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Abstract

Hidden Markov Models (HMMs) are one of the
most fundamental and widely used statistical tools
for modeling discrete time series. In general, learn-
ing HMMs from data is computationally hard (un-
der cryptographic assumptions), and practitioners
typically resort to search heuristics which suffer
from the usual local optima issues. We prove that
under a natural separation condition (bounds on
the smallest singular value of the HMM param-
eters), there is an efficient and provably correct
algorithm for learning HMMs. The sample com-
plexity of the algorithm does not explicitly depend
on the number of distinct (discrete) observations—
it implicitly depends on this quantity through spec-
tral properties of the underlying HMM. This makes
the algorithm particularly applicable to settings with
a large number of observations, such as those in
natural language processing where the space of ob-
servation is sometimes the words in a language.
The algorithm is also simple: it employs only a
singular value decomposition and matrix multipli-
cations.

1 Introduction
Hidden Markov Models (HMMs) [BE67] are the workhorse
statistical model for discrete time series, with widely diverse
applications including automatic speech recognition, natural
language processing (NLP), and genomic sequence model-
ing. In this model, a discrete hidden state evolves according
to some Markovian dynamics, and observations at particular
time depend only on the hidden state at that time. The learn-
ing problem is to estimate the model only with observation
samples from the underlying distribution. Thus far, the pre-
dominant learning algorithms have been local search heuris-
tics, such as the Baum-Welch / EM algorithm [BPSW70,
DLR77].

It is not surprising that practical algorithms have resorted
to heuristics, as the general learning problem has been shown
to be hard under cryptographic assumptions [Ter02]. Fortu-
nately, the hardness results are for HMMs that seem divorced
from those that we are likely to encounter in practical appli-
cations.

The situation is in many ways analogous to learning mix-
ture distributions with samples from the underlying distri-
bution. There, the general problem is believed to be hard.
However, much recent progress has been made when certain
separation assumptions are made with respect to the compo-
nent mixture distributions (e.g. [Das99, DS07, VW02, CR08,
BV08]). Roughly speaking, these separation assumptions
imply that with high probability, given a point sampled from
the distribution, we can recover which component distribu-
tion generated this point. In fact, there is prevalent sentiment
that we are often only interested in clustering the data when
such a separation condition holds. Much of the theoretical
work here has been on how small this separation need be in
order to permit an efficient algorithm to recover the model.

We present a simple and efficient algorithm for learning
HMMs under a certain natural separation condition. We pro-
vide two results for learning. The first is that we can ap-
proximate the joint distribution over observation sequences
of length t (here, the quality of approximation is measured
by total variation distance). As t increases, the approxima-
tion quality degrades polynomially. Our second result is on
approximating the conditional distribution over a future ob-
servation, conditioned on some history of observations. We
show that this error is asymptotically bounded—i.e. for any
t, conditioned on the observations prior to time t, the error in
predicting the t-th outcome is controlled. Our algorithm can
be thought of as ‘improperly’ learning an HMM in that we do
not explicitly recover the transition and observation models.
However, our model does maintain a hidden state representa-
tion which is closely (in fact, linearly) related to the HMM’s,
and can be used for interpreting the hidden state.

The separation condition we require is a spectral condi-
tion on both the observation matrix and the transition matrix.
Roughly speaking, we require that the observation distribu-
tions arising from distinct hidden states be distinct (which
we formalize by singular value conditions on the observa-
tion matrix). This requirement can be thought of as being
weaker than the separation condition for clustering in that the
observation distributions can overlap quite a bit—given one
observation, we do not necessarily have the information to
determine which hidden state it was generated from (unlike
in the clustering literature). We also have a spectral condition
on the correlation between adjacent observations. We believe
both of these conditions to be quite reasonable in many prac-
tical applications. Furthermore, given our analysis, exten-
sions to our algorithm which relax these assumptions should



be possible.
The algorithm we present has both polynomial sample

and computational complexity. Computationally, the algo-
rithm is quite simple—at its core is a singular value decom-
position (SVD) of a correlation matrix between past and fu-
ture observations. This SVD can be viewed as a Canonical
Correlation Analysis (CCA) [Hot35] between past and fu-
ture observations. The sample complexity results we present
do not explicitly depend on the number of distinct observa-
tions; rather, they implicitly depend on this number through
spectral properties of the HMM. This makes the algorithm
particularly applicable to settings with a large number of ob-
servations, such as those in NLP where the space of observa-
tions is sometimes the words in a language.

1.1 Related Work

There are two ideas closely related to this work. The first
comes from the subspace identification literature in control
theory [Lju87, OM96, Kat05]. The second idea is that, rather
than explicitly modeling the hidden states, we can represent
the probabilities of sequences of observations as products of
matrix observation operators, an idea which dates back to the
literature on multiplicity automata [Sch61, CP71, Fli74].

The subspace identification methods, used in control the-
ory, use spectral approaches to discover the relationship be-
tween hidden states and the observations. In this literature,
the relationship is discovered for linear dynamical systems
such as Kalman filters. The basic idea is that the relation-
ship between observations and hidden states can often be dis-
covered by spectral/SVD methods correlating the past and
future observations (in particular, such methods often do a
CCA between the past and future observations). However,
algorithms presented in the literature cannot be directly used
to learn HMMs because they assume additive noise models
with noise distributions independent of the underlying states,
and such models are not suitable for HMMs (an exception
is [ARJ03]). In our setting, we use this idea of performing a
CCA between past and future observations to uncover infor-
mation about the observation process (this is done through
an SVD on a correlation matrix between past and future ob-
servations). The state-independent additive noise condition
is avoided through the second idea.

The second idea is that we can represent the probability
of sequences as products of matrix operators, as in the lit-
erature on multiplicity automata [Sch61, CP71, Fli74] (see
[EDKM05] for discussion of this relationship). This idea
was re-used in both the Observable Operator Model of [Jae00]
and the Predictive State Representations of [LSS01], both
of which are closely related and both of which can model
HMMs. In fact, the former work by [Jae00] provides a non-
iterative algorithm for learning HMMs, with an asymptotic
analysis. However, this algorithm assumed knowing a set of
‘characteristic events’, which is a rather strong assumption
that effectively reveals some relationship between the hid-
den states and observations. In our algorithm, this problem
is avoided through the first idea.

Some of the techniques in the work in [EDKM07] for
tracking belief states in an HMM are used here. As discussed
earlier, we provide a result showing how the model’s condi-
tional distributions over observations (conditioned on a his-

tory) do not asymptotically diverge. This result was proven
in [EDKM07] when an approximate model is already known.
Roughly speaking, the reason this error does not diverge is
that the previous observations are always revealing informa-
tion about the next observation; so with some appropriate
contraction property, we would not expect our errors to di-
verge. Our work borrows from this contraction analysis.

Among recent efforts in various communities [ARJ03,
VWM07, ZJ07, CC08], the only previous efficient algorithm
shown to PAC-learn HMMs in a setting similar to ours is due
to [MR06]. Their algorithm for HMMs is a specialization of
a more general method for learning phylogenetic trees from
leaf observations. While both this algorithm and ours rely
on the same rank condition and compute similar statistics,
they differ in two significant regards. First, [MR06] were
not concerned with large observation spaces, and thus their
algorithm assumes the state and observation spaces to have
the same dimension. In addition, [MR06] take the more am-
bitious approach of learning the observation and transition
matrices explicitly, which unfortunately results in a less sta-
ble and less sample-efficient algorithm that injects noise to
artificially spread apart the eigenspectrum of a probability
matrix. Our algorithm avoids recovering the observation and
transition matrix explicitly1, and instead uses subspace iden-
tification to learn an alternative representation.

2 Preliminaries
2.1 Hidden Markov Models
The HMM defines a probability distribution over sequences
of hidden states (ht) and observations (xt). We write the set
of hidden states as [m] = {1, . . . ,m} and set of observations
as [n] = {1, . . . , n}, where m ≤ n.

Let T ∈ Rm×m be the state transition probability matrix
with Tij = Pr[ht+1 = i|ht = j], O ∈ Rn×m be the obser-
vation probability matrix withOij = Pr[xt = i|ht = j], and
~π ∈ Rm be the initial state distribution with ~πi = Pr[h1 =
i]. The conditional independence properties that an HMM
satisfies are: 1) conditioned on the previous hidden state, the
current hidden state is sampled independently of all other
events in the history; and 2) conditioned on the current hid-
den state, the current observation is sampled independently
from all other events in the history. These conditional inde-
pendence properties of the HMM imply that T and O fully
characterize the probability distribution of any sequence of
states and observations.

A useful way of computing the probability of sequences
is in terms of ‘observation operators’, an idea which dates
back to the literature on multiplicity automata (see [Sch61,
CP71, Fli74]). The following lemma is straightforward to
verify (see [Jae00, EDKM07]).

Lemma 1. For x = 1, . . . , n, define

Ax = T diag(Ox,1, . . . , Ox,m).

1In Appendix A, we discuss the key step in [MR06], and also
show how to use their technique in conjunction with our algorithm
to recover the HMM observation and transition matrices. Our algo-
rithm does not rely on this extra step—we believe it to be generally
unstable—but it can be taken if desired.



For any t:

Pr[x1, . . . , xt] = ~1>mAxt
. . . Ax1~π.

Our algorithm learns a representation that is based on this
observable operator view of HMMs.

2.2 Notation
As already used in Lemma 1, the vector ~1m is the all-ones
vector in Rm. We denote by x1:t the sequence (x1, . . . , xt),
and by xt:1 its reverse (xt, . . . , x1). When we use a sequence
as a subscript, we mean the product of quantities indexed by
the sequence elements. So for example, the probability cal-
culation in Lemma 1 can be written ~1>mAxt:1~π. We will use
~ht to denote a probability vector (a distribution over hidden
states), with the arrow distinguishing it from the random hid-
den state variable ht. Additional notation used in the theo-
rem statements and proofs is listed in Table 1.

2.3 Assumptions
We assume the HMM obeys the following condition.

Condition 1 (HMM Rank Condition). ~π > 0 element-wise,
and O and T are rank m.

The conditions on ~π and T are satisfied if, say, the Markov
chain specified by T is ergodic and ~π is its stationary distri-
bution. The condition on O rules out the problematic case in
which some state i has an output distribution equal to a con-
vex combination (mixture) of some other states’ output dis-
tributions. Such a case could cause a learner to confuse state
i with a mixture of these other states. As mentioned before,
the general task of learning HMMs (even the specific goal
of simply accurately modeling the distribution probabilities
[Ter02]) is hard under cryptographic assumptions; the rank
condition is a natural way to exclude the malicious instances
created by the hardness reduction.

The rank condition of O can be relaxed through a simple
modification of our algorithm that looks at multiple observa-
tion symbols simultaneously to form the probability estima-
tion tables. For example, if two hidden states have identical
observation probability inO but different transition probabil-
ity in T , then they may be differentiated by using two con-
secutive observations. Although our analysis can be applied
in this case with minimal modifications, for clarity, we only
state our results for an algorithm that estimates probability
tables with rows and columns corresponding to single obser-
vations.

2.4 Learning Model
Our learning model is similar to those of [KMR+94, MR06]
for PAC-learning discrete probability distributions. We as-
sume we can sample observation sequences from an HMM.
In particular, we assume each sequence is generated start-
ing from the same initial state distribution (e.g. the stationary
distribution of the Markov chain specified by T ). This setting
is valid for practical applications including speech recogni-
tion, natural language processing, and DNA sequence mod-
eling, where multiple independent sequences are available.

For simplicity, this paper only analyzes an algorithm that
uses the initial few observations of each sequence, and ig-
nores the rest. We do this to avoid using concentration bounds

with complicated mixing conditions for Markov chains in
our sample complexity calculation, as these conditions are
not essential to the main ideas we present. In practice, how-
ever, one should use the full sequences to form the proba-
bility estimation tables required by our algorithm. In such
scenarios, a single long sequence is sufficient for learning,
and the effective sample size can be simply discounted by
the mixing rate of the underlying Markov chain.

Our goal is to derive accurate estimators for the cumula-
tive (joint) distribution Pr[x1:t] and the conditional distribu-
tion Pr[xt|x1:t−1] for any sequence length t. For the condi-
tional distribution, we obtain an approximation that does not
depend on t, while for the joint distribution, the approxima-
tion quality degrades gracefully with t.

3 Observable Representations of Hidden
Markov Models

A typical strategy for learning HMMs is to estimate the ob-
servation and transition probabilities for each hidden state
(say, by maximizing the likelihood of a sample). However,
since the hidden states are not directly observed by the learner,
one often resorts to heuristics (e.g. EM) that alternate be-
tween imputing the hidden states and selecting parameters Ô
and T̂ that maximize the likelihood of the sample and cur-
rent state estimates. Such heuristics can suffer from local
optima issues and require careful initialization (e.g. an accu-
rate guess of the hidden states) to avoid failure.

However, under Condition 1, HMMs admit an efficiently
learnable parameterization that depends only on observable
quantities. Because such quantities can be estimated from
data, learning this representation avoids any guesswork about
the hidden states and thus allows for algorithms with strong
guarantees of success.

This parameterization is natural in the context of Ob-
servable Operator Models [Jae00], but here we emphasize
its connection to subspace identification.

3.1 Definition
Our HMM representation is defined in terms of the following
vector and matrix quantities:

[P1]i = Pr[x1 = i]
[P2,1]ij = Pr[x2 = i, x1 = j]

[P3,x,1]ij = Pr[x3 = i, x2 = x, x1 = j] ∀x ∈ [n],

where P1 ∈ Rn is a vector, and P2,1 ∈ Rn×n and the
P3,x,1 ∈ Rn×n are matrices. These are the marginal proba-
bilities of observation singletons, pairs, and triples.

The representation further depends on a matrixU ∈ Rn×m
that obeys the following condition.

Condition 2 (Invertibility Condition). U>O is invertible.

In other words, U defines an m-dimensional subspace
that preserves the state dynamics—this will become evident
in the next few lemmas.

A natural choice forU is given by the ‘thin’ SVD of P2,1,
as the next lemma exhibits.



Lemma 2. Assume ~π > 0 and that O and T have column
rank m. Then rank(P2,1) = m. Moreover, if U is the ma-
trix of left singular vectors of P2,1 corresponding to non-zero
singular values, then range(U) = range(O), so U ∈ Rn×m
obeys Condition 2.

Proof. Using the conditional independence properties of the
HMM, entries of the matrix P2,1 can be factored as

[P2,1]ij =
m∑
k=1

m∑
`=1

Pr[x2 = i, x1 = j, h2 = k, h1 = `]

=
m∑
k=1

m∑
`=1

Oik Tk` ~π` [O>]`j

soP2,1 = OT diag(~π)O> and thus range(P2,1) ⊆ range(O).
The assumptions on O, T , and ~π imply that T diag(~π)O>
has linearly independent rows and that P2,1 has m non-zero
singular values. Therefore

O = P2,1(T diag(~π)O>)+

(where X+ denotes the Moore-Penrose pseudo-inverse of a
matrix X), which in turn implies range(O) ⊆ range(P2,1).
Thus rank(P2,1) = rank(O) = m, and also range(U) =
range(P2,1) = range(O).

Our algorithm is motivated by Lemma 2 in that we com-
pute the SVD of an empirical estimate of P2,1 to discover a
U that satisfies Condition 2. We also note that this choice for
U can be thought of as a surrogate for the observation matrix
O (see Remark 5).

Now given such a matrix U , we can finally define the
observable representation:

~b1 = U>P1

~b∞ =
(
P>2,1U

)+
P1

Bx =
(
U>P3,x,1

) (
U>P2,1

)+ ∀x ∈ [n] .

3.2 Basic Properties
The following lemma shows that the observable representa-
tion {~b∞,~b1, B1, . . . , Bn} is sufficient to compute the prob-
abilities of any sequence of observations.

Lemma 3 (Observable HMM Representation). Assume the
HMM obeys Condition 1 and that U ∈ Rn×m obeys Condi-
tion 2. Then:

1. ~b1 = (U>O)~π.

2. ~b>∞ = ~1>m(U>O)−1.

3. Bx = (U>O)Ax(U>O)−1 ∀x ∈ [n].

4. Pr[x1:t] = ~b>∞Bxt:1
~b1 ∀t ∈ N, x1, . . . , xt ∈ [n].

In addition to joint probabilities, we can compute condi-
tional probabilities using the observable representation. We
do so through (normalized) conditional ‘internal states’ that
depend on a history of observations. We should emphasize
that these states are not in fact probability distributions over

hidden states (though the following lemma shows that they
are linearly related). As per Lemma 3, the initial state is

~b1 = (U>O)~π.

Generally, for any t ≥ 1, given observations x1:t−1 with
Pr[x1:t−1] > 0, we define the internal state as:

~bt = ~bt(x1:t−1) =
Bxt−1:1

~b1
~b>∞Bxt−1:1

~b1
.

The case t = 1 is consistent with the general definition of~bt
because the denominator is~b>∞~b1 = ~1>m(U>O)−1(U>O)~π =
~1>m~π = 1. The following result shows how these inter-
nal states can be used to compute conditional probabilities
Pr[xt = i|x1:t−1].

Lemma 4 (Conditional Internal States). Assume the condi-
tions in Lemma 3. Then, for any time t:

1. (Recursive update of states) If Pr[x1:t] > 0, then

~bt+1 =
Bxt

~bt
~b>∞Bxt

~bt
,

2. (Relation to hidden states)

~bt = (U>O) ~ht(x1:t−1)

where [~ht(x1:t−1)]i = Pr[ht = i|x1:t−1] is the condi-
tional probability of the hidden state at time t given the
observations x1:t−1,

3. (Conditional observation probabilities)

Pr[xt|x1:t−1] = ~b>∞Bxt
~bt.

Remark 5. If U is the matrix of left singular vectors of P2,1

corresponding to non-zero singular values, thenU acts much
like the observation probability matrix O in the following
sense:

Let~bt = ~bt(x1:t−1) and ~ht = ~ht(x1:t−1). Then

Pr[xt = i|x1:t−1] = [U~bt]i = [O~ht]i.

To see this, note that UU> is the projection operator to
range(U). Since range(U) = range(O) (Lemma 2), we
have UU>O = O, so U~bt = U(U>O)~ht = O~ht.

3.3 Proofs
Proof of Lemma 3. The first claim is immediate from the fact
P1 = O~π. For the second claim, we write P1 in the follow-
ing unusual (but easily verified) form:

P>1 = ~1>mT diag(~π)O>

= ~1>m(U>O)−1(U>O)T diag(~π)O>

= ~1>m(U>O)−1U>P2,1.

The matrix U>P2,1 has linearly independent rows (by the
assumptions on ~π, O, T , and the condition on U ), so

~b>∞ = P>1 (U>P2,1)+

= ~1>m(U>O)−1 (U>P2,1) (U>P2,1)+

= ~1>m(U>O)−1.



To prove the third claim, we first express P3,x,1 in terms of
Ax:

P3,x,1 = OAxT diag(~π)O>

= OAx(U>O)−1(U>O)T diag(~π)O>

= OAx(U>O)−1U>P2,1.

Again, using the fact that U>P2,1 has full row rank,

Bx =
(
U>P3,x,1

) (
U>P2,1

)+
= (U>O)Ax(U>O)−1

(
U>P2,1

) (
U>P2,1

)+
= (U>O)Ax(U>O)−1.

The probability calculation in the fourth claim is now readily
seen as a telescoping product that reduces to the product in
Lemma 1.

Proof of Lemma 4. The first claim is a simple induction. The
second and third claims are also proved by induction as fol-
lows. The base case is clear from Lemma 3 since~h1 = ~π and
~b1 = (U>O)~π, and also ~b>∞Bx1

~b1 = ~1>mAx1~π = Pr[x1].
For the inductive step,

~bt+1 =
Bxt

~bt
~b>∞Bxt

~bt
=

Bxt
(U>O)~ht

Pr[xt|x1:t−1]
=

(U>O)Axt
~ht

Pr[xt|x1:t−1]

= (U>O)
Pr[ht+1 = ·, xt|x1:t−1]

Pr[xt|x1:t−1]

= (U>O)
Pr[ht+1 = ·|x1:t] Pr[xt|x1:t−1]

Pr[xt|x1:t−1]

= (U>O) ~ht+1(x1:t)

(the first three equalities follow from the first claim, the in-
ductive hypothesis, and Lemma 3), and

~b>∞Bxt+1
~bt+1 = ~1>mAxt+1

~ht+1 = Pr[xt+1|x1:t]

(again, using Lemma 3).

4 Spectral Learning of Hidden Markov
Models

4.1 Algorithm
The representation in the previous section suggests the al-
gorithm LEARNHMM(m,N) detailed in Figure 1, which
simply uses random samples to estimate the model param-
eters. Note that in practice, knowing m is not essential be-
cause the method presented here tolerates models that are
not exactly HMMs, and the parametermmay be tuned using
cross-validation. As we discussed earlier, the requirement
for independent samples is only for the convenience of our
sample complexity analysis.

The model returned by LEARNHMM(m,N) can be used
as follows:

• To predict the probability of a sequence:

P̂r[x1, . . . , xt] = b̂>∞B̂xt
. . . B̂x1 b̂1.

Algorithm LEARNHMM(m,N):
Inputs: m - number of states, N - sample size
Returns: HMM model parameterized by
{b̂1, b̂∞, B̂x ∀x ∈ [n]}

1. Independently sample N observation triples
(x1, x2, x3) from the HMM to form empirical esti-
mates P̂1, P̂2,1, P̂3,x,1 ∀x ∈ [n] of P1, P2,1, P3,x,1

∀x ∈ [n].

2. Compute the SVD of P̂2,1, and let Û be the matrix of
left singular vectors corresponding to the m largest
singular values.

3. Compute model parameters:
(a) b̂1 = Û>P̂1,
(b) b̂∞ = (P̂>2,1Û)+P1,

(c) B̂x = Û>P̂3,x,1(Û>P̂2,1)+ ∀x ∈ [n].

Figure 1: HMM learning algorithm.

• Given an observation xt, the ‘internal state’ update is:

b̂t+1 =
B̂xt

b̂t

b̂>∞B̂xt
b̂t
.

• To predict the conditional probability of xt given x1:t−1:

P̂r[xt|x1:t−1] =
b̂>∞B̂xt

b̂t∑
x b̂
>
∞B̂xb̂t

.

Aside from the random sampling, the running time of the
learning algorithm is dominated by the SVD computation of
an n×nmatrix. The time required for computing joint prob-
ability calculations is O(tm2) for length t sequences—same
as if one used the ordinary HMM parameters (O and T ). For
conditional probabilities, we require some extra work (pro-
portional to n) to compute the normalization factor. How-
ever, our analysis shows that this normalization factor is al-
ways close to 1 (see Lemma 13), so it can be safely omitted
in many applications.

4.2 Main Results
We now present our main results. The first result is a guar-
antee on the accuracy of our joint probability estimates for
observation sequences. The second result concerns the ac-
curacy of conditional probability estimates — a much more
delicate quantity to bound due to conditioning on unlikely
events. We also remark that if the probability distribution is
only approximately modeled as an HMM, then our results
degrade gracefully based on this approximation quality.

4.2.1 Joint Probability Accuracy
Let σm(M) denote themth largest singular value of a matrix
M . Our sample complexity bound will depend polynomially
on 1/σm(P2,1) and 1/σm(O).



Also, define

ε(k) = min

∑
j∈S

Pr[x2 = j] : S ⊆ [n], |S| = n− k

 ,

(1)
and let

n0(ε) = min{k : ε(k) ≤ ε/4}.
In other words, n0(ε) is the minimum number of observa-
tions that account for about 1 − ε/4 of the total probability
mass. Clearly n0(ε) ≤ n, but it can often be much smaller
in real applications. For example, in many practical appli-
cations, the frequencies of observation symbols observe a
power law (called Zipf’s law) of the form f(k) ∝ 1/ks,
where f(k) is the frequency of the k-th most frequently ob-
served symbol. If s > 1, then ε(k) = O(k1−s), and n0(ε) =
O(ε1/(1−s)) becomes independent of the number of obser-
vations n. This means that for such problems, our analysis
below leads to a sample complexity bound for the cumula-
tive distribution Pr[x1:t] that can be independent of n. This
is useful in domains with large n such as natural language
processing.

Theorem 6. There exists a constant C > 0 such that the
following holds. Pick any 0 < ε, η < 1 and t ≥ 1. Assume
the HMM obeys Condition 1, and

N ≥ C· t
2

ε2
·
(

m · log(1/η)
σm(O)2σm(P2,1)4

+
m · n0(ε) · log(1/η)
σm(O)2σm(P2,1)2

)
.

With probability at least 1 − η, the model returned by the
algorithm LEARNHMM(m,N) satisfies∑

x1,...,xt

|Pr[x1, . . . , xt]− P̂r[x1, . . . , xt]| ≤ ε.

The main challenge in proving Theorem 6 is understand-
ing how the estimation errors accumulate in the algorithm’s
probability calculation. This would have been less problem-
atic if we had estimates of the usual HMM parameters T and
O; the fully observable representation forces us to deal with
more cumbersome matrix and vector products.

4.2.2 Conditional Probability Accuracy
In this section, we analyze the accuracy of our conditional
predictions P̂r[xt|x1, . . . , xt−1]. Intuitively, we might hope
that these predictive distributions do not become arbitrarily
bad over time (as t → ∞). The reason is that while estima-
tion errors propagate into long-term probability predictions
(as evident in Theorem 6), the history of observations con-
stantly provides feedback about the underlying hidden state,
and this information is incorporated using Bayes’ rule (im-
plicitly via our internal state updates).

This intuition was confirmed by [EDKM07], who showed
that if one has an approximate model of T and O for the
HMM, then under certain conditions, the conditional predic-
tion does not diverge. This condition is the positivity of the
‘value of observation’ γ, defined as

γ = inf
~v:‖~v‖1=1

‖O~v‖1.

Note that γ ≥ σm(O)/
√
n, so it is guaranteed to be positive

by Condition 1. However, γ can be much larger than what
this crude lower bound suggests.

To interpret this quantity γ, consider any two distribu-
tions over hidden states ~h, ĥ ∈ Rm. Then ‖O(~h − ĥ)‖1 ≥
γ‖~h− ĥ‖1. Regarding ~h as the true hidden state distribution
and ĥ as the estimated hidden state distribution, this inequal-
ity gives a lower bound on the error of the estimated obser-
vation distributions under O. In other words, the observation
process, on average, reveal errors in our hidden state estima-
tion. [EDKM07] uses this as a contraction property to show
how prediction errors (due to using an approximate model)
do not diverge. In our setting, this is more difficult as we
do not explicitly estimate O nor do we explicitly maintain
distributions over hidden states.

We also need the following assumption, which we dis-
cuss further following the theorem statement.

Condition 3 (Stochasticity Condition). For all observations
x and all states i and j, [Ax]ij ≥ α > 0.

Theorem 7. There exists a constant C > 0 such that the
following holds. Pick any 0 < ε, η < 1. Assume the HMM
obeys Conditions 1 and 3, and

N ≥ C ·
[

m · n0(ε)
ε2σm(O)2σm(P2,1)2

+
m

σm(O)2σm(P2,1)4

·
(

m

ε2α2
+

(log(2/α))4

ε4α4γ4
+

(log(2/α))4

α10γ4

)]
· log

1
η
.

With probability at least 1 − η, then the model returned by
LEARNHMM(m,N) satisfies, for any time t,

KL(Pr[xt|x1, . . . , xt−1] || P̂r[xt|x1, . . . , xt−1])

= Ex1:t

[
ln

Pr[xt|x1:t−1]

P̂r[xt|x1:t−1]

]
≤ ε.

To justify our choice of error measure, note that the prob-
lem of bounding the errors of conditional probabilities is
complicated by the issue of that, over the long run, we may
have to condition on a very low probability event. Thus we
need to control the relative accuracy of our predictions. This
makes the KL-divergence a natural choice for the error mea-
sure. Unfortunately, because our HMM conditions are more
naturally interpreted in terms of spectral and normed quan-
tities, we end up switching back and forth between KL and
L1 errors via Pinsker-style inequalities (as in [EDKM07]). It
is not clear to us if a significantly better guarantee could be
obtained with a pure L1 error analysis (nor is it clear how to
do such an analysis).

The analysis in [EDKM07] (which assumed that approx-
imations to T and O were provided) dealt with this problem
of dividing by zero (during a Bayes’ rule update) by explic-
itly modifying the approximate model so that it never assigns
the probability of any event to be zero (since if this event oc-
curred, then the conditional probability is no longer defined).
In our setting, Condition 3 ensures that true model never as-
signs the probability of any event to be zero. We can relax
this condition somewhat (so that we need not quantify over
all observations), though we do not discuss this here.

We should also remark that while our sample complex-
ity bound is significantly larger than in Theorem 6, we are
also bounding the more stringent KL-error measure on con-
ditional distributions.



m, n Number of states and observations
n0(ε) Number of significant observations
O, T , Ax HMM parameters
P1, P2,1, P3,x,1 Marginal probabilities
P̂1, P̂2,1, P̂3,x,1 Empirical marginal probabilities
ε1, ε2,1, ε3,x,1 Sampling errors [Section 5.1]
Û Matrix of m left singular vectors of P̂2,1

b̃∞, B̃x, b̃1 True observable parameters using Û
[Section 5.1]

b̂∞, B̂x, b̂1 Estimated observable parameters using Û
δ∞, ∆x, δ1 Parameter errors [Section 5.1]
∆

∑
x ∆x [Section 5.1]

σm(M) m-th largest singular value of matrix M
~bt, b̂t True and estimated states [Section 5.3]
~ht, ĥt, ĝt (Û>O)−1~bt, (Û>O)−1b̂t, ĥt/(~1>mĥt)

[Section 5.3]
Âx (Û>O)−1B̂x(Û>O) [Section 5.3]
γ, α inf{‖Ov‖1 : ‖v‖1 = 1}, min{[Ax]i,j}

Table 1: Summary of notation.

4.2.3 Learning Distributions ε-close to HMMs
Our L1 error guarantee for predicting joint probabilities still
holds if the sample used to estimate P̂1, P̂2,1, P̂3,x,1 come
from a probability distribution Pr[·] that is merely close to
an HMM. Specifically, all we need is that there exists some
tmax ≥ 3 and some m state HMM with distribution PrHMM[·]
such that:

1. PrHMM satisfies Condition 1 (HMM Rank Condition),

2. ∀t ≤ tmax,
∑
x1:t
|Pr[x1:t]− PrHMM[x1:t]| ≤ εHMM(t),

3. εHMM(2)� 1
2σm(PHMM

2,1 ).

The resulting error of our learned model P̂r is∑
x1:t

|Pr[x1:t]− P̂r[x1:t]|

≤ εHMM(t) +
∑
x1:t

|PrHMM[x1:t]− P̂r[x1:t]|

for all t ≤ tmax. The second term is now bounded as in The-
orem 6, with spectral parameters corresponding to PrHMM.

5 Proof ideas
We outline the main ideas for proving Theorems 6 and 7.
Full proofs can be found in a technical report available from
arXiv (http://arxiv.org/abs/0811.4413).

Throughout this section, we assume the HMM obeys Con-
dition 1. Table 1 summarizes the notation that will be used
throughout the analysis in this section.

5.1 Estimation Errors
Define the following sampling error quantities:

ε1 = ‖P̂1 − P1‖2
ε2,1 = ‖P̂2,1 − P2,1‖2

ε3,x,1 = ‖P̂3,x,1 − P3,x,1‖2

The following lemma bounds these errors with high prob-
ability as a function of the number of observation samples
used to form the estimates.

Lemma 8. If the algorithm independently samplesN obser-
vation triples from the HMM, then with probability at least
1− η:

ε1 ≤
√

1
N

ln
3
η

+

√
1
N

ε2,1 ≤
√

1
N

ln
3
η

+

√
1
N∑

x

ε3,x,1 ≤ min
k

(√
k

N
ln

3
η

+

√
k

N
+ 2ε(k)

)

+
√

1
N

ln
3
η

+

√
1
N

where ε(k) is defined in (1).

The rest of the analysis estimates how the sampling er-
rors affect the accuracies of the model parameters (which in
turn affect the prediction quality).

Let U ∈ Rn×m be matrix of left singular vectors of P2,1.
The first lemma implies that if P̂2,1 is sufficiently close to
P2,1, i.e. ε2,1 is small enough, then the difference between
projecting to range(Û) and to range(U) is small. In particu-
lar, Û>O will be invertible and be nearly as well-conditioned
as U>O.

Lemma 9. Suppose ε2,1 ≤ ε · σm(P2,1) for some ε < 1/2.
Let ε0 = ε22,1/((1− ε)σm(P2,1))2. Then:

1. ε0 < 1,

2. σm(Û>P̂2,1) ≥ (1− ε)σm(P2,1),

3. σm(Û>P2,1) ≥
√

1− ε0σm(P2,1),

4. σm(Û>O) ≥
√

1− ε0σm(O).

Now we will argue that the estimated parameters b̂∞, B̂x, b̂1
are close to the following true parameters from the observ-
able representation when Û is used for U :

b̃∞ = (P>2,1Û)+P1 = (Û>O)−>~1m,

B̃x = (Û>P3,x,1)(Û>P2,1)+

= (Û>O)Ax(Û>O)−1 ∀x ∈ [n]

b̃1 = Û>P1.

By Lemma 3, as long as Û>O is invertible, these parameters
b̃∞, B̃x, b̃1 constitute a valid observable representation for
the HMM.

http://arxiv.org/abs/0811.4413


Define the following errors of the estimated parameters:

δ∞ =
∥∥∥(Û>O)>(̂b∞ − b̃∞)

∥∥∥
∞

=
∥∥∥(Û>O)>b̂∞ −~1m

∥∥∥
∞
,

∆x =
∥∥∥(Û>O)−1

(
B̂x − B̃x

)
(Û>O)

∥∥∥
1

=
∥∥∥(Û>O)−1B̂x(Û>O)−Ax

∥∥∥
1
,

∆ =
∑
x

∆x

δ1 =
∥∥∥(Û>O)−1(̂b1 − b̃1)

∥∥∥
1

=
∥∥∥(Û>O)−1b̂1 − ~π

∥∥∥
1
.

We can relate these to the sampling errors as follows.

Lemma 10. Assume ε2,1 ≤ σm(P2,1)/3. Then:

δ∞ ≤ 4 ·
(

ε2,1
σm(P2,1)2

+
ε1

3σm(P2,1)

)
,

∆x ≤ 8√
3
·
√
m

σm(O)
·(

Pr[x2 = x] · ε2,1
σm(P2,1)2

+
ε3,x,1

3σm(P2,1)

)
,

∆ ≤ 8√
3
·
√
m

σm(O)
·
(

ε2,1
σm(P2,1)2

+
∑
x ε3,x,1

3σm(P2,1)

)
,

δ1 ≤ 2√
3
·
√
m

σm(O)
· ε1.

5.2 Proof of Theorem 6
We need to quantify how estimation errors propagate in the
probability calculation. Because the joint probability of a
length t sequence is computed by multiplying together t ma-
trices, there is a danger of magnifying the estimation errors
exponentially. Fortunately, this is not the case: the following
lemma (readily proved by induction) shows that these errors
accumulate roughly additively.

Lemma 11. Assume Û>O is invertible. For any time t:∑
x1:t

∥∥∥(Û>O)−1
(
B̂xt:1 b̂1 − B̃xt:1 b̃1

)∥∥∥
1

≤ (1 + ∆)tδ1 + (1 + ∆)t − 1.

All that remains is to bound the effect of errors in b̂∞.
Theorem 6 will follow from the following lemma combined
with the sampling error bounds of Lemma 8.

Lemma 12. Assume ε2,1 ≤ σm(P2,1)/3. Then for any t,∑
x1:t

∣∣∣Pr[x1:t] − P̂r[x1:t]
∣∣∣

≤ δ∞ + (1 + δ∞)
(
(1 + ∆)tδ1 + (1 + ∆)t − 1

)
.

5.3 Proof of Theorem 7
In this subsection, we assume the HMM obeys Condition 3
(in addition to Condition 1).

We introduce the following notation. Let the unnormal-
ized estimated conditional hidden state distributions be

ĥt = (Û>O)−1b̂t,

and its normalized version,

ĝt = ĥt/(~1>mĥt).

Also, let
Âx = (Û>O)−1B̂x(Û>O).

This notation lets us succinctly compare the updates made
by our estimated model to the updates of the true model. Our
algorithm never explicitly computes these hidden state distri-
butions ĝt (as it would require knowledge of the unobserved
O). However, under certain conditions (namely Conditions 1
and 3 and some estimation accuracy requirements), these dis-
tributions are well-defined and thus we use them for sake of
analysis.

The following lemma shows that if the estimated param-
eters are accurate, then the state updates behave much like
the true hidden state updates.

Lemma 13. For any probability vector ~w ∈ Rm and any
observation x,∣∣∣∣∣∑

x

b̂>∞(Û>O)Âx ~w − 1

∣∣∣∣∣ ≤ δ∞ + δ∞∆ + ∆ and

[Âx ~w]i
b̂>∞(Û>O)Âx ~w

≥ [Ax ~w]i −∆x

~1>mAx ~w + δ∞ + δ∞∆x + ∆x

for all i = 1, . . . ,m. Moreover, for any non-zero vector
~w ∈ Rm,

~1>mÂx ~w

b̂>∞(Û>O)Âx ~w
≤ 1

1− δ∞
.

A consequence of Lemma 13 is that if the estimated pa-
rameters are sufficiently accurate, then the state updates never
allow predictions of very small hidden state probabilities.

Corollary 14. Assume δ∞ ≤ 1/2, maxx ∆x ≤ α/3, δ1 ≤
α/8, and maxx δ∞+ δ∞∆x+ ∆x ≤ 1/3. Then [ĝt]i ≥ α/2
for all t and i.

Lemma 13 and Corollary 14 can now be used to prove the
contraction property of the KL-divergence between the true
hidden states and the estimated hidden states. The analysis
shares ideas from [EDKM07], though the added difficulty is
due to the fact that the state maintained by our algorithm is
not a probability distribution.

Lemma 15. Let ε0 = maxx 2∆x/α + (δ∞ + δ∞∆x +
∆x)/α + 2δ∞. Assume δ∞ ≤ 1/2, maxx ∆x ≤ α/3, and
maxx δ∞ + δ∞∆x + ∆x ≤ 1/3. For all t, if ĝt ∈ Rm is a
probability vector, then

KL(~ht+1||ĝt+1) ≤ KL(~ht||ĝt)−
γ2

2
(
ln 2

α

)2KL(~ht||ĝt)2+ε0.

Finally, the recurrence from Lemma 15 easily gives the
following lemma.



Lemma 16. Let ε0 = maxx 2∆x/α + (δ∞ + δ∞∆x +
∆x)/α+2δ∞ and ε1 = maxx(δ∞+

√
mδ∞∆x+

√
m∆x)/α.

Assume δ∞ ≤ 1/2, maxx ∆x ≤ α/3, and maxx δ∞ +
δ∞∆x + ∆x ≤ 1/3. Also assume

δ1 ≤
√

ε0
8γ2
≤ α

8
≤ 1

2
, ε0 ≤

α4γ2

128
(
ln 2

α

)2 , and ε1 <
1
2
.

Then for all t,

KL(~ht||ĝt) ≤

√
2
(
ln 2

α

)2
ε0

γ2
and

KL(Pr[xt|x1:t−1] || P̂r[xt|x1:t−1])

≤

√
2
(
ln 2

α

)2
ε0

γ2
+ δ∞ + δ∞∆ + ∆ + 2ε1.

Theorem 7 follows by combining the previous lemma
and the sampling error bounds of Lemma 8.
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A Recovering the Observation and
Transition Matrices

We sketch how to use the technique of [MR06] to recover
the observation and transition matrices explicitly. This is an
extra step that can be used in conjunction with our algorithm.

Define the n × n matrix [P3,1]i,j = Pr[x3 = i, x1 = j].
Let Ox = diag(Ox,1, . . . , Ox,m), so Ax = TOx. Since
P3,x,1 = OAxT diag(~π)O>, we have P3,1 =

∑
x P3,x,1 =

OTT diag(~π)O>. Therefore

U>P3,x,1 = U>OTOxT diag(~π)O>

= (U>OT )Ox(U>OT )−1

(U>OT )T diag(~π)O>

= (U>OT )Ox(U>OT )−1(U>P3,1).

The matrix U>P3,1 has full row rank, so it follows that

(U>P3,1)(U>P3,1)+ = I,

and thus

(U>P3,x,1)(U>P3,1)+ = (U>OT ) Ox (U>OT )−1.

SinceOx is diagonal, the eigenvalues of (U>P3,x,1)(U>P3,1)+
are exactly the observation probabilities Or,1, . . . , Or,m.

Define i.i.d. random variables gx ∼ N(0, 1) for each x.
It is shown in [MR06] that the eigenvalues of∑

x

gx(U>P3,x,1)(U>P3,1)+

= (U>OT )

(∑
x

gxOx

)
(U>OT )−1.

will be separated with high probability (though the separa-
tion is roughly on the same order as the failure probabil-
ity; this is the main source of instability with this method).
Therefore an eigen-decomposition will recover the columns
of (U>OT ) up to a diagonal scaling matrix S, i.e. U>OTS.
Then for each x, we can diagonalize (U>P3,x,1)(U>P3,1)+:

(U>OTS)−1 (U>P3,x,1)(U>P3,1)+ (U>OTS) = Ox.

Now we can form O from the diagonals of Ox. Since O
has full column rank, O+O = Im, so it is now easy to also
recover ~π and T from P1 and P2,1:

O+P1 = O+O~π = ~π

and

O+P2,1(O+)> diag(~π)−1

= O+(OT diag(~π)O>)(O+)> diag(~π)−1

= T.

Note that because [MR06] do not allow more observa-
tions than states, they do not need to work in a lower dimen-
sional subspace such as range(U). Thus, they perform an
eigen-decomposition of the matrix∑

x

gxP3,x,1P
−1
3,1 = (OT )

(∑
x

gxOx

)
(OT )−1,

and then use the eigenvectors to form the matrix OT . Thus
they rely on the stability of the eigenvectors, which depends
heavily on the spacing of the eigenvalues.


