows from

ρ0 · · · ρn−1 =
∆n

∆0
.

Solving 1
∆n

> αn
(

∆n

∆0

)2/n

for ∆n yields (13).

Our proof of the second part of Lemma 2 builds
on a proof by Dunn [5] who solved a similar recur-
sion dealing with a cost-reduction of type (α, 2) (as
opposed to a weak cost-reduction of this type).

