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Abstract

In the supervised learning setting termed
Multiple-Instance Learning (MIL), the
examples are bags of instances, and the
bag label is a function of the labels of
its instances, typically a Boolean OR.
The learner observes the bag labels but
not the instance labels that generated
them. MIL has numerous applications,
and many heuristic algorithms have been
used successfully on this problem. How-
ever, no guarantees on the result or gen-
eralization bounds have been shown for
these algorithms. At the same time, the-
oretical analysis has shown MIL to be ei-
ther trivial or too hard, depending on the
assumptions. In this work we formally
define a new setting which is more rele-
vant for MIL applications than previous
theoretic assumptions. The sample com-
plexity of this setting is shown to be only
logarithmically dependent on the size of
the bag, and for the case of Boolean OR,
an algorithm with proven guarantees is
provided. We further extend the sample
complexity results to a real-valued gen-
eralization of MIL.

Introduction

MIL setting the label of a bag is determined using
a simple rule: it is the Boolean OR of the labels of
the instances it contains. Various generalizations
to MIL have been proposed [Rae98, WFP03]. We
consider the generalization obtained by replacing
OR with an arbitrary Boolean function. To
differentiate the two settings, we shall refer to the
original setting as OR-MIL and reserve the term
MIL for the generalized problem. Note that it is
possible in principle to treat a MIL problem as
a regular classification task, viewing a bag as a
single example, where the instances in a bag are
treated as a mere part of its internal representation.
Such treatment, however, cannot take advantage
of the special structure of a MIL problem. In
particular, it does not allow the possibility of
employing known techniques for classifying
instances to help classify bags.

There are numerous applications for OR-MIL.
In [DLLP97], the drug design application moti-
vates this setting: in this problem, the goal is to
predict which molecules would bind to a specific
binding site. Each molecule has several possible
conformations (shapes) it can take. If at least one
of the conformations binds to the binding site, then
the molecule is labeled positive. However, it is not
possible to experimentally identify which confor-
mation was the successful one. Thus, a molecule
can be thought of as a bag of conformations, where
each conformation is an instance in the bag. Other
applications include image classification [MR98],

learning problem termed web index page recommendation [ZJL05], and text

Multiple-Instance Learning (MIL), first intro- ~ Ccatégorization [And07].

duced in [DLLP97]. MIL is a generalization of Several heuristic algorithms have been pro-
the classical supervised learning problem with posed for OR-MIL, usually in the context of a
binary labels. As in the classical setting, in MIL  specific application. For instance, Dietterich et.
the learner receives a sample of labeled exam- al [DLLP97] propose algorithms for finding an
ples drawn i.i.d from an arbitrary and unknown Axis-Parallel Rectangle (APR) that predicts the la-
distribution, and its objective is to discover a bel of an instance and of a bag. Diverse Density
classification rule with small expected error over [MLP98], EM-DD [ZG01] use assumptions on a
the same distribution. In MIL, additional structure specific structure of the bags of instances. DP-
is assumed, whereby the examples are received asBoost [AH03], mi-SVM and MI-SVM [ATHO02]
bagsof instancessuch that each bag is composed are heuristic approaches for learning OR-MIL us-
of several instances. It is assumed that each ing margins. Many of the proposed algorithms
instance has a true label, however the learner only work well in practice on relevant data sets, how-
observes the labels of the bags. In the original ever none of the works above provide generaliza-

We consider the



tion guarantees for any of the algorithms. classification rule that is identical for all instances

Previous theoretical analysis of MIL has fo- in a bag, as in a homogeneous setting. In addition,
cused on OR-MIL. Two different settings of OR- these algorithms operate on problems in which the
MIL have been investigated. In the first setting, bag is drawn from an arbitrary distribution, as in
it is assumed that each of the instances in eacha dependent setting. In this work we thus de-
bag may be classified using a different classifica- fine a new MIL setting, which isjomogeneous-
tion rule. We refer to such a bag classification rule dependentOur sample complexity analysis shows
asheterogeneousin addition, it is assumed that that the sample size required for MIL depends on
the bags are drawn according to an arbitrary dis- the number of instances in a bag only logarithmi-
tribution over bags, so that the instances in a bag cally. For the computational aspect, we show an al-
may be statistically dependent. We thus term this gorithm with proven guarantees for OR-MIL. Our
settingheterogeneous-dependeint [ALS98] the analysis thus reduces the gap between existing the-
problem of learning APRs in this setting is investi- ory, where even OR-MIL is either trivial or too
gated. It is shown that PAC-learning a disjunction hard, and practical algorithms, which exemplify
of r APRs inR"™ using a sample of labeled bagsis good results in many application domains.

as hard as learning DNF formulas. Thus a PAC al- In Section 2 the problem setting is defined and
gorithm which is polynomial inr andn exists only notations are provided. In Section 3 the sam-
if RP = NP [PV86]. ple complexity of heterogeneous-dependent MIL

In the second setting that has been theoreti- and homogeneous-dependent MIL with binary hy-
cally investigated [ALS98, BK98, LT98] itis as- potheses are compared, showing that homoge-
sumed that all the instances in a bag are classified neous-dependent is strictly easier. Section 4 pro-
according to the same classification rule, so that vides an algorithm with result guarantees for learn-
the bag classification rule lsomogeneoudn ad- ing in the homogeneous-dependent OR-MIL set-
dition, it is assumed that the instances in all bags ting. In Section 5 we analyze the sample complex-
are drawn i.i.d from a single arbitrary distribution ity of the generalized MIL setting with real-valued
over instances, so that the instances in a bag arefunctions. We conclude with a discussion in Sec-
statistically independent. We thus term this setting tion 6. Appendix A provides proofs that have been

homogeneous-independeht [BK98] the follow- skipped in the text. .

ing theorem is proven for homogeneous-indepen-

dent OR-MIL: 2 Problem Setting and Notation

Theorem 1 (Blum and Kalai, in [BK98]) If a Letr be some positive natural number. We assume

hypothesis clask is PAC-learnable in polynomial  throughout this work that is the number of in-
time from one-sided random classification noise, stances inabag. Léf be the domain of instances.
then the hypothesis clagg is PAC-learnable in We assume that bags are ordered sequencesof
polynomial time in OR-MIL, assuming that the stances from¥, thus the domain of bags ¥}
instances in all bags are drawn i.i.d from a single It is assumed that an unknown classification rule
arbitrary distribution. h: X — {—1,+1} labels instances i, and that

This th is based he fact that | . the label of a bag is determined by the labels of
IS theorem Is based on the fact that In an - he instances it contains. In classical MIL, which

dependent setting the sample of bags may be used, e torm OR-MIL, the label of a bag is the Boolean

to build an i.i.d. sample of instances with one- g o the |abels of its instances. In generalized
sided noise. The algorithms proposed in [BK98] '\, the apel of a bag is someary Boolean func-

are polynomial in both the sample size and in the o, of the labels of its instances. Importantly, this

number of instances in a bag. . function is known to the learner a-priori.
Examining the above-mentioned theoretical re- The learner receives a sample of labeled bags.

sults, it C".indbe Se;” thgtRonM;[Ee_ one harg)(lj, homO- 116 |abels of instances in the bags remain unob-
geneous-independent ) IS provably €asy. geryed. In dependent settings, the sample of bags

However, its be_aring to_actual a_lpplicatior_\ domains is drawn i.i.d from an unknown and arbitrary distri-
where OR-MIL is used is questionable, since inal- -, ion overx™. The goal of the learner is to find
most all_appl|cat|o_ns it is not possible to assUme 5 cjassification rule that would classify ndvags
that the instances in a bag are even approximately 4.y from the same distribution with low error.
g]depe;detnéROI\r)”tE]g othe:.hatr:Id,theterog?nequs--Note that in a dependent setting it is not possible
epenaen - IS applicablé {0 an extensive ;, y,q general case to find a low-error classification
set of problems, but is provably hard in the worst 0 o instances. As a simple counter example
case. In addition, this setting includes the implicit assume that in OR-MIL every bag includes both a
assumption that Instances in a bag are qrdered’positive instance and a negative instance. In this
whereas in many applications this ordering is non- ¢ase 4| bags are labeled as positive, and it is not
existent or not informative. '
~In contrast, most (if not all) heuristic algo- 'Note that our assumption that instances are ordered
rithms that have been researched and used in prac-within a bag is merely a technicality if the bag classifi-
tice, including the algorithms listed above, learn a cation rule is symmetric.



possible to distinguish the two types of instances
by observing only bag labels.

We now turn to define notational conventions.
Vectors are marked in boldface and elements in a
vector are denoted by superscripts, so that
(z1,...,z%) for ak-element vector. Bags are con-
sidered vectors of instances and are marked ac-
cordingly. We also use the vector notation to de-
note vectors of functions. The following list sum-
marizes the notations for functions and vectors,
wherea is some vector,f is a scalar function,

f £ (f',..., f*) is a vector of scalar functions,
andf £ (f1,..., f¥) is a vector of functions from
vectors to scalars:

f(@) 2(f(a'),..., f(a")),

f(a) £(f'(a), ..., f*(a)),

f(a) £(f'(a'), ..., f*(d")),

f(a) 2(f'(a), ..., [*(a)).

Unless otherwise mentioned, vectors havele-
ments.x-y denotes the dot product of two real vec-
torsx andy. The notationg.||., and|.||; denote
the infinity norm and thd.; norm respectively .
For a natural numbek, we denote byk] the set
{1,...,k}. log denotes a base 2 logarithm. For
two sets4 and B, B# denotes the set of functions
from A to B.

We define two operators that map a classifica-
tion rule over instances into a classification rule
over bags: one for the heterogeneous setting and
one for the homogeneous setting.

Definition 2 Let Y be some domain, and let
f:Y" =Y. The heterogeneous bag-labeling op-
erator denoted by)/, is a function mapping hy-

potheses over instances to a hypothesis over bags,

defined as follows:

i (YY) -y, and

Vh=(h',...,h") e (Y¥) ,xe X", (1)
Pl (h)(x) £ f(h(x)) = f(h'(z"),..., h"(z")).

Definition 3 Let Y be some domain, and let
f:Y" =Y. The homogeneous bag-labeling op-
erator denoted by/, is a function mapping a hy-
pothesis over instances to a hypothesis over bags,
defined as follows:

ol YX - vX and
VheYX, xe X", (2)
ol (h)(x) £ f(h(x)) = f(h(z'),...,h(z")).

Settingf = OR in+/ and ing/ we have the OR-
MIL problem in the heterogeneous setting and in
the homogeneous setting respectively.

We useH to denote a set of hypotheses on in-
stances. Hypotheses may be binary, so #iat
{—1,+1}%, or they may be real-valued, so that

H C [-1,+1]%. The assumptions o will be
specified in context.

We denote byyf (H) the set of hypotheses
over bags that are generated frétrby o/ :

¢l (H) = {{(h) |h e H"}.

Similarly, ¢/ (H) is the set of hypotheses over bags
that are generated frofd by ¢/ :

ol (M) = {¢f(h) | h € H}.

3 Sample Complexity for Binary
Hypotheses

It is shown in [ALS98] that heterogeneous-depen-
dent OR-MIL is computationally hard for APRs,
however for other hypothesis classes this setting
may be computationally feasible. In this section
we show that notwithstanding the computational
guestion, in terms of sample complexity hetero-
geneous-dependent MIL is strictly harder than ho-
mogeneous-dependent MIL. We show that for any
non-trivial Boolean function, the VC-dimension of
heterogeneous-dependent MIL is at least linear in
r, the number of instances in a bag, while the VC-
dimension of homogeneous-dependent MIL is at
most logarithmic in-. We start with a lower bound
on the VC-dimension in heterogeneous-dependent
MIL.

Theorem4 Letr € N*. Letf : {-1,+1}" —
{—1,+1} be anr-ary Boolean function that is not
constant in any of its operands. L&t be the
heterogeneous bag-labeling operator defined as in
Eqg. (1). LetH C {—1,+1}* be a hypothesis class
with a finite VC-dimensiod;, and denote the VC-
dimension of)f () byds. Then

dB Z T’(d] — 2)

Proof: LetS; = {a1,...,a4,} € X be a set of
instances of sizel; that can be shattered by.
Assume thatl; > 2, otherwise the bound trivially
holds. Lete(, ;) = (1,...,1,y,1,...,1) be avec-
tor with r elements, where elemejpequalsy. For
everyj € [r], letc; be avector of Boolean values
such that

Vye{-1,+1}, flc;-euy)=y. (3)
Sincef is not constant in any of its operands, such
a vector exists for alf € [r].

We define a set of bagsg = {x;} € X" of
sizer(d; — 2) and show that it can be shattered by
»i(H). Letting J (i) = | =% | + 1, define bag;

dr—2
as follows:
A[(i=1) mod (d;—2)]+1 It J(7) = Jj;
a1 it J(5) 4 &
l’i £ 6.7](1') =1
ad; it J(i) # j &
iy =T1.
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We now show that for any labelind’s
{y:}ielr(d,—2) there exists a hypothesisiiy (H)
that assigng’s to Sp. For a givenY defined;
Boolean vectors,, as follows:

¢} Yy-va—zen k< dr—2;
—1 If k = d[ — 1;
41 if k= d;.

Since the VC-dimension dff is d;, we have that
for all j € [r] there exists a vector efhypotheses

h £ (h',...,h") € H" such thath(ay) = t; for
all k € [d;]. Seth £ +f(h) € ] (H). From the
definition ofx; we have

W(a]) =
Hi-1) mod (@—2y+1 T J@) =43
t, -1 it J(i) # J & ¢y = —1;
ta, it J(i) #j & &)y = +1.

Using the definition of, above, we find that for
j # J(i), W (x}) = ;). and that forj = J (i),
Bl Dy 16 —
RO (@) = tl(i=1) mod (dy—2)]+1 —
J(i)

=€) " Y(I(E)=1)(dr—2)+[(i—1) mod (d;—2)]+1
_ J@) .

=€) YIES 1 (dr=2)+1(i-1) mod (dr—2)]+1
R0

=Cy0) Yie

Therefore,h(xi) = Cj(i) * ©(y;,J (i) By the defi-
nition of & and Eq. (3),
Vi € [T(d[ — 2)],
h(xi) = ¥ (h)(x:) = f(h(x))
= f(csg) - €y,.a3i)) = Yi-

We showed a sef of sizer(d; — 2) that can be
shattered by)! (H), thereforedp > r(d; —2). R

Having shown a lower bound for the sample
complexity of the heterogeneous-dependent set-
ting that is linear in-, we now show that the sample
complexity for homogeneous-dependent MIL is no
more than logarithmic im.

Theorem5 Let f : {—1,4+1}" — {-1,+1} be
anr-ary Boolean function. Lep/ be the homoge-
neous bag-labeling operator defined as in Eq. (2).
LetH C {—1,+1}* be a hypothesis class with a
finite VC-dimensior;. Denote the VC-dimension
of the hypothesis class/ (H) by dz. Then

dp < max{2d;(logr —logd; +loge), 4d;?, 16}.

Proof: In the following proof the notationt’, ,,
for a set of hypothese¥ and a set of examples,
denotes the restriction of the hypothesestno
their values on the set, so that

Xa 2 {h, | hex}

By the definition of VC-dimension, there exists a
set of bagsS = {x; }ic[q) € X" thatis shattered
by ¢f(H). There are2?s different ways to label
the bags inS, thus|¢/(H) .| = 277. LetSY =
{x] }icm),je[r) b€ the set of instances in bags in
S. Lemma 20, proven in Appendix A, states that
lof (H)s| < M) |- Therefore2?s < |H_|.
We have|S"| < r|S| = rdg. Therefore, by
Sauer’s lemma [Sau72, VC71}, | is bounded
as follows:

)

S\
2dB < < (<5 <
e () <

Wheree is the base of the natural logarithm. It
follows that

erdp

dr

dp < d;(logr —logd; +1loge) + dslogdp.
If dylogdp < %dB,
dp < 2d;(logr —logd; + loge).
Otherwised; logdp > 2dg, hence,

d
b <
2logdp

If dg > 16 thenlogdp < /dp, therefore from
Eq. (4) it follows that$+\/dz < d;, thatisdp <
4d,>. Combining all the cases, the bound @p
follows. |

To complement Theorem 5, we show in the
following theorem that for the class of separating
hyperplanes the VC-dimension of homogeneous-
dependent OR-MIL is at least logarithmic in
hence the logarithmic dependenceritannot be
removed in the general case.

(4)

Theorem 6 Let ¢O% be the homogeneous bag-
labeling operator for OR-MIL, and let{ be the
class of separating hyperplanesi¥ for & > 2.
Denote byip the VC-dimension afO% (H). Then

dg > |logr|+1.

Proof: DenoteD £ |logr| + 1. We show that
there exists a sef = (x1,...,xp) C (R?)" of

D bags withr instances that can be shattered by
the class of separating hyperplanes in two dimen-
sions. It follows that the same is true f&F with

k > 2. The following construction is illustrated in

Figure 1.
Fork € [Dr] define instances iR? as follows:
27k 2nk
ak = (COS(D—T>,SIH(D—T))7

so that the instances are equidistant on the unit cir-
cle. LetN = (ny,...,np,) be a sequence of in-
dexes from{ D] which is a concatenation of all the
subsets of D] in some arbitrary order. Each index
in [D] appears in half of the subsets[@], there-
fore for alli € [D], there areP~! < r indexesk



Figure 1: An illustration of the construction in
Theorem 6. In this example = 4 and D =
log4 +1 = 3. Each dot corresponds to an in-

stance. The numbers next to the instances denote

the bag to which an instance belongs, and match
the sequencé’. In this illustration bagd and3
are labeled as positive by the OR rule.

such that, = i. Fori € [D], letx; be a vector of
the instancesy, such thaty, = ¢, in some arbitrary
order. If2P~1 < r, duplicate one of the instances
in each bag to achieve a bag of size exactly

Let (y1,...,yp) be an arbitrary binary label-
ing of D bags. We show that there exists a separat-
ing hyperplanev-z—d = 0 that induces this label-
ingonS: LetT = {i | y; = +1}. By the defini-
tion of IV, there exists a sub-sequencg, . . ., n;,
in N such that{ny | j1 < k < jo} = T.
Let w = (cos(TULt2)y sin(TULti2)y) and let
d= cos(%). We have thatv - a, —d > 0
if and only if j; < k < j5. Therefore a bag;
is assignedr1 by the OR function exactly if there
exists ak € {j1,...,j2} such that, = i, thatis
exactly ifi e T.

We have shown tha® can be shattered by the
class of separating hyperplanes, therefége >
|S| = [logr]| + 1. [ ]

Since the bound on sample complexity is pro-
portional to the VC-dimension of the problem
[VCT71], it follows from Theorem 5 that the sam-
ple size required for learning from bags is larger
than the sample size required for learning from in-
stances only by a logarithmic factor of In this

section we have shown that homogeneous-depen-

dent MIL is strictly easier than heterogeneous-de-
pendent MIL in terms of sample complexity. In
the following section we focus on the computa-
tional aspect of OR-MIL, and show that in homo-
geneous-dependent OR-MIL we can classify bags
using an algorithm that classifies instances.

4  An Algorithm for
Homogeneous-Dependent OR-MIL

In this section we preselilLearn, a learning al-
gorithm for the OR-MIL problem, and show that
in homogeneous-dependent OR-MIL, given an al-
gorithm A that minimizes the training error on a
sample of instances, one can ig&.earn to clas-
sify bags efficiently, with guarantees on the result.
If A minimizes one-sided error, then it is possible

to learn from separable samples and from samples
with one-sided error. 1f4 minimizes two-sided
error, then it is also possible to learn from sam-
ples with small two-sided error. Comparing this to
heterogeneous-dependent OR-MIL, note that the
hardness result on learning APRs in the latter set-
ting [ALS98] is achieved using a hypothesis class
with only a finite number of APRs. Therefore, this
problem is hard even whe# exists.

Before presenting the algorithm, we define
some notation. A labeled and weighted sample of
instances is a sef C RT x X x {-1,+1} of
triplets, where in a triplefw, =, y) w is the weight
of the instancey is the instance, angd is the in-
stance label. A labeled and weighted sample of
bagsisasef C Rt x X" x {—1,+1} of triplets
(w,x,y) defined in a similar fashion.

In the following we consider real-valued hy-
potheses, that i C [-1,+1]%. The OR-MIL
homogeneous bag-labeling operator is accordingly
defined ag™** instead ofpOR.

For an instance hypothesis: X — [—1,+1]
and a weighted and labeled instance santple
{(wi, zi,y:) }iem), the edge of on S, denoted by
I'(h, S), is defined as follows.

F(h, S) £ Z wzyzh(ﬂﬂz)/ Z Wi .

i€|S] i€|S]

If his a bag hypothesis anfl is a bag sample,
I'(h, S) is defined identically except that the sum
is over bag; instead of instances;. Note that
for binary hypotheses, the edge /ofon S equals

1 — 2e wheree is the error ofh on S.

MILearn accepts as input a bag sampleg;,
and an algorithm,4. A receives a labeled and
weighted instance sample and returns an instance
hypothesisA(S) € H. In MILearn, h,os de-
notes the constant positive hypothesisz €
X, hpos(z) = +1. Itis assumed thdt,.s € H.
The output of the algorithm is a bag hypothesis in
¢ (H) that classifiesSg. The edge of the re-
turned hypothesis depends on the best achievable
edge forSp, as we presently show.

MILearn, listed as Algorithm 1 below, is a very
short algorithm. It constructs a sample of instances
St from the instances that make up bags$is, la-
beling each instances ity with the same label of
the bag it came from. The weight of an instance
with a positive label is time$ of the weight of the
bag it came from, while the weight of an instance
with a negative label is the same as the weight
of the bag it came from. Having construct&g,
MILearn runs.4 on S;. It then selects whether
to returng;"**(A(St)) or ¢;"** (hpes), Whichever
provides the better edge ¢f%.

This simple algorithm provides guarantees for
the edge of the resulting hypothesis, as we show in
the following theorem. The theorem is composed
of two parts — the first part refers to the best achiev-
able one-sided edge, and the second part relates to
the overall best achievable edge.



Algorithm 1: MILearn (a) Iffor any instance samplé

ASSUMPLIONS Apos € H. I(A(S),S) > max TI'(h,S), (5)
Input: ’ _ o heHmQ(S)
o Sy 2 (w5, %1, }ic ] — a labeled and thatis,.A minimizes one-sided error ¢\ then
weighted sample of bags; N> 5 7+ - 6)
r_

» A-—an algorithm that receives an instance (p) |f the following conditions hold:
sample and returns a hypothesigin i. for any instance samplé

Output: hys € ¢ (H). L(A(S),S) > %aﬁF(h,S), (7)
1 (+1)<—7—o¢( 1)<—1 ii. 7*2177—2,
2 Create an instance same with rm then )

i : =1 1

instances as follows: v (72 1)+ > 0. ®)

. -
St {(alyi)wi, z, yi) Yicm) jelr]- _
Proof:[of Theorem 8(a)] Denote the total weight

3 hy — A(S1) ' of examples in a samplg by W (S). For{w;} the
a if D(¢(hr), Sp) = T(¢7* (hpos), SB) weights of bags irf s, let

then
5 | har 6P (i) Wes > wi and W_£ 3w
6 else iy =-+1 iyi=—1
7 | by ¢ (hpos)- We assume w.l.0.g. th&l' (Sp) = W +W_ = 1.

In the proof we refer to5; andh; as defined in
steps 2 and 3 dfILearn.
The proof employs the following three lem-

Before stating the theorem, some auxiliary no- mas, whose proofs are provided in Appendix A.

tation is required. We first define the set of hy-
potheses that classify a samlewith one-sided Lemma 9 For any instance hypothesis

error. Since in OR-MIL positive and negative la- ¢ ymax > r 1—

bels are not interchangeable, we specifically re- (67" (h), Sp) 2 W(SDT (h, S1) + (1 =r)W-.
quire that such hypotheses err only positiveex- Lemma 10 Define

amples in. R £ argmax I(¢"*(h),Sp).
Definition 7 The set of hypotheses with one-sided heHNQ(Ss)
error on S is denoted byQ(S). If § = If Eq. (5) holds, thed'(h, S;) > I'(R%, St).
{(wi, zi,yi) }iepm) 1S an instance sample then
2(S) is defined as follows:
QS) 2 {h e [-1,+1)¥ | Wt Sy =
Vi € [m], h(zl) # Y =y = +1}' Z (7 - 1)W+ + _F(¢7- (h)a SB)

If S = {(wi, i, yi) }iepm) is @ bag sample, +(r =W~ Z wil[h(x;) + 1| o).
yi=—1
QS) 2 {he[-1,+1]%
(5) =4 ) [ m]ax | From these three lemmas we have that if
Vi € [m]) ¢7' (h)(xl) 7& Yi = Yi = +1} Eq (5) ho'ds then

Two short-hand notations are used for the ™ (hy), Sp)
best achievable edge féiz, the input sample to W (ST (h1,Sp) + (1 — r)W_

(o
>W
MILearn: ; W (Sp)T(h S) (1 W
’ -T -
7" £ maxT(¢™*(h), Sp), -1 ' oo
her 2 (7 = DWW+ 73 + (L =)W=

Lemma 11 For any instance hypothesis

e I(pmax . *
TS s, T (1), S) A z will % (6:) + 1loc)
That is,v* is the best achievable edge 8 with ) yFl_ L.
hypotheses i< (H), and~? is the best achiev- = (G -DWe+ (01— )Wo+ 274
able edge oy z with hypotheses in;"**(H) that 1 WB* (v
err only on positive bags. (r=3) Zl will 3 (%) + 1l
Yi=—
Theorem 8 Let H C [-1,+1]X be a set of in- =(1-LH —2wy) + 1y
stance hypotheses. Lef; be the hypothesis re- ! ) *’
turned byMILearn when receivingSs as input, —(r=3 > willhi () + oo, )

and lety £ T'(has, Sp). Then yi=—1



where the last equality follows from the assump-
tion that W, + W_ = 1. Now, we have that
hi € Q(Sg), therefore for alli € [m] such
thaty; = —1, hi(x;) = —1. It follows that

hi(xy) = —1foralli € [m],j € [r]. There-
fore>° _ jwil[hi(xi) + 1]l = 0. Eq. (9) is
thus reduced to

D(¢P*(hr), Sp) > (1 — 1)(1 —2W5) + 375
From stept of the algorithm we have

v = max{I(¢"**(h1), SB), (7" (hpos), SB) }-
Therefore

y>max {(1—2)(1—2Wy) + 1y7, 2W, —1}.

Since the first option in the maximization is de-
creasing ini¥;. and the second option is increas-
ing in W, we have thaty > 2W7; —1, whereW'y
satisfies

(1-D(1—2W)+ 1y =2W; — 1.

«
RES
4r—

; ; _1
Itis easy to verify thatV} = 5 + =, therefore

2r—1°

'yZQWj—l

The proof of Theorem 8(b) follows similar
lines and is provided in Appendix A. Theorem 8
guarantees that under certain conditidiiearn

following section the case of real-valued hypothe-
ses is analyzed for generalized MIL and the neces-
sary bound is provided.

Before we proceed, it is instructive to compare
the computational result we achieved for the sep-
arable case witMILearn to Theorem 1 [BK98],
which also addresses the separable case. From the
above discussion on Boosting we have:

Corollary 12 If it is possible to minimize the
training error on a sample with one-sided error by
a hypothesis clas${ in polynomial time, then it
is possible to PAC-learn a bag sample in OR-MIL
in polynomial time, where the examples are drawn
from an arbitrary distribution over bags.

Theorem 1 and Cor. 12 are similar in struc-
ture: Both state that if the single-instance prob-
lem is solvable with one-sided error, then the MIL
problem is solvable if it is separable. Theorem 1
applies only to the case of statistically indepen-
dentinstances, while Cor. 12 applies to bags drawn
from an arbitrary distribution. It should be noted
though, that the conditions required in Cor. 12
are stronger, requiring training error minimization
with handling of arbitrary one-sided error, while
Theorem 1 requires PAC-learnability with han-
dling of one-sided random noise.

5 MIL with Real-Valued Functions

We now extend the discussion to hypotheses and
bag classification rules that range over real values.

achieves an approximation to the optimal edge of a We show that if the bag classification rule is an ex-

hypothesis inp*?*(H) on the input sample. Given

tension of a monotone Boolean function, then here

this guarantee, one can also guarantee an approxtoo the sample complexity of MIL depends loga-

imation of theZ; margin of a linear combination
of hypotheses fromp**(H), by using a Boost-

ing scheme such as AdaBoost or one of its variants

([SFBL98], and see [SSS08] for an elegant anal-
ysis). This is because if there exists &p mar-
gin of v* over ¢***(H) thenMILearn is aweak
learnerwhich provides hypotheses with an edge of
at leasty as stated in Eq. (8), for any re-weighing

of the input bag sample. For the separable case,

usingMILearn as a weak learner in a Boosting al-
gorithm guarantees separability with a margin of
ﬁ, by a linear combination of hypotheses from
¢ (H). We mention that [GFKSO02] presents a
method for conserving linear separability by defin-
ing a kernel adaptation to OR-MIL. However, the
resulting MIL margin bound goes to zero as the
sample size grows. Further research may allow

combining the two approaches to achieve a kernel fined ind

with guaranteed margin bounds.

The generalization bound for the use of Ad-
aBoost withMILearn and binary hypotheses de-
pends on the achievefl; margin and the VC-
dimension of ¢}***(H) [SFBL98]. The VC-

dimension was bounded in Theorem 5 above, thus

bounding generalization error. For real-valued

hypotheses, however, a bound on the pseudo-

dimension ofp**(H) is required [SS99]. In the

rithmically on». For margin learning our results
hold for the larger class of Lipschitz functions.

Monotone Boolean functior(glso calledpos-
itive Boolean functionsmap Boolean vectors in
{=1,+1}" into {—1,+1}, such that the map is
monotone increasing in every operand. The set of
monotone Boolean functions is exactly the set of
functions that can be represented by some compo-
sition of AND and OR functions. A natural exten-
sion of monotone Boolean functions to real func-
tions from [—1,+1]™ into [—1,+1] is achieved
by replacing OR withmax and AND with min.
Formally, the real functions that extend monotone
Boolean functions are defined as follows:

Definition 13 A function from [—1,+1]" into
[-1,+1] is an extension of am-ary monotone
Boolean functionif it belongs to the setM,. de-
uctively as follows, where the input to a
function is denoted by € [—1,+1]":

(1)Vj€[n], x—afe My
(2)Vk e Nt, fl. .. ffe M, =
x — max(f(x)) € M,; (10)
(B)VkeNt, fl. .. ffe M, =
x — min(f(x)) € M,,
wheref £ (f1,..., f¥).



5.1 Thresholded Functions

In the following we bound the pseudo-dimension
(see e.g. [AB99] for definitions) of the generalized
MIL problem with any extension of a monotone
Boolean function, showing that here too as in The-
orem 5, the sample complexity of MIL is larger
than that of the single-instance problem by at most
a logarithmic factor of. This also shows that us-
ing Boosting withMILearn generalizes wheft{
ranges over real-valued hypotheses.

Theorem 14 Let H C [-1,+1]¥ be a set of in-
stance hypotheses with pseudo-dimendionLet
f + [-1,+1]" — [-1,+1] be an extension of
a monotone Boolean function, and &t be the
pseudo-dimension off (H). Then

dp < max{2d;(logr —logd; + 1), 4d;2, 16}.

Proof: We use the equivalence between the
pseudo-dimension of a class of real-valued func-
tions and the VC-dimension of the class of bi-
nary functions generated by thresholding the real-
valued functions, following [AB99]. For a func-
tion h from some domain intd—1,+1] and a
scalary € R, let h, be a function from the
same domain int§—1, +1}, defined byh,(x) =
sign(h(z) —y), wheresign(z) = +1if z > 0, and
sign(z) = —1 otherwise. For a set of functions
H, define the seBy = {h, | h € H,y € R}.
The pseudo-dimension df is equal to the VC-
dimension ofBy.

Using Def. 13, it is easy to verify that fof
which is an extension of a monotone Boolean func-
tion, the following holds, whergé = (1,...,1):

sign(f(x) —y) = sign(f(x —y1))
= f(sign(x - yl))a

Now let us examine the thresholded function
¢f(h), for h € Handy € R. Forallx € X",

¢l (h),,(x) = sign(¢] (h)(x) - y)

= sign(f(h(x)) —y) = f(sign(h(x) — y1))

= f(hy(x)) = (bf(hy)(x)
Therefore B, ,,, = ¢{ (By). We have thad is
the VC-dimension 0B anddp is the VC dimen-
sion of B ;) = ¢/ (Bx). Note thatBy is a set
of hypotheses int§—1, +1}, and thatf when re-
stricted to{—1, +1}" is also binary, therefore we
may apply Theorem 5, substitutirlg with By,.
The desired bound follows. ]

5.2 Learning with a Margin
To complete the picture for real-valued hypothe-

ses, we address the sample complexity of large-

margin classification for MIL. MI-SVM [ATHO2]

is a practical algorithm for learning OR-MIL with
a margin. This algorithm attempts to optimize an
adaptation of the soft-margin SVM objective, in

which the margin of a bag is the maximal mar-
gin achieved by any of its instances. This amounts
to replacing the hypothesis class of separating
hyperplanes byy™**(H). Sincemax is the ex-
tension of OR, this objective function is natural in
our formulation. It has not been shown, however,
that minimizing the objective function of MI-SVM
and analogous margin formulations for MIL al-
lows learning. This is provided by Theorem 15 be-
low, which bounds the-Fat shattering dimension
(see e.g. [AB99]) of MIL. This theorem applies
to any bag classification rule which is a Lipschitz
function, where the Lipschitz condition is formally
defined as follows: A functiorf : X™ — R is ¢-
Lipschitz with respect to the infinity norm if

Va,b e X", |f(a) - f(b)] < clla = bl|.

The bound in Theorem 15 shows that these MIL
problems are indeed learnable with a small penalty
on the sample size, if the single-instance problem
is learnable.

The following theorem assumes that the real-
valued hypotheses are bounded. Also assume
w.l.o.g. that the hypotheses and the bag classifi-
cation rule are non-negative. For a function class
I, letFatp () be itsy-Fat shattering dimension.

Theorem 15 Let B,c¢ > 0. LetH C [0, B]X be
a hypothesis class and I¢t: [0, B]" — [0, cB]
be c-lipschitz with respect to the infinity norm. For
v > 0, denoteF; () £ Faty(y), and F,.(y) =
Fat s 5, (7)- Then

B2
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Fr(7) < 6F1(3) 108”851 F,(169)). (11)
The boundin Eq. (11) is in implicit form, since

Fr(v) appears on both sides of the bound. To bet-

ter understand its meaning, we restate the bound as

a function ofr. Fixingy and.F; (y/4c) and setting

B = 6F1(v/4c) andn = 8B2c* /4%, we have

VF, = /Blog Fr < \/Blog(yr).  (12)

Therefore the bound af. is asymptotically poly-
logarithmic inr. This bound applies to extensions
of monotone Boolean functions as well, since they
are Lipschitz functions, as the following lemma
shows.

Lemma 16 Extensions of monotone Boolean
functions are 1-Lipschitz with respect to the
infinity norm.

This lemma is proven inductively using Def. 13.
The full proof is provided in Appendix A.

To prove Theorem 15, we first bound the cover-
ing number of MIL by the covering number of the
single-instance problem. Fét C [0, B]X, vy > 0
andS C X, the set ofy-covers ofS by H is

covy(H,S)2 {CCH|VYheH3heC,
—hs)| <
max |h(s) — h(s)] <7}



The~-covering number of a hypothesis clagsC
[0, B]X and a numbem > 0 is defined by

Noo(y, H,m) £

min
=m Ceé&covy(H,S)

max

SCX €1
CX:|S|

The following lemma provides the necessary
bound.

Lemma 17 Let f [0,B]" — [0,¢B] be c¢-
Lipschitz with respect to the infinity norm for some
¢ > 0. For any naturalm,r > 0, and realy > 0,
and for any hypothesis clagg C [0, B]X

Noo (v, 6L (H),m) < Noo(v, H,rm) - (13)

Proof: LetS = {x;}icm) € X" be a set ofn

bags. LetSY = {a}icim,jer be the set of in-
stances in bags &f. LetC € cov,(H,S") be a
~-cover ofSY. Forallh € H there exists aheC

such thainax;e ) |A(x;) — h(x;)]|oc < 7. From

the Lipschitz condition orf we have

|6F (h)(x:) = &f () ()| =
= 1£(h(xi)) = f (h(xi)) |
< e[ A(xi) = h(xi) oo < e7.

Since for anyh € H, ¢f(h) € ¢f(C), it follows
thato/ (C) € covm((bf(H) S). This s true for all
C € covy(H,SY), thus we have

¢! (cov, (H, 7)) C coves (6 (H), ).
Therefore,
Noo(c’)/a ¢Z(H)a m) =

= max

!
somax 7 ()

min
¢f(C)ecoves (¢1(H),S)
61(C))

min
¢} (C)Ed (covy (H,SY))
O]

< max
SCXr:|S|=m

min
CGcov-y (H,SY)

IC]

= max
SCX7:|S|=m

= max
SCX |[S|<rm CECOV»Y(H S)

= min - |C]|
SQX:|S|:Tm Céecovy(H,S)

= N (v, H,rm).
|
Lastly, in the proof of Theorem 15 we use the
following two theorems.

Theorem 18 ([BKP97]) Let F' be a set of real
functions and lety > 0. For m > Fatp(16+),

Fatr(60/8 < N (v Fom).  (14)

Theorem 19 (Theorem 12.8 in [AB99])Let F
be a set of real functions from a domaii to
the bounded interval0, B]. Lety > 0. Let
d = Fatp (7). Forallm > d,

4ern

4B?

dlo

m) &
2
v

Noo (v, Fym) < 2 ( (15)

We are now ready to prove the fat shattering
bound.
Proof:[of Theorem 15] From Theorem 18 and
Lemma 17 it follows that forn > F,.(167),

Fr(167) <

8 f
1OgelOgNoo(77¢T(H),m) (16)

< 6log N (v/c, H,rm).

This expression can be bounded from above using
Theorem 19: Rearranging Eq. (15) we have that if
m > d = Fatp(3) > 1 andF isinto [0, B] then,
fory < B/e,

log Noo (7, H,m) <

4eBm 4B*m
) log 5 +1
dry v

4eB 4B?
< dlog( ¢ m)log( Qm) +1
Y v

4B%*m
y? )

4B*m
_Fatp(4)log( 2 ).

< dlog(

< dlogz(

Combining this with Eq. (16) and substituting
with ¢B it follows that if m > F,.(16+) andrm >
Fi(z) > 1, then

4B%crm

Fr(16v) < 6.7-'1( )1og (T)

Settingm = [F, (1 v)] < Fr(167)+1, it follows
that if 7,.(16) > 1 and F,.(16y) > Fi(3L)/r >
1, then

3202
Fr(167) < 6f1( )10g (4—5r(F-(167) + 1))

B2t
)1og (8 2

< 6.7-"1( rF-(167)).
Substituting16+ with ~, we have that the bound
in Eqg. (11) holds fory/16 < B/e, which always
holds sincey < B. [ |

6 Discussion

In this work we have analyzed Multiple Instance
Learning in a new theoretical setting. The assump-
tions in this setting are closer to the ones made
in practice, and unlike previously investigated set-
tings, do not reduce MIL to a very hard problem
nor to a trivial one. We have shown that the de-
pendence of the sample complexity of MIL on the
number of instances in a bag is no more than log-
arithmic. This result extends to any Boolean func-
tion, on top of the Boolean OR used in classical
MIL. It would be of interest to compatre this trade-
off to similar phenomena in other settings with par-
tial information on labels, such as Active Learn-
ing and Semi Supervised Learning. We would



also like to investigate whether under certain con-
ditions, such as a high cost of labels, it may be
preferable to use bag learning instead of instance
learning.

For the OR-MIL problem, we have provided
a learning algorithm that classifies bags given an
algorithm for minimizing training error over in-
stances. This is the first OR-MIL algorithm with
proven generalization performance that does not
assume statistical independence of instances in a
bag. Further research is required to generalize
this reduction to other settings and to compare
this strategy to other methods for generating weak
learners. Lastly, we have generalized MIL further
to handle real-valued hypotheses and bag classifi-
cation rules, and have shown that here too the sam-
ple complexity is poly-logarithmic by the number
of instances in a bag.
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A Technical Proofs

Lemma 20 For any f {-1,+1}* —
{—1,+1}, hypothesis clas#(, and a set of bags
S = {xi}icla € X", letSY = {z] }icim) jei C
X. Then,

¢ (H)1s| < [H)50

Proof: Let hk, h% € ¢f(H) be bag hypotheses.
There exist instance hypothedes h? € H such
that gb{(h;) = hiy fori = 1,2. Assume that
hils # h|.- We show thahy , # hi)., thus
proving the lemma.

From the assumption it follows that
¢f(hi))s # #L(h3)s. There exists at least one

bagx; € S such thawp! (h?)(x;) # ¢f(h2)(x;).
Therefore

f(hi(x:)) # f(hi(xi)).
Hence there exists A< [r] such that

hi(a]) # hi(x]).
By the definition ofSY, = € SV. Therefore
h}\sf 7& h%\sf'
|

Proof:[of Lemma 9] Since we assume w.l.0.g. that
W(Sg) = 1, we have

D@ (n). S5) = 3 wigmax{h(a!))

1€[m]
= > wii([[h(x:) + oo — 1).
i€[m]

Let o be defined as iNILearn, so thatw(+1) =
1 anda(—1) = 1. We have

W(S1)T(h, S1) =

= >

i€[m],j€(r]
= Z o(yi)wiy Z h(z})
i€ [m] jelr]

=Y aliwyi(h(x) + 1l = 7).

1€[m]

O‘(yi)wiyih(z{)

From
[h(x:) + 1o < [[h(xs) + 11 < rl|R(x:) + 100
it follows that
yia(yi)|h(xi) + 111 < yillh(xi) + 1oo- (17)
Therefore,
W (Sr)T'(h, S1) <

< Y wigillh(x) + oo — alys)r)

1€[m]

< 3 wihx) + oo = 1)
1€[m]
+(r—1) Z w;

yi=—1

— D(6(h), Sg) + (r — W

And the proof is completed. ]
Proof:[of Lemma 10] By Eq. (5) we have

= > .
F(h],S]) F(A(S}),SI) = he%%)isj)r(h, S[)

Thus to prove thal'(h;, S;) > T'(h, Sr) it suf-

fices to show that’ € H N Q(S7). By definition

h% € HNQ(SR), therefore it suffices to show that
Q(SB) € Q(S1),

that is, any hypothesis which errs only on posi-

tive instances o'z, also errs only on positive in-

stances o1%;. Leth € Q(Sp). Fromthe definition
of Q it follows that

Vi, ¢ (h)(xi) #yi = yi=+1
Equivalently,
Vi, yi=-1 = " (h)(x;)=-1.
Therefore,
Vi, yi=-1 = VYjelr]h@)=-1

It follows that

Vi€ [ml],j€[r],yi=—-1 = h(z) = —1.
DenotingS; = {(Wx, Tk, Jx) }kepm), We have that
m o= rm, & = x; andg, = y; for somei €
[m],j € [r]. Therefore

Vk € m], gy = -1 = h(@) = —1.

Thush € Q(Sr). HenceQ(Sg) C Q(Sr), and the
proof is concluded. |
Proof:[of Lemma 11] The following chain of
equalities provides the required result:

W(ST'(h,Sr) =

Y alywigi(|h(xi) + 1l —r)

i€[m]
= > FwillhGa) + 11— )
yi=+1
+ > wilr = [|h(xi) + 1[|1)
yi=—1
> > twi(llh) + s — 1)
yi=+1
+ > wilr = rllxs) + 1|oo)
yi=—1
= > (E-Dw
yi=+1
+ > qwilllh(xi) + 1w —1)
yi=+1

+ Z Twi(lth(Xi)WLIHOO)

Yi=—

= (7 = DWy + ;1@ (h), Sp)
(=3 Y will = [[hxi) + o).

yi=—1

(5 = DWW, + £0(¢**(h), Sp)
(=D = > ) + 1lso)-

yi=—1



Thus the lemma is proven. | To guarantee > 0, we requirey* > 1 — }2 |

Proof:[of Theorem 8(b)] Denote Proof:[of Lemma 16] The claim is proven induc-
N max tively using the conditions in Eq. (10). The case
h* = arfgfxr(@ (h), SB). for x — a7 is trivial. Forx — max(f(x)), let

. o f = (f1,..., fx), and assume that the Lipschitz
We start with a similar inference to the one taken condition holds forf;, 1 < i < k, that is

in the proof of Theorem 8(a). We use Lemma 9
and Lemma 11. Instead of Lemma 10 we use the [f(a) —£(b)[ls < [la — b co- (19)
X ) : = + 1||oo — 1. There-
I'(h*, S;). Using these three facts, and replacing axi\a) - 2
b= with 7* and~~ with * in Eq. (9), we get that fore, by the triangle inequality and Eq. (19),
|max(f(a)) — max(f(b))| =

T(¢™*(hy), Sp) > = [ [If(a) + 1]jsc — [[£(b) + 1|0

> (1= )1 =2Wy) + 39" (18) < [If(a) — f(b)]lee
—(r=2) Y willh*(x:) + oo < lla—Dble.
_ e For x — min(f(x)) again assume Eq. (19)
Now, assuming w.l.o.g tha¥’(Sp) = 1, we have holds. To prove the claim note that
7= 3 wayimax{he () min(f(a)) = — max(~f(a)) = 1—[|~£(a) + 1],

i€[m] Therefore using the triangle inequality we have,
= 2w+l =) [min(f(a)}) — min(f(b)| =

i€[m

i = |1 —[[—f(a) + 1f|ec — (1 = |=£(b) + 1[[oc)]

= > vl 6e) + 1l = 1) = [[|=£(b) + Lfloo — [[~£(a) + 1| o]

we . < [If(a) — £(b) [

+ Y wiyi([h*(x:) + 1o — 1) < [la— b|lse.

yi=—1
. The claim has thus been proven for all three con-
<SWi+ > witn(Ih* (%) + 1| — 1) ditions. u
yi=—1
=Wy +W_ - Z wil[h*(xi) + 1|0
yi=—1
=1- > willh* (%) + 1loo-
yi=—1
Therefore
D willh(xi) + 1oe <1 —7"
yi=—1

From Eg. (18) we thus have that
L(¢7(h1), SB) =
> (1= )1 —2Wy) + 39"
—(r=90=7)
=1-r—2(1-LHw, +r*

Therefore, similarly to the proof of Theorem 8(a),
we have

72max{l—er(l—%)W++r’y*,2W+fl}.

Equating the two maximization options, we get

* r *
W+ = m(Q—T-FT’)/ )
Substituting; for W in 2, — 1, we have
S r2(y* — 1)+1.
- 2r —1



