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Abstract

Modern data sets, though typically high dimen-
sional, are often generated by processes possess-
ing few essential degrees of freedom, as is the case
with human speech. In recent years, such consid-
erations have lead to the notion that high dimen-
sional data may be modeled to lie on a submani-
fold of low intrinsic dimension. We derive bounds
on the number of random samples needed before
it is possible to approximately separate data into
two classes using smooth decision boundaries with
high probability.

1 Introduction
Over the last several years, manifold based methods have
been developed and applied to a variety of problems. Much
of this work is empirically and algorithmically oriented and
there is a need to better understand the learning-theoretic
foundations of this class of machine learning problems. Our
paper is a contribution in this direction with the hope that it
will better delineate the possibilities and limitations.

In the manifold setting, one is canonically interested in
learning a function f : M → R (regression) or f : M →
{0, 1} (classification/clustering). For regression therefore,
the natural objects of study are classes of real-valued func-
tions on the manifold leading one to eventually consider func-
tional analysis on the manifold. Thus, for example, the Laplace-
Beltrami operator and its eigenfunctions have been studied
with a view to function learning [1, 2].

Our interest in this paper is the setting for classification
or clustering where the function is 0/1 valued and therefore
divides the manifold into two disjoint pieces M1 and M2.
A natural class of such functions may be associated with
smooth cuts on the manifold. We will consider smooth cuts
where each cut corresponds to a submanifold (say P ⊂ M)
that divides M into two pieces. Since P is a submanifold of
M and hence Rm, one can associate to it a measure of com-
plexity given by its condition number 1/τ . The condition
number is defined as follows.

Definition 1 (Condition Number) Let M be a smooth
d−dimensional submanifold of Rm. We define the condition
number c(M) to be 1

τ , where τ is the largest number to have

Figure 1: Curves of low and high condition number at the
left and right respectively.

the property that for any r < τ no two normals of length r
that are incident on M at different points intersect.

Given two linear subspaces V,W , let ^(V, W ) be the
angle between V and W , defined as

^(V, W ) = arccos
(

sup
v∈V

inf
w∈W

v · w
‖v‖‖w‖

)
. (1)

For any manifold M,

c(M) = inf
x,y∈L

2 sin(^(Tx,Ty)
2 )

‖x− y‖ , (2)

where the infimum is taken over distinct points x, y ∈ M
and Tx and Ty are the tangent spaces at x and y.

We can define the following function class (concept class
in PAC terminology.)

Definition 2 Let

Sτ :=
{

S
∣∣S = S ⊆M and c(S ∩M \ S) ≤ 1

τ

}
,

where S is the closure of S. Let

Cτ :=
{
f
∣∣f : M→ {0, 1} and f−1(1) ∈ Sτ

}
.

Thus, the concept class Cτ is the collection of indicators of
all closed sets in M whose boundaries are 1/τ -conditioned
d− 1 dimensional submanifolds of Rm.

Note that when τ = ∞, Cτ contains the indicators of all
affine half-subspaces of dimension d that are contained in
M. By letting τ vary, we obtain a structured family of cuts.
We now consider the following basic question.



[Question:] Let M be a d-dimensional submanifold of Rm

and let Cτ be a concept class of 0/1 valued functions corre-
sponding to a family of smooth cuts with condition number
1
τ . Then what is the sample complexity of learning the ele-
ments of Cτ ?

Our contributions in this paper are as follows.

1. We show that distribution-free learning of Cτ is impos-
sible in general since for some M, it is a space of infi-
nite VC dimension. We prove that this is the case for a
natural embedding in Rm of the d−dimensional sphere
of radius κ > τ .

2. On the the other hand, it is possible to provide distribution-
specific sample complexity bounds that hold uniformly
for a large class of probability measures on M. These
are the measures for which there exists a Radon Nikodym
derivative with respect to the uniform measure on M
such that there is an upper bound ρmax on the associ-
ated density function. The sample complexity is seen to
depend on the intrinsic dimension d, curvature bounds
τ and κ, density bound ρmax, but is independent of the
ambient dimension m.

3. The proof technique used for obtaining these distribu-
tion specific bounds (Poissonization etc.) may be useful
prove distribution specific learning in other settings.

Our sample complexity bounds depend on an upper bound
ρmax ≥ 1 on the maximum density of P with respect to the
volume measure, (normalized to be a probability measure),
the curvatures and the intrinsic dimension ofM and the class
boundary P , but are independent of the ambient dimension
m. We also show that the dependence on the maximum den-
sity ρmax of P is unavoidable by proving that for any fixed τ
the VC-dimension of the function class associated with cuts
that are submanifolds with a condition number 1

τ is infinite
(Lemma 9) for certain compact submanifolds.

2 Preliminaries
Suppose that P is a probability measure supported on a d-
dimensional Riemannian submanifoldM ofRm having con-
dition number ≤ 1

κ . Suppose that data samples {xi}i≥1 are
randomly drawn from P in an i.i.d fashion. Let each data
point x be associated with a label f(x) ∈ {0, 1}.

Definition 3 (Annealed Entropy) LetP be a probability mea-
sure supported on a manifold M. Given a class of indicator
functions Λ and a set of points Z = {z1, . . . , z`} ⊂ M, let
N(Λ, Z) be the the number of ways of partitioning z1, . . . , z`

into two sets using indicators belonging to Λ . We define
G(Λ,P, `) to be the expected value of N(Λ, Z). Thus

G(Λ,P, `) := EZ`P×`N(Λ, Z),

where expectation is with respect to Z and ` signifies that Z
is drawn from the Cartesian product of ` copies of P . The
annealed entropy of Λ with respect to ` samples from P is
defined to be

Hann(Λ,P, `) := ln G(Λ,P, `).

Definition 4 The risk R(α) of a classifier α is defined as the
probability that α misclassifies a random data point x drawn
from P . Formally, R(α) := EP [α(x) 6= f(x)]. Given a set
of ` labeled data points (x1, f(x1)), . . . , (x`, f(x`)), the em-

pirical risk is defined to be Remp(α, `) :=
∑`

i=1 I[α(xi)6=f(xi)]

` ,
where I[·] denotes the indicator of the respective event and
f(x) is the label of point x.

Theorem 5 (Vapnik [6], Thm 4.2) For any ` the inequality

P

[
sup
α∈Λ

R(α)−Remp(α, `)√
R(α)

> ε

]
< 4e

(
Hann(Λ,P,2`)

` − ε2
4

)
`

holds true, where random samples are drawn from the distri-
bution P .

2.1 Remarks
Our setting is the natural generalization of half-space learn-
ing applied to data on a d−dimensional sphere. In fact, when
the sphere has radius τ , Cτ corresponds to half-spaces, and
the VC dimension is d + 2. However, when τ < κ, as we
show in Lemma 9, on a d−dimensional sphere of radius κ,
the VC dimension of Cτ is infinite. Interestingly, for these
spheres, if τ > κ, Cτ contains only the function that always
taked value 1 and the function that always takes value 0,
since there are normals of length κ from center of the sphere
to any point of a submanifold embedded in the sphere. In
this case, the VC dimension is 1.

If the decision surface is not thin, but there is a margin
within which misclassification in not penalized, our results
can be adapted to show that the VC dimension is finite.

Our results pertain to the sample complexity of classi-
fication of smooth cuts, and does not address algorithmic
issues. We are not aware of a way to generate arbitrary
1
τ−conditioned cuts. One direction towards addressing al-
gorithmic issues would be to prove bounds on the annealed
entropy of the family of linear classifiers in Gaussian Hilbert
space. Since the Hilbert space of Gaussians with a fixed
width has infinite VC dimension, distribution independent
bounds cannot be found and annealed entropy could be a
useful tool. Since SVMs based on Gaussian kernels are fre-
quently used for classification, such a result would have al-
gorithmic implications as well.

3 Learning Smooth Class Boundaries
Following Definition 2, let Cτ be the collection of indicators
of all open sets inM whose boundaries are 1/τ -conditioned
submanifolds of Rm of dimension d− 1.
Our main theorem is the following.

Definition 6 (Packing number) Let Np(εr) be the largest
number N such thatM contains N disjoint balls BM(xi, εr),
where BM(x, εr) is a geodesic ball inM around x of radius
εr.

Notation 1 Without loss of generality, let ρmax be greater
or equal to 1. Let εr = min( τ

4 , κ
4 , 1)ε/(2ρmax). For some

sufficiently large universal constant C, let

` := C

(
ln 1

δ + Np(εr/2)d ln(dρmax/ε)
ε2

)
.



Figure 2: This illustrates the distribution from Lemma 8. The
intersections of f−1(1) and f−1(0) with the support ofP are
respectively green and red.

Theorem 7 Let M be a d−dimensional submanifold of Rm

whose condition number is≤ 1
κ . Let P be a probability mea-

sure onM, whose density relative to the uniform probability
measure onM is bounded above by ρmax. Then the number
of random samples needed before the empirical risk and the
true risk are close uniformly over Cτ can be bounded above
as follows. Let ` be defined as in Notation 1. then

P

[
sup
α∈Cτ

R(α)−Remp(α, `)√
R(α)

>
√

ε

]
< δ

Proof:The proof follows from Theorem 11 and Theorem 5.
The former provides a bound on the annealed entropy of Cτ

with respect to samples from P . The latter relates the sample
complexity of learning an element of a class of indicators
such as Cτ using random samples drawn from a distribution
P , to the annealed entropy of that class.

Lemma 8 provides a lower bound on the sample com-
plexity that shows that some dependence on the packing num-
ber cannot be avoided in Theorem 7. Further, Lemma 9
shows that it is impossible to learn an element of Cτ in a
distribution-free setting in general.

Lemma 8 LetM be a d−dimensional sphere inRm. Let the
P have a uniform density over the disjoint union of Np(2τ)
identical spherical caps

S = {BM(xi, τ)}1≤i≤Np(2τ)

of radius τ , whose mutual distances are all ≥ 2τ . Then, if
s < (1− ε)Np(2τ),

P

[
sup
α∈Cτ

R(α)−Remp(α, s)√
R(α)

>
√

ε

]
= 1.

Proof: Suppose that the labels are given by f : M→ {0, 1},
such that f−1(1) is the union of some of the caps in S as
depicted in Figure 1. Suppose s random samples z1, . . . , zs

are chosen from P . Then at least εNp(2τ) of the caps in S

Figure 3: The 1−dimensional submanifold P of R2 traced
out by all points (x, fS(x)).

do not contain any of the zi. Let X be the union of these
caps. Let α : M → {0, 1} satisfy α(x) = 1 − f(x) if
x ∈ X and α(x) = f(x) if x ∈ M \ X . Note that α ∈
Cτ . However, Remp(α, s) = 0 and R(α) ≥ ε. Therefore
R(α)−Remp(α,s)√

R(α)
>
√

ε, which completes the proof.

Lemma 9 For any m > d ≥ 2, and τ > 0, there exist com-
pact d−dimensional manifolds on which the VC dimension
of Cτ is infinite. In particular, this is true for the standard
d−dimensional Euclidean sphere of radius κ embedded in
Rm, where m > d ≥ 2 and κ > τ .

Proof: First consider the two dimensional plane R2. Sup-
pose that for i = 0 to n − 1, xi = (iτ/n, 0). If there is
no bound on the condition number, we make the following
claim.

Claim 10 For every subset S ⊆ [n] there exists a boundary
given by a graph (x, fS(x)), fS : R → R such that the
following hold.

1. fS(xi) > 0 if i ∈ S (see Figure 2) and fS(xi) < 0 if
i ∈ [n] \ S.

2. f is thrice continuously differentiable.

3. For all x ∈ R, |f ′′S (x)| < 1
γ := 1

2Mτ for some large
constant M >> 1 and for all x such that |x| ≥ τ ,
fS(x) = 0.

It is clear that for any S a function gS exists that satisfy the
first two conditions. We will use gS to obtain fS .

To see this, note that the radius of curvature at any point

(x, gS(x)) is given by (1+g′S(x)2)
3
2

|g′′S(x)| . Now, let

α = sup
S⊆[n],x∈[−τ,τ ]

max(|g′S(x)|, |g′′S(x)|).

Let fS(x) = gS(x)
γα . The 1−dimensional submanifold P of

R2 traced out by all points (x, fS(x)) has curvature ≤ 1
γ

because for all x ∈ [−τ, τ ], for all S,

αγ

(
1 +

(
g′S(x)

αγ

)2
)3/2

|g′′S(x)| ≥ Ω(γ).

Let S2
κ = {(x, y, z)

∣∣x2 + y2 + (z − κ)2 = κ2} be the
2−sphere of radius κ > τ tangent to the (x, y) plane at
the origin. Consider the stereographic projection υκ of S2

κ \
{0, 0, 2κ} onto R2 (embedded in R3), defined by

υκ(x, y, z) :=
(

2κx

2κ− z
,

2κy

2κ− z
, 0

)
.



Let B be the ball of radius 1 centered at the origin in the
image of υκ. As M →∞, υ−1

κ (B ∩P ) tends uniformly to a
great circle, and its tangent spaces (see (1) tend uniformly to
the corresponding tangent spaces of the great circle in terms
of the angle. Therefore, (by (2)) for sufficiently large M , the
condition number of υ−1

κ (P ) is less than 1
τ , completing the

proof. This argument carries over to when S2
κ ∈ Rm for m >

3. Now, we may extend the copy of R2 that we considered
to Rd by taking the canonical embedding R2 → R2×Rd−2.
The 1−dimensional manifold P can similarly extended to
obtain a m−1−dimensional submanifold P×Rd−2. We can
then consider as we did in the case of R2, the stereographic
projection that maps the d−sphere

Sd
κ = {(x, y, z1, z2, . . . , zd−1)

∣∣

x2 + y2 + z2
1 + . . . + (zd−1 − κ)2 = κ2}

onto Rd by the map

υκ(x, y, z1, . . . , zd−1) :=
(

2κx

2κ− zd−1
,

2κy

2κ− zd−1
,

2κz1

2κ− zd−1
, . . . ,

2κzd−2

2κ− zd−1
, 0

)
,

and the same argument carries through.

We shall nonetheless uniformly bound from above, the
annealed entropy of Cτ with respect to any distribution P on
M, whose density (with respect to the uniform probability
measure) on M is bounded above by ρmax. The number
of samples that need to be taken before the empirical risk is
within ε of the true risk, uniformly over Cτ with probability
1−δ is determined by the annealed entropy of Cτ w.r.tP . We
have the following theorem that bounds the annealed entropy
from above.

Theorem 11 LetM be a d−dimensional submanifold ofRm

whose condition number is ≤ 1
κ . Let P be a probability

measure on M, whose density relative to the uniform prob-
ability measure on M is bounded above by ρmax. When the
number n of random samples from P is large, the annealed
entropy of Cτ can be bounded from above as follows. Let
εr = min( τ

4 , fracκ4, 1)ε/(2ρmax). Suppose

n ≥ Np(εr/2)
d ln(2

√
dρ2

max/ε)
ε2

,

then,

Hann(Cτ ,P, bn−
√

n ln(2πn)c) ≤ 4εn + 1.

3.1 Overview of the Proof of Theorem 11
Our strategy is as follows.

1. Cut the manifold into small pieces Mi that are almost
Euclidean, such that the restrictions of any cut hyper-
surface is almost linear.

2. Let the probability measure P|Mi

P(Mi)
be denoted Pi for

each i. Lemma 18 allows us to show, roughly, that

Hann(Cτ ,P, n)
n

. sup
i

Hann(Cτ ,Pi, bnP(Mi)c)
bnP(Mi)c ,

thereby allowing us to focus on a single piece Mi.

3. We use a projection πi, to map Mi orthogonally onto
the tangent space to Mi at a point xi ∈ Mi and then
reduce the question to a sphere inscribed in a cube ¤ of
Euclidean space.

4. We cover Cτ

∣∣
¤ by the union of classes of functions that

are constant outside a thin slab (see Definition 20 and
Figure 3).

5. Finally, we bound the annealed entropy of each of these
classes using Lemma 21.

The rest of this chapter is devoted to a detailed treatment of
the proof of Theorem 11.

3.2 Volumes of balls in a manifold
Let M ⊆ Rm be a d-dimensional Riemannian manifold
and let P be a d − 1−dimensional submanifold of M. Let
VM

x (r) be defined to be the volume of a ball of radius r
(in the intrinsic metric) around a point x ∈ M. The sec-
tional curvature of a manifold at a point x depends on a
two-dimensional plane in the tangent space at x. A formal
definition of sectional curvature can be found in most text-
books of differential geometry (for example, [5]). The vol-
umes of balls can be estimated using sectional curvatures.
The Bishop-Günther inequalities tell us that if the sectional
curvature KM is upper bounded by λ, then the volume of
the ball of radius r around x, VM

x is bounded from below as
follows (section 3.5, [4]).

VM
x (r) ≥ 2πd/2

Γ(d
2 )

∫ r

0

(
sin(t

√
λ)√

λ

)d−1

dt,

where Γ(x) is Euler’s Γ function.
This allows us to get an explicit upper bound on the pack-

ing number Np(εr/2), namely

Np(εr/2) ≤ volM
2πd/2

Γ( d
2 )

∫ εr/2

0

(
sin(t

√
λ)√

λ

)d−1

dt

.

3.3 Partitioning the Manifold
The next step is to partition the manifold M into disjoint
pieces {Mi} such that each piece Mi is contained in the
geodesic ball BM(xi, εr). Such a partition can be constructed
by the following natural greedy procedure.

• Choose Np(εr/2) disjoint balls BM(xi, εr/2), 1 ≤ i ≤
Np(εr/2) where Np(εr/2) is the packing number as in
Definition 6.

• Let M1 := BM(x1, εr).

• Iteratively, for each i ≥ 2, let Mi := BM(xi, εr) \
{∪i−1

k=1Mk}.
3.4 Constructing charts by projecting onto Euclidean

Balls
In this section, we show how the question can be reduced
to Euclidean space using a family of charts. The strategy is
the following. Let εr be as defined in Notation 1. Choose a
set of points X = {x1, . . . , xN} belonging to M such that



the union of geodesic balls in M (measured in the intrinsic
Riemannian metric) of radius εr centered at these points in
M covers all of M.⋃

i∈[N ]

BM(xi, εr) = M.

Definition 12 For each i ∈ [Np(εr/2)], let the d−dimensional
affine subspace of Rm tangent to M at xi be denoted Ai,
and let the d-dimensional ball of radius εr contained in Ai,
centered at xi be BAi

(xi, εr). Let the orthogonal projection
from Rm onto Ai be denoted πi.

Lemma 13 The image of BM(xi, εr) under the projection
πi is contained in the corresponding ball BM(xi, εr) in Ai.

πi(BM(xi, εr)) ⊆ BAi(xi, εr).

Proof: This follows from the fact that the length of a geodesic
segment on BM(xi, εr) is greater or equal to the length of its
image under a projection.

Let P be a smooth 1/τ -conditioned boundary (i. e. c(P ) ≤
1
τ ) separating M into two parts. and c(M) ≤ 1

κ .

Lemma 14 Let εr ≤ min(1, τ/4, κ/4). Let πi(BM(xi, εr)∩
P ) be the image of P restricted to BM(xi, εr) under the pro-
jection πi. Then, the condition number of πi(BM(xi, εr) ∩
P ) is bounded above by 2

τ .

Proof:
Let Tπi(x) and Tπi(y) be the spaces tangent to L at πi(x)

and πi(y) respectively. Then, for any x, y ∈ BM(xi, εr)∩P ,
because the kernel of πi is nearly orthogonal to Tπi(x) and
Tπi(y),

^(Tπi(x), Tπi(y)) ≤
√

2^(Tx, Ty). (3)

BM(xi, εr)∩P is contained in a neighborhood of the affine
space tangent to BM(xi, εr) ∩ P at xi, which is orthogonal
to the kernel of πi. After some calculation, this can be used
to show that for all x, y ∈ BM(xi, εr) ∩ P ,

1√
2
≤ ‖πi(x)− πi(y)‖

‖x− y‖ ≤ 1. (4)

The lemma follows from (2).

3.5 Proof of Theorem 11
We shall organize this proof into several Lemmas, which will
be proved immediately after their respective statements. The
following Lemma allows us to work with a random rather
than deterministic number of samples. The purpose of al-
lowing the number of samples to be a Poisson random vari-
able is that we are able make the set of numbers of samples
{νi} from different Mi, a collection of independent random
variables.

Lemma 15 (Poissonization) Let ν be a Poisson random vari-
able with mean λ, where λ > 0. Then, for any ε > 0 the
expected value of the annealed entropy of a class of indica-
tors with respect to ν random samples from a distribution
P is asymptotically greater or equal to the annealed en-
tropy of b(1 − ε)λc random samples from the distribution
P . More precisely, for any ε > 0, lnEνG(Λ,P, ν) ≥
ln G(Λ,P, bλ(1− ε)c)− exp

(
−ε2λ + ln(2πλ)

2

)
.

Proof:

lnEνG(Λ,P, ν) = ln
∑

n∈N
P[ν = n]Hann(Λ,P, n)

≥ ln
∑

n≥bλ(1−ε)c
P[ν = n]G(Λ,P, n).

G(Λ,P, n) is monotonically increasing as a function of n.
Therefore the above expression can be lower bounded by
lnP[ν ≥ bλ(1− ε)c]G(Λ,P, ν) ≥ Hann(Λ,P, bλ(1− ε)c)
− exp

(
−ε2λ + ln(2πλ)

2

)
.

Definition 16 For each i ∈ [Np(εr/2)], let Pi be the restric-
tion of P to Mi. Let |Pi| denote the total measure of Pi.
Let λi denote λ|Pi|. Let {νi} be a collection of independent
Poisson random variables such that for each i ∈ [Np(εr/2)],
the mean of νi is λi.

The following Lemma allows us to focus our attention to
small pieces Mi which are almost Euclidean.

Lemma 17 (Factorization) The quantity lnEνG(Cτ ,P, ν)
is less or equal to the sum over i of the corresponding quan-
tities Cτ with respect to νi random samples from Pi. i. e.

lnEνG(Cτ ,P, ν) ≤
∑

i∈Np(εr/2)

lnEνiG(Cτ ,Pi, νi).

Proof:

G(Cτ ,P, `) := lnEX`P×`N(Cτ , X),

where expectation is with respect to X and ` signifies that
X is drawn from the Cartesian product of ` copies of P .
The number of ways of splitting X = {x1, . . . , xk, . . . , x`}
using elements of Cτ , N(Cτ , X) satisfies a sub-multiplicative
property, namely

N(Cτ , {x1, . . . , x`}) ≤
N(Cτ , {x1, . . . , xk})N(Cτ , {xk+1, . . . , x`}).

This can be iterated to generate inequalities where the right
side involves a partition with any integer number of parts.
Note that P is a mixture of the Pi, and can be expressed as

P =
∑

i

λi

λ
Pi.

A draw from P of a Poisson number of samples can be de-
composed as the union of independently chosen sets of sam-
ples. The ith set is a draw of size νi from Pi, νi being a
Poisson random variable having mean λi. These facts imply
that
lnEνG(Cτ ,P, ν) ≤ ∑

i∈Np(εr/2) lnEνiG(Cτ ,Pi, νi).

Lemma 17 can be used together with an upper bound on
annealed entropy based on the number of samples to obtain

Lemma 18 (Localization) For any ε′ > 0

lnEνG(Cτ ,P, ν)
λ

≤ sup
i s.t |Pi|≥ ε′

Np(εr/2)

lnEνiG(Cτ ,Pi, νi)
λi

+ ε′.



Proof:Lemma 18 allows us to reduce the question to a single
Mi in the following way.

lnEνG(Cτ ,P, ν)
λ

≤
∑

i∈Np(εr/2)

λi

λ

lnEνiG(Cτ ,Pi, νi)
λi

Allowing all summations to be over i s.t |Pi| ≥ ε′
Np(εr/2) , the

right side can be split into
∑

i

λi

λ

lnEνi
G(Cτ ,Pi, νi)

λi
+

∑

i

lnEνiG(Cτ ,Pi, νi).

G(Cτ ,Pi, νi) must be less or equal to the expression ob-
tained in the case of complete shattering, which is 2νi . There-
fore the second term in the above expression can be bounded
above as follows,

∑

i

lnEνi
G(Cτ ,Pi, νi) ≤

∑

i

lnEνi
2νi

=
∑

i

λi

≤ ε′.

Therefore,

lnEνG(Cτ ,P, ν)
λ

≤
∑

i

λi

λ

lnEνiG(Cτ ,Pi, νi)
λi

+ ε′

≤ sup
i

lnEνiG(Cτ ,Pi, νi)
λi

+ ε′.

As mentioned earlier, Lemma 18 allows us to reduce the
proof to a question concerning a single piece Mi. This is
more convenient because Mi can be projected onto a single
Euclidean ball in the way described in Section 3.4 without
incurring significant distortion. By Lemmas 13 and 14, the
question can be transferred to one about the annealed entropy
of the induced function class Cτ ◦ π−1

i on chart BAi(xi, εr)
with respect to νi random samples from the projected proba-
bility distribution πi(νi). Cτ ◦ π−1

i is contained in Cτ/2(Ai)
which is the analogue of Cτ/2 on Ai. For simplicity, hence-
worth we shall abbreviate Cτ/2(Ai) as Cτ/2. Then,

lnEνiG(Cτ ,Pi, νi)
λi

=
lnEνiG(Cτ ◦ π−1

i , πi(Pi), νi)
λi

≤ lnEνiG(Cτ/2, πi(Pi), νi)
λi

.

We inscribe BAi(xi, εr) in a cube of side 2εr for conve-
nience, and proceed to find the desired upper bound on
G(Cτ/2, πi(Pi), νi). We shall indicate how to achieve this
using covers. For convenience, let this cube be dilated until
we have the cube of side 2. The measure πi(Pi) assigns to
it must be scaled to a probability measure that we call P◦,
which is actually supported on the inscribed ball. We shall
normalize all quantities appropriately when the calculations
are over. The τ¤ that we shall work with below is a rescaled
version of the original, τ¤ = τ/εr. Let Bd

∞ be the cube of
side 2 centered at the origin and ιd∞ be its indicator. Let Bd

2
be the unit ball inscribed in Bd

∞.

x · v < (t − εs

2

√
d
)‖v‖ x · v > (t + εs

2

√
d
)‖v‖

εs√
d
‖v‖

v

Figure 4: Each class of the form C̃(v,t)
εs contains a subset of

the set of indicators of the form Ic · ιd∞

Definition 19 Let ˜Cτ¤ be defined to be the set of all indica-
tors of the form ιd∞ · ι, where ι is the indicator of some set in
Cτ¤ .

In other words, C̃τ¤ is the collection of all functions that
are indicators of sets that can be expressed as the intersection
of the unit cube and an element of Cτ¤ .

C̃τ¤ = {f | ∃c ∈ Cτ¤ , for which f = Ic · ιd∞}, (5)
where Ic is the indicator of c.

Definition 20 For every v ∈ Rd where ‖v‖ = 1, t ∈ R and
ε > 0 and εs = ε2/ρmax. Let C̃(v,t)

εs be a class of indicator
functions consisting of all those measurable indicators ι that
satisfy the following.

1. x · v < (t− εs

2
√

d
)‖v‖ or x 6∈ Bd

∞ ⇒ ι(x) = 0 and

2. x · v > (t + εs

2
√

d
)‖v‖ and x ∈ Bd

∞ ⇒ ι(x) = 1.

The VC dimension of the above class is clearly infinite
since any samples lying within the slab of thickness εs/

√
d

get shattered. However if a distribution is sufficiently uni-
form, most samples would lie outside the slab and so the
annealed entropy can be bounded from above. We shall con-
struct a finite set W of tuples (v, t) such that the union of the
corresponding classes C̃

(v,t)
εs contains C̃τ¤ . Let tv take values

in an τ¤
2 -grid contained in Bd

∞, i. e. tv ∈ εs

2
√

d
Zd ∩Bd

∞. It is

then the case (see Figure 3) that any indicator in C̃τ¤ agrees
over Bd

2 with a member in some class C̃
(v,t)
εs , if εs ≥ 2

τ¤
,

i. e.
C̃τ¤ ⊆

⋃

tv∈ εs
2
√

d
Zd∩Bd∞

C̃(v,t)
εs

.



A bound on the volume of the band where (t− εs

2
√

d
)‖v‖ <

x · v < (t + εs

2
√

d
)‖v‖ in Bd

2 follows from the fact that the
maximum volume hyperplane section is a bisecting hyper-
plane, whose volume is < 2

√
d vol(Bd

2 ).
This allows us to bound the annealed entropy of a single

class C̃
(v,t)
εs in the following lemma, where ρmax is the same

maximum density with respect to the uniform density on Bd
2 .

(Re-scaling was unnecessary because that was with respect
to the Lebesgue measure normalized to be a probability mea-
sure).

Lemma 21 The logarithm of the expected growth function
of a class C̃

(v,t)
εs with respect to ν◦ random samples from P◦,

is < 2εsρmaxλ◦, where ν◦ is a Poisson random variable of
mean λ◦; i. e.

lnEν◦G(Cτ¤ ,P◦, ν◦) < 2εsρmaxλ◦.

Proof: A bound on the volume of the band where (t −
εs

2
√

d
)‖v‖ < x · v < (t + εs

2
√

d
)‖v‖ in Bd

2 follows from
the fact that the maximum volume hyperplane section is a
bisecting hyperplane, whose d − 1-dimensional volume is
< 2

√
d vol(Bd

2 ). Therefore, the number of samples that fall
in this band is a Poisson random variable whose mean is less
than 2εsρmaxλ◦. This implies the Lemma.

Therefore the expected annealed entropy of
⋃

tv∈ εs
2
√

d
Zd∩Bd∞

C̃(v,t)
εs

with respect to ν◦ random samples fromP◦ is bounded above
by 2εsρmaxλ◦+ln | ε

2
√

d
Zd∩Bd

∞|. Putting these observations
together,

lnEνG (Cτ ,P, ν) /λ ≤ lnEν◦G(Cτ¤ ,P◦, ν◦)
λ◦

+ ε

≤ 2εsρmax +
d ln(2

√
d/εs)

λ◦
+ ε

We know that λ◦Np(εr/2) ≥ ελ. Then,

2εsρmax +
d ln(2

√
d/εs)

λ◦
+ ε ≤

2ε + Np(εr/2)
d ln(2

√
dρmax/εs)
ελ

+ ε,

which is

≤ 2ε + Np(εr/2)
d ln(2

√
dρ2

max/ε)
ελ

+ ε.

Therefore, if λ ≥ Np(εr/2)d ln(2
√

dρ2
max/ε)

ε2 , then,

lnEνG (Cτ ,P, ν) /λ ≤ 4ε.

Together with Lemma 15, this shows that for any ε1 > 0,
if

λ ≥ Np(εr/2)
d ln(2

√
dρ2

max/ε)
ε2

,

then

Hann(Λ,P, bλ(1− ε1)c) ≤ lnEνG(Λ,P, ν)

+ exp
(
−ε21λ +

ln(2πλ)
2

)

≤ 4ελ + exp
(
−ε21λ +

ln(2πλ)
2

)
.

Setting ε1 to
√

ln(2πλ)
λ , exp

(
−ε21λ + ln(2πλ)

2

)
is less than

1. Therefore,

Hann(Λ,P, bλ−
√

λ ln(2πλ)c) ≤ 4ελ + 1.

This completes the proof of Theorem 11.
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