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Abstract

In the supervised learning setting termed
Multiple-Instance Learning (MIL), the
examples are bags of instances, and the
bag label is a function of the labels of
its instances, typically a Boolean OR.
The learner observes the bag labels but
not the instance labels that generated
them. MIL has numerous applications,
and many heuristic algorithms have been
used successfully on this problem. How-
ever, no guarantees on the result or gen-
eralization bounds have been shown for
these algorithms. At the same time, the-
oretical analysis has shown MIL to be ei-
ther trivial or too hard, depending on the
assumptions. In this work we formally
define a new setting which is more rele-
vant for MIL applications than previous
theoretic assumptions. The sample com-
plexity of this setting is shown to be only
logarithmically dependent on the size of
the bag, and for the case of Boolean OR,
an algorithm with proven guarantees is
provided. We further extend the sample
complexity results to a real-valued gen-
eralization of MIL.

1 Introduction

We consider the learning problem termed
Multiple-Instance Learning (MIL), first intro-
duced in [DLLP97]. MIL is a generalization of
the classical supervised learning problem with
binary labels. As in the classical setting, in MIL
the learner receives a sample of labeled exam-
ples drawn i.i.d from an arbitrary and unknown
distribution, and its objective is to discover a
classification rule with small expected error over
the same distribution. In MIL, additional structure
is assumed, whereby the examples are received as
bagsof instances, such that each bag is composed
of several instances. It is assumed that each
instance has a true label, however the learner only
observes the labels of the bags. In the original

MIL setting the label of a bag is determined using
a simple rule: it is the Boolean OR of the labels of
the instances it contains. Various generalizations
to MIL have been proposed [Rae98, WFP03]. We
consider the generalization obtained by replacing
OR with an arbitrary Boolean function. To
differentiate the two settings, we shall refer to the
original setting as OR-MIL and reserve the term
MIL for the generalized problem. Note that it is
possible in principle to treat a MIL problem as
a regular classification task, viewing a bag as a
single example, where the instances in a bag are
treated as a mere part of its internal representation.
Such treatment, however, cannot take advantage
of the special structure of a MIL problem. In
particular, it does not allow the possibility of
employing known techniques for classifying
instances to help classify bags.

There are numerous applications for OR-MIL.
In [DLLP97], the drug design application moti-
vates this setting: in this problem, the goal is to
predict which molecules would bind to a specific
binding site. Each molecule has several possible
conformations (shapes) it can take. If at least one
of the conformations binds to the binding site, then
the molecule is labeled positive. However, it is not
possible to experimentally identify which confor-
mation was the successful one. Thus, a molecule
can be thought of as a bag of conformations, where
each conformation is an instance in the bag. Other
applications include image classification [MR98],
web index page recommendation [ZJL05], and text
categorization [And07].

Several heuristic algorithms have been pro-
posed for OR-MIL, usually in the context of a
specific application. For instance, Dietterich et.
al [DLLP97] propose algorithms for finding an
Axis-Parallel Rectangle (APR) that predicts the la-
bel of an instance and of a bag. Diverse Density
[MLP98], EM-DD [ZG01] use assumptions on a
specific structure of the bags of instances. DP-
Boost [AH03], mi-SVM and MI-SVM [ATH02]
are heuristic approaches for learning OR-MIL us-
ing margins. Many of the proposed algorithms
work well in practice on relevant data sets, how-
ever none of the works above provide generaliza-



tion guarantees for any of the algorithms.
Previous theoretical analysis of MIL has fo-

cused on OR-MIL. Two different settings of OR-
MIL have been investigated. In the first setting,
it is assumed that each of the instances in each
bag may be classified using a different classifica-
tion rule. We refer to such a bag classification rule
asheterogeneous. In addition, it is assumed that
the bags are drawn according to an arbitrary dis-
tribution over bags, so that the instances in a bag
may be statistically dependent. We thus term this
settingheterogeneous-dependent. In [ALS98] the
problem of learning APRs in this setting is investi-
gated. It is shown that PAC-learning a disjunction
of r APRs inR

n using a sample of labeled bags is
as hard as learning DNF formulas. Thus a PAC al-
gorithm which is polynomial inr andn exists only
if RP = NP [PV86].

In the second setting that has been theoreti-
cally investigated [ALS98, BK98, LT98] it is as-
sumed that all the instances in a bag are classified
according to the same classification rule, so that
the bag classification rule ishomogeneous. In ad-
dition, it is assumed that the instances in all bags
are drawn i.i.d from a single arbitrary distribution
over instances, so that the instances in a bag are
statistically independent. We thus term this setting
homogeneous-independent. In [BK98] the follow-
ing theorem is proven for homogeneous-indepen-
dent OR-MIL:

Theorem 1 (Blum and Kalai, in [BK98]) If a
hypothesis classH is PAC-learnable in polynomial
time from one-sided random classification noise,
then the hypothesis classH is PAC-learnable in
polynomial time in OR-MIL, assuming that the
instances in all bags are drawn i.i.d from a single
arbitrary distribution.

This theorem is based on the fact that in an in-
dependent setting the sample of bags may be used
to build an i.i.d. sample of instances with one-
sided noise. The algorithms proposed in [BK98]
are polynomial in both the sample size and in the
number of instances in a bag.

Examining the above-mentioned theoretical re-
sults, it can be seen that on the one hand, homo-
geneous-independent OR-MIL is provably easy.
However, its bearing to actual application domains
where OR-MIL is used is questionable, since in al-
most all applications it is not possible to assume
that the instances in a bag are even approximately
independent. On the other hand, heterogeneous--
dependent OR-MIL is applicable to an extensive
set of problems, but is provably hard in the worst
case. In addition, this setting includes the implicit
assumption that instances in a bag are ordered,
whereas in many applications this ordering is non-
existent or not informative.

In contrast, most (if not all) heuristic algo-
rithms that have been researched and used in prac-
tice, including the algorithms listed above, learn a

classification rule that is identical for all instances
in a bag, as in a homogeneous setting. In addition,
these algorithms operate on problems in which the
bag is drawn from an arbitrary distribution, as in
a dependent setting. In this work we thus de-
fine a new MIL setting, which ishomogeneous-
dependent. Our sample complexity analysis shows
that the sample size required for MIL depends on
the number of instances in a bag only logarithmi-
cally. For the computational aspect, we show an al-
gorithm with proven guarantees for OR-MIL. Our
analysis thus reduces the gap between existing the-
ory, where even OR-MIL is either trivial or too
hard, and practical algorithms, which exemplify
good results in many application domains.

In Section 2 the problem setting is defined and
notations are provided. In Section 3 the sam-
ple complexity of heterogeneous-dependent MIL
and homogeneous-dependent MIL with binary hy-
potheses are compared, showing that homoge-
neous-dependent is strictly easier. Section 4 pro-
vides an algorithm with result guarantees for learn-
ing in the homogeneous-dependent OR-MIL set-
ting. In Section 5 we analyze the sample complex-
ity of the generalized MIL setting with real-valued
functions. We conclude with a discussion in Sec-
tion 6. Appendix A provides proofs that have been
skipped in the text. .

2 Problem Setting and Notation

Let r be some positive natural number. We assume
throughout this work thatr is the number of in-
stances in a bag. LetX be the domain of instances.
We assume that bags are ordered sequences ofr in-
stances fromX , thus the domain of bags isXr.1

It is assumed that an unknown classification rule
h : X → {−1,+1} labels instances inX , and that
the label of a bag is determined by the labels of
the instances it contains. In classical MIL, which
we term OR-MIL, the label of a bag is the Boolean
OR of the labels of its instances. In generalized
MIL the label of a bag is somer-ary Boolean func-
tion of the labels of its instances. Importantly, this
function is known to the learner a-priori.

The learner receives a sample of labeled bags.
The labels of instances in the bags remain unob-
served. In dependent settings, the sample of bags
is drawn i.i.d from an unknown and arbitrary distri-
bution overXr. The goal of the learner is to find
a classification rule that would classify newbags
drawn from the same distribution with low error.
Note that in a dependent setting it is not possible
in the general case to find a low-error classification
rule for instances. As a simple counter example
assume that in OR-MIL every bag includes both a
positive instance and a negative instance. In this
case all bags are labeled as positive, and it is not

1Note that our assumption that instances are ordered
within a bag is merely a technicality if the bag classifi-
cation rule is symmetric.



possible to distinguish the two types of instances
by observing only bag labels.

We now turn to define notational conventions.
Vectors are marked in boldface and elements in a
vector are denoted by superscripts, so thatx =
(x1, . . . , xk) for ak-element vector. Bags are con-
sidered vectors of instances and are marked ac-
cordingly. We also use the vector notation to de-
note vectors of functions. The following list sum-
marizes the notations for functions and vectors,
wherea is some vector,f is a scalar function,
f , (f1, . . . , fk) is a vector of scalar functions,
andf̂ , (f̂1, . . . , f̂k) is a vector of functions from
vectors to scalars:

f(a) ,(f(a1), . . . , f(ak)),

f(a) ,(f1(a), . . . , fk(a)),

f(a) ,(f1(a1), . . . , fk(ak)),

f̂(a) ,(f̂1(a), . . . , f̂k(a)).

Unless otherwise mentioned, vectors haver ele-
ments.x·y denotes the dot product of two real vec-
torsx andy. The notations‖.‖∞ and‖.‖1 denote
the infinity norm and theL1 norm respectively .
For a natural numberk, we denote by[k] the set
{1, . . . , k}. log denotes a base 2 logarithm. For
two setsA andB, BA denotes the set of functions
fromA toB.

We define two operators that map a classifica-
tion rule over instances into a classification rule
over bags: one for the heterogeneous setting and
one for the homogeneous setting.

Definition 2 Let Y be some domain, and let
f : Y r → Y . The heterogeneous bag-labeling op-
erator, denoted byψf

r , is a function mappingr hy-
potheses over instances to a hypothesis over bags,
defined as follows:

ψf
r :

(

Y X
)r → Y Xr

, and

∀h = (h1, . . . , hr) ∈
(

Y X
)r
,x ∈ Xr, (1)

ψf
r (h)(x) , f(h(x)) ≡ f(h1(x1), . . . , hr(xr)).

Definition 3 Let Y be some domain, and let
f : Y r → Y . The homogeneous bag-labeling op-
erator, denoted byφf

r , is a function mapping a hy-
pothesis over instances to a hypothesis over bags,
defined as follows:

φf
r : Y X → Y Xr

, and

∀h ∈ Y X ,x ∈ Xr, (2)

φf
r (h)(x) , f(h(x)) ≡ f(h(x1), . . . , h(xr)).

Settingf , OR inψf
r and inφf

r we have the OR-
MIL problem in the heterogeneous setting and in
the homogeneous setting respectively.

We useH to denote a set of hypotheses on in-
stances. Hypotheses may be binary, so thatH ⊆
{−1,+1}X, or they may be real-valued, so that

H ⊆ [−1,+1]X. The assumptions onH will be
specified in context.

We denote byψf
r (H) the set of hypotheses

over bags that are generated fromH byψf
r :

ψf
r (H) = {ψf

r (h) | h ∈ Hr}.
Similarly,φf

r (H) is the set of hypotheses over bags
that are generated fromH by φf

r :

φf
r (H) = {φf

r (h) | h ∈ H}.

3 Sample Complexity for Binary
Hypotheses

It is shown in [ALS98] that heterogeneous-depen-
dent OR-MIL is computationally hard for APRs,
however for other hypothesis classes this setting
may be computationally feasible. In this section
we show that notwithstanding the computational
question, in terms of sample complexity hetero-
geneous-dependent MIL is strictly harder than ho-
mogeneous-dependent MIL. We show that for any
non-trivial Boolean function, the VC-dimension of
heterogeneous-dependent MIL is at least linear in
r, the number of instances in a bag, while the VC-
dimension of homogeneous-dependent MIL is at
most logarithmic inr. We start with a lower bound
on the VC-dimension in heterogeneous-dependent
MIL.

Theorem 4 Let r ∈ N
+. Let f : {−1,+1}r →

{−1,+1} be anr-ary Boolean function that is not
constant in any of its operands. Letψf

r be the
heterogeneous bag-labeling operator defined as in
Eq. (1). LetH ⊆ {−1,+1}X be a hypothesis class
with a finite VC-dimensiondI , and denote the VC-
dimension ofψf

r (H) bydB . Then

dB ≥ r(dI − 2).

Proof: Let SI = {a1, . . . , adI
} ⊆ X be a set of

instances of sizedI that can be shattered byH.
Assume thatdI > 2, otherwise the bound trivially
holds. Lete(y,j) = (1, . . . , 1, y, 1, . . . , 1) be a vec-
tor with r elements, where elementj equalsy. For
everyj ∈ [r], letcj be a vector ofr Boolean values
such that

∀y ∈ {−1,+1}, f(cj · e(y,j)) = y. (3)

Sincef is not constant in any of its operands, such
a vector exists for allj ∈ [r].

We define a set of bagsSB , {xi} ⊆ Xr of
sizer(dI − 2) and show that it can be shattered by
ψf

r (H). LettingJ(i) , ⌊ i−1
dI−2⌋+ 1, define bagxi

as follows:

xj
i ,



























a[(i−1) mod (dI−2)]+1 if J(i) = j;
adI−1 if J(i) 6= j &

cjJ(i) = −1;

adI
if J(i) 6= j &
cjJ(i) = +1.



We now show that for any labelingYB ,

{yi}i∈[r(dI−2)] there exists a hypothesis inψf
r (H)

that assignsYB to SB. For a givenYB definedI

Boolean vectorstk as follows:

tjk ,











cjj · y(j−1)(dI−2)+k if k ≤ dI − 2;

−1 if k = dI − 1;

+1 if k = dI .

Since the VC-dimension ofH is dI , we have that
for all j ∈ [r] there exists a vector ofr hypotheses
h , (h1, . . . , hr) ∈ Hr such thath(ak) = tk for
all k ∈ [dI ]. Setĥ , ψf

r (h) ∈ ψf
r (H). From the

definition ofxi we have

hj(xj
i ) =











tj[(i−1) mod (dI−2)]+1 if J(i) = j;

tjdI−1 if J(i) 6= j & cjJ(i) = −1;

tjdI
if J(i) 6= j & cjJ(i) = +1.

Using the definition oftjk above, we find that for
j 6= J(i), hj(xj

i ) = cjJ(i), and that forj = J(i),

hJ(i)(x
J(i)
i ) = t

J(i)
[(i−1) mod (dI−2)]+1 =

= c
J(i)
J(i) · y(J(i)−1)(dI−2)+[(i−1) mod (dI−2)]+1

= c
J(i)
J(i) · y⌊ i−1

dI−2
⌋(dI−2)+[(i−1) mod (dI−2)]+1

= c
J(i)
J(i) · yi.

Therefore,h(xi) = cJ(i) · e(yi,J(i)). By the defi-

nition of ĥ and Eq. (3),

∀i ∈ [r(dI − 2)],

ĥ(xi) = ψf
r (h)(xi) = f(h(xi)) =

= f(cJ(i) · e(yi,J(i))) = yi.

We showed a setSB of sizer(dI − 2) that can be
shattered byψf

r (H), thereforedB ≥ r(dI − 2).

Having shown a lower bound for the sample
complexity of the heterogeneous-dependent set-
ting that is linear inr, we now show that the sample
complexity for homogeneous-dependentMIL is no
more than logarithmic inr.

Theorem 5 Let f : {−1,+1}r → {−1,+1} be
anr-ary Boolean function. Letφf

r be the homoge-
neous bag-labeling operator defined as in Eq. (2).
LetH ⊆ {−1,+1}X be a hypothesis class with a
finite VC-dimensiondI . Denote the VC-dimension
of the hypothesis classφf

r (H) bydB . Then

dB ≤ max{2dI(log r− log dI +log e), 4dI
2, 16}.

Proof: In the following proof the notationX |A ,
for a set of hypothesesX and a set of examplesA,
denotes the restriction of the hypotheses inX to
their values on the setA, so that

XA , {h|A | h ∈ X}.

By the definition of VC-dimension, there exists a
set of bagsS = {xi}i∈[dB] ⊆ Xr that is shattered
by φf

r (H). There are2dB different ways to label
the bags inS, thus|φf

r (H)|S | = 2dB . Let S∪ =

{xj
i}i∈[m],j∈[r] be the set of instances in bags in

S. Lemma 20, proven in Appendix A, states that
|φf

r (H)|S | ≤ |H|S∪
|. Therefore2dB ≤ |H|S∪

|.
We have|S∪| ≤ r|S| = rdB . Therefore, by
Sauer’s lemma [Sau72, VC71],|H|S∪

| is bounded
as follows:

2dB ≤ |H|S∪
| ≤

(

e|S∪|
dI

)dI

≤
(

erdB

dI

)dI

,

Wheree is the base of the natural logarithm. It
follows that

dB ≤ dI(log r − log dI + log e) + dI log dB .

If dI log dB ≤ 1
2dB,

dB ≤ 2dI(log r − log dI + log e).

Otherwise,dI log dB ≥ 1
2dB , hence,

dB

2 log dB
≤ dI . (4)

If dB > 16 then log dB ≤
√
dB, therefore from

Eq. (4) it follows that12
√
dB ≤ dI , that isdB ≤

4dI
2. Combining all the cases, the bound ondB

follows.

To complement Theorem 5, we show in the
following theorem that for the class of separating
hyperplanes the VC-dimension of homogeneous-
dependent OR-MIL is at least logarithmic inr,
hence the logarithmic dependence inr cannot be
removed in the general case.

Theorem 6 Let φOR
r be the homogeneous bag-

labeling operator for OR-MIL, and letH be the
class of separating hyperplanes inRk for k ≥ 2.
Denote bydB the VC-dimension ofφOR

r (H). Then

dB ≥ ⌊log r⌋+ 1.

Proof: DenoteD , ⌊log r⌋ + 1. We show that
there exists a setS = (x1, . . . ,xD) ⊆ (R2)r of
D bags withr instances that can be shattered by
the class of separating hyperplanes in two dimen-
sions. It follows that the same is true forR

k with
k ≥ 2. The following construction is illustrated in
Figure 1.

Fork ∈ [Dr] define instances inR2 as follows:

ak = (cos(
2πk

Dr
), sin(

2πk

Dr
)),

so that the instances are equidistant on the unit cir-
cle. LetN = (n1, . . . , nDr) be a sequence of in-
dexes from[D] which is a concatenation of all the
subsets of[D] in some arbitrary order. Each index
in [D] appears in half of the subsets of[D], there-
fore for all i ∈ [D], there are2D−1 ≤ r indexesk
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Figure 1: An illustration of the construction in
Theorem 6. In this exampler = 4 andD =
log 4 + 1 = 3. Each dot corresponds to an in-
stance. The numbers next to the instances denote
the bag to which an instance belongs, and match
the sequenceN . In this illustration bags1 and3
are labeled as positive by the OR rule.

such thatnk = i. For i ∈ [D], let xi be a vector of
the instancesak such thatnk = i, in some arbitrary
order. If2D−1 < r, duplicate one of the instances
in each bag to achieve a bag of size exactlyr.

Let (y1, . . . , yD) be an arbitrary binary label-
ing ofD bags. We show that there exists a separat-
ing hyperplanew·x−d = 0 that induces this label-
ing onS: Let T = {i | yi = +1}. By the defini-
tion ofN , there exists a sub-sequencenj1 , . . . , nj2
in N such that{nk | j1 ≤ k ≤ j2} = T.

Let w = (cos(π(j1+j2)
Dr ), sin(π(j1+j2)

Dr )) and let

d = cos(π(j2−j1)
Dr ). We have thatw · ak − d ≥ 0

if and only if j1 ≤ k ≤ j2. Therefore a bagxi

is assigned+1 by the OR function exactly if there
exists ak ∈ {j1, . . . , j2} such thatnk = i, that is
exactly if i ∈ T .

We have shown thatS can be shattered by the
class of separating hyperplanes, thereforedB ≥
|S| = ⌊log r⌋+ 1.

Since the bound on sample complexity is pro-
portional to the VC-dimension of the problem
[VC71], it follows from Theorem 5 that the sam-
ple size required for learning from bags is larger
than the sample size required for learning from in-
stances only by a logarithmic factor ofr. In this
section we have shown that homogeneous-depen-
dent MIL is strictly easier than heterogeneous-de-
pendent MIL in terms of sample complexity. In
the following section we focus on the computa-
tional aspect of OR-MIL, and show that in homo-
geneous-dependent OR-MIL we can classify bags
using an algorithm that classifies instances.

4 An Algorithm for
Homogeneous-Dependent OR-MIL

In this section we presentMILearn, a learning al-
gorithm for the OR-MIL problem, and show that
in homogeneous-dependent OR-MIL, given an al-
gorithmA that minimizes the training error on a
sample of instances, one can useMILearn to clas-
sify bags efficiently, with guarantees on the result.
If A minimizes one-sided error, then it is possible

to learn from separable samples and from samples
with one-sided error. IfA minimizes two-sided
error, then it is also possible to learn from sam-
ples with small two-sided error. Comparing this to
heterogeneous-dependent OR-MIL, note that the
hardness result on learning APRs in the latter set-
ting [ALS98] is achieved using a hypothesis class
with only a finite number of APRs. Therefore, this
problem is hard even whenA exists.

Before presenting the algorithm, we define
some notation. A labeled and weighted sample of
instances is a setS ⊆ R

+ × X × {−1,+1} of
triplets, where in a triplet(w, x, y) w is the weight
of the instance,x is the instance, andy is the in-
stance label. A labeled and weighted sample of
bags is a setS ⊆ R

+ ×Xr ×{−1,+1} of triplets
(w,x, y) defined in a similar fashion.

In the following we consider real-valued hy-
potheses, that isH ⊆ [−1,+1]X . The OR-MIL
homogeneous bag-labeling operator is accordingly
defined asφmax

r instead ofφOR
r .

For an instance hypothesish : X → [−1,+1]
and a weighted and labeled instance sampleS =
{(wi, xi, yi)}i∈[m], the edge ofh onS, denoted by
Γ(h, S), is defined as follows.

Γ(h, S) ,
∑

i∈|S|

wiyih(xi)/
∑

i∈|S|

wi.

If h is a bag hypothesis andS is a bag sample,
Γ(h, S) is defined identically except that the sum
is over bagsxi instead of instancesxi. Note that
for binary hypotheses, the edge ofh on S equals
1− 2ǫ whereǫ is the error ofh onS.

MILearn accepts as input a bag sample,SB,
and an algorithm,A. A receives a labeled and
weighted instance sample and returns an instance
hypothesisA(S) ∈ H. In MILearn, hpos de-
notes the constant positive hypothesis:∀x ∈
X, hpos(x) = +1. It is assumed thathpos ∈ H.
The output of the algorithm is a bag hypothesis in
φmax

r (H) that classifiesSB. The edge of the re-
turned hypothesis depends on the best achievable
edge forSB, as we presently show.

MILearn, listed as Algorithm 1 below, is a very
short algorithm. It constructs a sample of instances
SI from the instances that make up bags inSB, la-
beling each instances inSI with the same label of
the bag it came from. The weight of an instance
with a positive label is times1r of the weight of the
bag it came from, while the weight of an instance
with a negative label is the same as the weight
of the bag it came from. Having constructedSI ,
MILearn runsA on SI . It then selects whether
to returnφmax

r (A(SI)) or φmax
r (hpos), whichever

provides the better edge onSB.
This simple algorithm provides guarantees for

the edge of the resulting hypothesis, as we show in
the following theorem. The theorem is composed
of two parts – the first part refers to the best achiev-
able one-sided edge, and the second part relates to
the overall best achievable edge.



Algorithm 1 : MILearn
Assumptions: hpos ∈ H.
Input :

• SB , {(wi,xi, yi)}i∈[m] – a labeled and
weighted sample of bags;

• A – an algorithm that receives an instance
sample and returns a hypothesis inH.

Output : hM ∈ φmax
r (H).

α(+1)← 1
r , α(−1)← 11

Create an instance sampleSI with rm2

instances as follows:

SI ← {(α(yi)wi, x
j
i , yi)}i∈[m],j∈[r].

hI ← A(SI)3

if Γ(φmax
r (hI), SB) ≥ Γ(φmax

r (hpos), SB)4

then
hM ← φmax

r (hI)5

else6

hM ← φmax
r (hpos).7

Before stating the theorem, some auxiliary no-
tation is required. We first define the set of hy-
potheses that classify a sampleS with one-sided
error. Since in OR-MIL positive and negative la-
bels are not interchangeable, we specifically re-
quire that such hypotheses err only onpositiveex-
amples inS.

Definition 7 The set of hypotheses with one-sided
error on S is denoted byΩ(S). If S =
{(wi, xi, yi)}i∈[m] is an instance sample then
Ω(S) is defined as follows:

Ω(S) , {h ∈ [−1,+1]X |
∀i ∈ [m], h(xi) 6= yi ⇒ yi = +1}.

If S = {(wi,xi, yi)}i∈[m] is a bag sample,

Ω(S) , {h ∈ [−1,+1]X |
∀i ∈ [m], φmax

r (h)(xi) 6= yi ⇒ yi = +1}.
Two short-hand notations are used for the

best achievable edge forSB, the input sample to
MILearn:

γ∗ ,max
h∈H

Γ(φmax
r (h), SB),

γ∗+ , max
h∈H∩Ω(SB)

Γ(φmax
r (h), SB).

That is,γ∗ is the best achievable edge onSB with
hypotheses inφmax

r (H), andγ∗+ is the best achiev-
able edge onSB with hypotheses inφmax

r (H) that
err only on positive bags.

Theorem 8 Let H ⊆ [−1,+1]X be a set of in-
stance hypotheses. LethM be the hypothesis re-
turned byMILearn when receivingSB as input,
and letγ , Γ(hM , SB). Then

(a) If for any instance sampleS

Γ(A(S), S) ≥ max
h∈H∩Ω(S)

Γ(h, S), (5)

that is,Aminimizes one-sided error onS, then

γ ≥ γ∗+
2r − 1

. (6)

(b) If the following conditions hold:
i. for any instance sampleS

Γ(A(S), S) ≥ max
h∈H

Γ(h, S), (7)

ii. γ∗ ≥ 1− 1
r2 ,

then

γ ≥ r2(γ∗ − 1) + 1

2r − 1
≥ 0. (8)

Proof:[of Theorem 8(a)] Denote the total weight
of examples in a sampleS byW (S). For{wi} the
weights of bags inSB, let

W+ ,
∑

i:yi=+1

wi, and W− ,
∑

i:yi=−1

wi.

We assume w.l.o.g. thatW (SB) = W++W− = 1.
In the proof we refer toSI andhI as defined in
steps 2 and 3 ofMILearn.

The proof employs the following three lem-
mas, whose proofs are provided in Appendix A.

Lemma 9 For any instance hypothesish,

Γ(φmax
r (h), SB) ≥W (SI)Γ(h, SI)+(1− r)W− .

Lemma 10 Define

h∗+ , argmax
h∈H∩Ω(SB)

Γ(φmax
r (h), SB).

If Eq. (5) holds, thenΓ(hI , SI) ≥ Γ(h∗+, SI).

Lemma 11 For any instance hypothesish,

W (SI)Γ(h, SI) ≥
≥ (1

r − 1)W+ + 1
r Γ(φmax

r (h), SB)

+ (r − 1
r )(W− −

∑

yi=−1

wi‖h(xi) + 1‖∞).

From these three lemmas we have that if
Eq. (5) holds then

Γ(φmax
r (hI), SB)

≥W (SI)Γ(hI , SI) + (1 − r)W−

≥W (SI)Γ(h∗+, SI) + (1 − r)W−

≥ (1
r − 1)W+ + 1

rγ
∗
+ + (1− r)W−

+ (r − 1
r )(W− −

∑

yi=−1

wi‖h∗+(xi) + 1‖∞)

= (1
r − 1)W+ + (1− 1

r )W− + 1
rγ

∗
+

− (r − 1
r )

∑

yi=−1

wi‖h∗+(xi) + 1‖∞

= (1− 1
r )(1 − 2W+) + 1

rγ
∗
+

− (r − 1
r )

∑

yi=−1

wi‖h∗+(xi) + 1‖∞, (9)



where the last equality follows from the assump-
tion thatW+ + W− = 1. Now, we have that
h∗+ ∈ Ω(SB), therefore for alli ∈ [m] such
that yi = −1, h∗+(xi) = −1. It follows that
h∗+(xj

i ) = −1 for all i ∈ [m], j ∈ [r]. There-
fore

∑

yi=−1 wi‖h∗+(xi) + 1‖∞ = 0. Eq. (9) is
thus reduced to

Γ(φmax
r (hI), SB) ≥ (1− 1

r )(1 − 2W+) + 1
rγ

∗
+.

From step4 of the algorithm we have

γ ≥ max{Γ(φmax
r (hI), SB),Γ(φmax

r (hpos), SB)}.
Therefore

γ ≥ max
{

(1− 1
r )(1 − 2W+) + 1

rγ
∗
+, 2W+ − 1

}

.

Since the first option in the maximization is de-
creasing inW+ and the second option is increas-
ing inW+, we have thatγ ≥ 2W ∗

+−1, whereW ∗
+

satisfies

(1− 1
r )(1− 2W ∗

+) + 1
rγ

∗
+ = 2W ∗

+ − 1.

It is easy to verify thatW ∗
+ = 1

2 +
γ∗

+

4r−2 , therefore

γ ≥ 2W ∗
+ − 1 =

γ∗+
2r − 1

.

The proof of Theorem 8(b) follows similar
lines and is provided in Appendix A. Theorem 8
guarantees that under certain conditionsMILearn

achieves an approximation to the optimal edge of a
hypothesis inφmax

r (H) on the input sample. Given
this guarantee, one can also guarantee an approx-
imation of theL1 margin of a linear combination
of hypotheses fromφmax

r (H), by using a Boost-
ing scheme such as AdaBoost or one of its variants
([SFBL98], and see [SSS08] for an elegant anal-
ysis). This is because if there exists anL1 mar-
gin of γ∗ overφmax

r (H) thenMILearn is a weak
learnerwhich provides hypotheses with an edge of
at leastγ as stated in Eq. (8), for any re-weighing
of the input bag sample. For the separable case,
usingMILearn as a weak learner in a Boosting al-
gorithm guarantees separability with a margin of

1
2r−1 , by a linear combination of hypotheses from
φmax

r (H). We mention that [GFKS02] presents a
method for conserving linear separability by defin-
ing a kernel adaptation to OR-MIL. However, the
resulting MIL margin bound goes to zero as the
sample size grows. Further research may allow
combining the two approaches to achieve a kernel
with guaranteed margin bounds.

The generalization bound for the use of Ad-
aBoost withMILearn and binary hypotheses de-
pends on the achievedL1 margin and the VC-
dimension of φmax

r (H) [SFBL98]. The VC-
dimension was bounded in Theorem 5 above, thus
bounding generalization error. For real-valued
hypotheses, however, a bound on the pseudo-
dimension ofφmax

r (H) is required [SS99]. In the

following section the case of real-valued hypothe-
ses is analyzed for generalized MIL and the neces-
sary bound is provided.

Before we proceed, it is instructive to compare
the computational result we achieved for the sep-
arable case withMILearn to Theorem 1 [BK98],
which also addresses the separable case. From the
above discussion on Boosting we have:

Corollary 12 If it is possible to minimize the
training error on a sample with one-sided error by
a hypothesis classH in polynomial time, then it
is possible to PAC-learn a bag sample in OR-MIL
in polynomial time, where the examples are drawn
from an arbitrary distribution over bags.

Theorem 1 and Cor. 12 are similar in struc-
ture: Both state that if the single-instance prob-
lem is solvable with one-sided error, then the MIL
problem is solvable if it is separable. Theorem 1
applies only to the case of statistically indepen-
dent instances, while Cor. 12 applies to bags drawn
from an arbitrary distribution. It should be noted
though, that the conditions required in Cor. 12
are stronger, requiring training error minimization
with handling of arbitrary one-sided error, while
Theorem 1 requires PAC-learnability with han-
dling of one-sided random noise.

5 MIL with Real-Valued Functions
We now extend the discussion to hypotheses and
bag classification rules that range over real values.
We show that if the bag classification rule is an ex-
tension of a monotone Boolean function, then here
too the sample complexity of MIL depends loga-
rithmically on r. For margin learning our results
hold for the larger class of Lipschitz functions.

Monotone Boolean functions(also calledpos-
itive Boolean functions) map Boolean vectors in
{−1,+1}n into {−1,+1}, such that the map is
monotone increasing in every operand. The set of
monotone Boolean functions is exactly the set of
functions that can be represented by some compo-
sition of AND and OR functions. A natural exten-
sion of monotone Boolean functions to real func-
tions from [−1,+1]n into [−1,+1] is achieved
by replacing OR withmax and AND with min.
Formally, the real functions that extend monotone
Boolean functions are defined as follows:

Definition 13 A function from [−1,+1]r into
[−1,+1] is an extension of anr-ary monotone
Boolean functionif it belongs to the setMr de-
fined inductively as follows, where the input to a
function is denoted byx ∈ [−1,+1]r:

(1) ∀j ∈ [n], x 7−→ xj ∈Mr;

(2) ∀k ∈ N
+, f1, . . . , fk ∈ Mr =⇒

x 7−→ max(f(x)) ∈Mr;

(3) ∀k ∈ N
+, f1, . . . , fk ∈ Mr =⇒

x 7−→ min(f(x)) ∈ Mr,

(10)

wheref , (f1, . . . , fk).



5.1 Thresholded Functions

In the following we bound the pseudo-dimension
(see e.g. [AB99] for definitions) of the generalized
MIL problem with any extension of a monotone
Boolean function, showing that here too as in The-
orem 5, the sample complexity of MIL is larger
than that of the single-instance problem by at most
a logarithmic factor ofr. This also shows that us-
ing Boosting withMILearn generalizes whenH
ranges over real-valued hypotheses.

Theorem 14 LetH ⊆ [−1,+1]X be a set of in-
stance hypotheses with pseudo-dimensiondI . Let
f : [−1,+1]r → [−1,+1] be an extension of
a monotone Boolean function, and letdB be the
pseudo-dimension ofφf

r (H). Then

dB ≤ max{2dI(log r − log dI + 1), 4dI
2, 16}.

Proof: We use the equivalence between the
pseudo-dimension of a class of real-valued func-
tions and the VC-dimension of the class of bi-
nary functions generated by thresholding the real-
valued functions, following [AB99]. For a func-
tion h from some domain into[−1,+1] and a
scalar y ∈ R, let hy be a function from the
same domain into{−1,+1}, defined byhy(x) =
sign(h(x)−y), wheresign(x) = +1 if x ≥ 0, and
sign(x) = −1 otherwise. For a set of functions
H , define the setBH , {hy | h ∈ H, y ∈ R}.
The pseudo-dimension ofH is equal to the VC-
dimension ofBH .

Using Def. 13, it is easy to verify that forf
which is an extension of a monotone Boolean func-
tion, the following holds, where1 = (1, . . . , 1):

sign(f(x)− y) ≡ sign(f(x− y1))

≡ f(sign(x− y1)),

Now let us examine the thresholded function
φf

r (h)y for h ∈ H andy ∈ R. For allx ∈ Xr,

φf
r (h)y(x) = sign(φf

r (h)(x)− y)
= sign(f(h(x)) − y) = f(sign(h(x)− y1))

= f(hy(x)) = φf
r (hy)(x).

Therefore,Bφf
r (H) = φf

r (BH). We have thatdI is
the VC-dimension ofBH anddB is the VC dimen-
sion ofBφf

r (H) = φf
r (BH). Note thatBH is a set

of hypotheses into{−1,+1}, and thatf when re-
stricted to{−1,+1}r is also binary, therefore we
may apply Theorem 5, substitutingH with BH.
The desired bound follows.

5.2 Learning with a Margin

To complete the picture for real-valued hypothe-
ses, we address the sample complexity of large-
margin classification for MIL. MI-SVM [ATH02]
is a practical algorithm for learning OR-MIL with
a margin. This algorithm attempts to optimize an
adaptation of the soft-margin SVM objective, in

which the margin of a bag is the maximal mar-
gin achieved by any of its instances. This amounts
to replacing the hypothesis classH of separating
hyperplanes byφmax

r (H). Sincemax is the ex-
tension of OR, this objective function is natural in
our formulation. It has not been shown, however,
that minimizing the objective function of MI-SVM
and analogous margin formulations for MIL al-
lows learning. This is provided by Theorem 15 be-
low, which bounds theγ-Fat shattering dimension
(see e.g. [AB99]) of MIL. This theorem applies
to any bag classification rule which is a Lipschitz
function, where the Lipschitz condition is formally
defined as follows: A functionf : Xr → R is c-
Lipschitz with respect to the infinity norm if

∀a,b ∈ Xr, |f(a)− f(b)| ≤ c‖a− b‖∞.
The bound in Theorem 15 shows that these MIL
problems are indeed learnable with a small penalty
on the sample size, if the single-instance problem
is learnable.

The following theorem assumes that the real-
valued hypotheses are bounded. Also assume
w.l.o.g. that the hypotheses and the bag classifi-
cation rule are non-negative. For a function class
F , let FatF (γ) be itsγ-Fat shattering dimension.

Theorem 15 LetB, c > 0. LetH ⊆ [0, B]X be
a hypothesis class and letf : [0, B]r → [0, cB]
bec-lipschitz with respect to the infinity norm. For
γ > 0, denoteF1(γ) , FatH(γ), andFr(γ) ,

Fatφf
r (H)(γ). Then

Fr(γ) ≤ 6F1(
γ

4c
) log2(8

B2c4

γ2
rFr(16γ)). (11)

The bound in Eq. (11) is in implicit form, since
Fr(γ) appears on both sides of the bound. To bet-
ter understand its meaning, we restate the bound as
a function ofr. Fixingγ andF1(γ/4c) and setting
β = 6F1(γ/4c) andη = 8B2c4/γ2, we have

√

Fr −
√

β logFr ≤
√

β log(ηr). (12)

Therefore the bound onFr is asymptotically poly-
logarithmic inr. This bound applies to extensions
of monotone Boolean functions as well, since they
are Lipschitz functions, as the following lemma
shows.

Lemma 16 Extensions of monotone Boolean
functions are 1-Lipschitz with respect to the
infinity norm.

This lemma is proven inductively using Def. 13.
The full proof is provided in Appendix A.

To prove Theorem 15, we first bound the cover-
ing number of MIL by the covering number of the
single-instance problem. ForH ⊆ [0, B]X , γ > 0
andS ⊆ X , the set ofγ-covers ofS byH is

covγ(H, S) , {C ⊆ H | ∀h ∈ H∃ĥ ∈ C,
max
s∈S
|h(s)− ĥ(s)| ≤ γ}.



Theγ-covering number of a hypothesis classH ⊆
[0, B]X and a numberm > 0 is defined by

N∞(γ,H,m) , max
S⊆X:|S|=m

min
C∈covγ(H,S)

|C|.

The following lemma provides the necessary
bound.

Lemma 17 Let f : [0, B]r → [0, cB] be c-
Lipschitz with respect to the infinity norm for some
c > 0. For any naturalm, r > 0, and realγ > 0,
and for any hypothesis classH ⊆ [0, B]X ,

N∞(cγ, φf
r (H),m) ≤ N∞(γ,H, rm) (13)

Proof: Let S = {xi}i∈[m] ⊆ Xr be a set ofm

bags. LetS∪ = {xj
i}i∈[m],j∈[r] be the set of in-

stances in bags ofS. Let C ∈ covγ(H, S∪) be a
γ-cover ofS∪. For allh ∈ H there exists an̂h ∈ C
such thatmaxi∈[m] ‖h(xi)− ĥ(xi)‖∞ ≤ γ. From
the Lipschitz condition onf we have

|φf
r (h)(xi)− φf

r (ĥ)(xi)| ≡
≡ ‖f(h(xi))− f(ĥ(xi))‖∞
≤ c‖h(xi)− ĥ(xi)‖∞ ≤ cγ.

Since for anyh ∈ H, φf
r (ĥ) ∈ φf

r (C), it follows
thatφf

r (C) ∈ covcγ(φf
r (H), S). This is true for all

C ∈ covγ(H, S∪), thus we have

φf
r (covγ(H, S∪)) ⊆ covcγ(φf

r (H), S).

Therefore,

N∞(cγ, φf
r (H),m) ≡

≡ max
S⊆Xr:|S|=m

min
φf

r (C)∈covcγ(φf
r (H),S)

|φf
r (C)|

≤ max
S⊆Xr:|S|=m

min
φf

r (C)∈φf
r (covγ(H,S∪))

|φf
r (C)|

= max
S⊆Xr:|S|=m

min
C∈covγ(H,S∪)

|C|

= max
S⊆X:|S|≤rm

min
C∈covγ(H,S)

|C|

= max
S⊆X:|S|=rm

min
C∈covγ(H,S)

|C|

= N∞(γ,H, rm).

Lastly, in the proof of Theorem 15 we use the
following two theorems.

Theorem 18 ([BKP97]) Let F be a set of real
functions and letγ > 0. Form ≥ FatF (16γ),

eFatF (16γ)/8 ≤ N∞(γ, F,m). (14)

Theorem 19 (Theorem 12.8 in [AB99])Let F
be a set of real functions from a domainX to
the bounded interval[0, B]. Let γ > 0. Let
d = FatF (γ

4 ). For all m ≥ d,

N∞(γ, F,m) < 2

(

4B2m

γ2

)d log 4eBm
dγ

. (15)

We are now ready to prove the fat shattering
bound.
Proof:[of Theorem 15] From Theorem 18 and
Lemma 17 it follows that form ≥ Fr(16γ),

Fr(16γ) ≤ 8

log e
logN∞(γ, φf

r (H),m) (16)

≤ 6 logN∞(γ/c,H, rm).

This expression can be bounded from above using
Theorem 19: Rearranging Eq. (15) we have that if
m ≥ d = FatF (γ

4 ) ≥ 1 andF is into [0, B] then,
for γ ≤ B/e,

logN∞(γ,H,m) <

< d log(
4eBm

dγ
) log

(

4B2m

γ2

)

+ 1

≤ d log(
4eBm

γ
) log

(

4B2m

γ2

)

+ 1

≤ d log2(
4B2m

γ2
)

= FatF (
γ

4
) log2(

4B2m

γ2
).

Combining this with Eq. (16) and substitutingB
with cB it follows that ifm ≥ Fr(16γ) andrm ≥
F1(

γ
4c ) ≥ 1, then

Fr(16γ) ≤ 6F1(
γ

4c
) log2(

4B2c4rm

γ2
).

Settingm = ⌈Fr(16γ)⌉ ≤ Fr(16γ)+1, it follows
that if Fr(16γ) ≥ 1 andFr(16γ) ≥ F1(

γ
4c )/r ≥

1
r , then

Fr(16γ) ≤ 6F1(
γ

4c
) log2(4

B2c2

γ2
r(Fr(16γ) + 1))

≤ 6F1(
γ

4c
) log2(8

B2c4

γ2
rFr(16γ)).

Substituting16γ with γ, we have that the bound
in Eq. (11) holds forγ/16 ≤ B/e, which always
holds sinceγ ≤ B.

6 Discussion

In this work we have analyzed Multiple Instance
Learning in a new theoretical setting. The assump-
tions in this setting are closer to the ones made
in practice, and unlike previously investigated set-
tings, do not reduce MIL to a very hard problem
nor to a trivial one. We have shown that the de-
pendence of the sample complexity of MIL on the
number of instances in a bag is no more than log-
arithmic. This result extends to any Boolean func-
tion, on top of the Boolean OR used in classical
MIL. It would be of interest to compare this trade-
off to similar phenomena in other settings with par-
tial information on labels, such as Active Learn-
ing and Semi Supervised Learning. We would



also like to investigate whether under certain con-
ditions, such as a high cost of labels, it may be
preferable to use bag learning instead of instance
learning.

For the OR-MIL problem, we have provided
a learning algorithm that classifies bags given an
algorithm for minimizing training error over in-
stances. This is the first OR-MIL algorithm with
proven generalization performance that does not
assume statistical independence of instances in a
bag. Further research is required to generalize
this reduction to other settings and to compare
this strategy to other methods for generating weak
learners. Lastly, we have generalized MIL further
to handle real-valued hypotheses and bag classifi-
cation rules, and have shown that here too the sam-
ple complexity is poly-logarithmic by the number
of instances in a bag.
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A Technical Proofs
Lemma 20 For any f : {−1,+1}X →
{−1,+1}, hypothesis classH, and a set of bags
S = {xi}i∈[dI ] ⊆ Xr, letS∪ = {xj

i}i∈[m],j∈[r] ⊆
X . Then,

∣

∣φf
r (H)|S

∣

∣ ≤
∣

∣H|S∪

∣

∣.

Proof: Let h1
B, h

2
B ∈ φf

r (H) be bag hypotheses.
There exist instance hypothesesh1

I , h
2
I ∈ H such

that φf
r (hi

I) = hi
B for i = 1, 2. Assume that

h1
B |S 6= h2

B |S . We show thath1
I |S∪

6= h2
I |S∪

, thus
proving the lemma.

From the assumption it follows that
φf

r (h1
I)|S 6= φf

r (h2
I)|S . There exists at least one

bagxi ∈ S such thatφf
r (h2

I)(xi) 6= φf
r (h2

I)(xi).
Therefore

f(h1
I(xi)) 6= f(h2

I(xi)).

Hence there exists aj ∈ [r] such that

h1
I(x

j
i ) 6= h2

I(x
j
i ).

By the definition ofS∪, xj
i ∈ S∪. Therefore

h1
I |SI
6= h2

I |SI
.

Proof:[of Lemma 9] Since we assume w.l.o.g. that
W (SB) = 1, we have

Γ(φmax
r (h), SB) =

∑

i∈[m]

wiyi max
j∈[r]
{h(xj

i )}

=
∑

i∈[m]

wiyi(‖h(xi) + 1‖∞ − 1).

Let α be defined as inMILearn, so thatα(+1) =
1
r andα(−1) = 1. We have

W (SI)Γ(h, SI) =

=
∑

i∈[m],j∈[r]

α(yi)wiyih(x
j
i )

=
∑

i∈[m]

α(yi)wiyi

∑

j∈[r]

h(xj
i )

=
∑

i∈[m]

α(yi)wiyi(‖h(xi) + 1‖1 − r).

From
‖h(xi) + 1‖∞ ≤ ‖h(xi) + 1‖1 ≤ r‖h(xi) + 1‖∞
it follows that
yiα(yi)‖h(xi) + 1‖1 ≤ yi‖h(xi) + 1‖∞. (17)

Therefore,
W (SI)Γ(h, SI) ≤
≤

∑

i∈[m]

wiyi(‖h(xi) + 1‖∞ − α(yi)r)

≤
∑

i∈[m]

wiyi(‖h(xi) + 1‖∞ − 1)

+ (r − 1)
∑

yi=−1

wi

= Γ(φmax
r (h), SB) + (r − 1)W−.

And the proof is completed.

Proof:[of Lemma 10] By Eq. (5) we have
Γ(hI , SI) = Γ(A(SI), SI) ≥ max

h∈H∩Ω(SI)
Γ(h, SI).

Thus to prove thatΓ(hI , SI) ≥ Γ(h∗+, SI) it suf-
fices to show thath∗+ ∈ H ∩ Ω(SI). By definition
h∗+ ∈ H∩Ω(SB), therefore it suffices to show that

Ω(SB) ⊆ Ω(SI),

that is, any hypothesis which errs only on posi-
tive instances onSB, also errs only on positive in-
stances onSI . Leth ∈ Ω(SB). From the definition
of Ω it follows that
∀i, φmax

r (h)(xi) 6= yi =⇒ yi = +1.

Equivalently,
∀i, yi = −1 =⇒ φmax

r (h)(xi) = −1.

Therefore,
∀i, yi = −1 =⇒ ∀j ∈ [r], h(xj

i ) = −1.

It follows that
∀i ∈ [m], j ∈ [r], yi = −1 =⇒ h(xj

i ) = −1.

DenotingSI = {(ŵk, x̂k, ŷk)}k∈[m̂], we have that
m̂ = rm, x̂k = xi

j and ŷk = yi for somei ∈
[m], j ∈ [r]. Therefore

∀k ∈ [m̂], ŷk = −1 =⇒ h(x̂k) = −1.

Thush ∈ Ω(SI). HenceΩ(SB) ⊆ Ω(SI), and the
proof is concluded.

Proof:[of Lemma 11] The following chain of
equalities provides the required result:
W (SI)Γ(h, SI) =

=
∑

i∈[m]

α(yi)wiyi(‖h(xi) + 1‖1 − r)

=
∑

yi=+1

1
rwi(‖h(xi) + 1‖1 − r)

+
∑

yi=−1

wi(r − ‖h(xi) + 1‖1)

≥
∑

yi=+1

1
rwi(‖h(xi) + 1‖∞ − r)

+
∑

yi=−1

wi(r − r‖h(xi) + 1‖∞)

=
∑

yi=+1

(1
r − 1)wi

+
∑

yi=+1

1
rwi(‖h(xi) + 1‖∞ − 1)

+
∑

yi=−1

rwi(1− ‖h(xi) + 1‖∞)

= (1
r − 1)W+ + 1

r Γ(φmax
r (h), SB)

+ (r − 1
r )

∑

yi=−1

wi(1− ‖h(xi) + 1‖∞).

= (1
r − 1)W+ + 1

r Γ(φmax
r (h), SB)

+ (r − 1
r )(W− −

∑

yi=−1

‖h(xi) + 1‖∞).



Thus the lemma is proven.

Proof:[of Theorem 8(b)] Denote

h∗ , argmax
h∈H

Γ(φmax
r (h), SB).

We start with a similar inference to the one taken
in the proof of Theorem 8(a). We use Lemma 9
and Lemma 11. Instead of Lemma 10 we use the
trivial fact that if Eq. (7) holds, thenΓ(hI , SI) ≥
Γ(h∗, SI). Using these three facts, and replacing
h∗+ with h∗ andγ∗+ with γ∗ in Eq. (9), we get that

Γ(φmax
r (hI), SB) ≥
≥ (1− 1

r )(1 − 2W+) + 1
rγ

∗ (18)

− (r − 1
r )

∑

yi=−1

wi‖h∗(xi) + 1‖∞.

Now, assuming w.l.o.g thatW (SB) = 1, we have

γ∗ =
∑

i∈[m]

wiyi max
j∈[r]
{h∗(xj

i )}

=
∑

i∈[m]

wiyi(‖h∗(xi) + 1‖∞ − 1)

=
∑

yi=+1

wiyi(‖h∗(xi) + 1‖∞ − 1)

+
∑

yi=−1

wiyi(‖h∗(xi) + 1‖∞ − 1)

≤W+ +
∑

yi=−1

wiyi(‖h∗(xi) + 1‖∞ − 1)

= W+ +W− −
∑

yi=−1

wi‖h∗(xi) + 1‖∞

= 1−
∑

yi=−1

wi‖h∗(xi) + 1‖∞.

Therefore
∑

yi=−1

wi‖h∗(xi) + 1‖∞ ≤ 1− γ∗.

From Eq. (18) we thus have that

Γ(φmax
r (hI), SB) ≥
≥ (1− 1

r )(1 − 2W+) + 1
rγ

∗

− (r − 1
r )(1 − γ∗)

= 1− r − 2(1− 1
r )W+ + rγ∗.

Therefore, similarly to the proof of Theorem 8(a),
we have

γ ≥ max
{

1− r − 2(1− 1
r )W+ + rγ∗, 2W+ − 1

}

.

Equating the two maximization options, we get

W ∗
+ =

r

4r − 2
(2− r + rγ∗).

SubstitutingW ∗
+ for W+ in 2W+ − 1, we have

γ ≥ r2(γ∗ − 1) + 1

2r − 1
.

To guaranteeγ ≥ 0, we requireγ∗ ≥ 1− 1
r2 .

Proof:[of Lemma 16] The claim is proven induc-
tively using the conditions in Eq. (10). The case
for x 7−→ xj is trivial. For x 7−→ max(f(x)), let
f = (f1, . . . , fk), and assume that the Lipschitz
condition holds forfi, 1 ≤ i ≤ k, that is

‖f(a)− f(b)‖∞ ≤ ‖a− b‖∞. (19)

Note thatmax(f(a)) = ‖f(a) + 1‖∞ − 1. There-
fore, by the triangle inequality and Eq. (19),

|max(f(a)) −max(f(b))| =
= | ‖f(a) + 1‖∞ − ‖f(b) + 1‖∞|
≤ ‖f(a)− f(b)‖∞
≤ ‖a− b‖∞.

For x 7−→ min(f(x)) again assume Eq. (19)
holds. To prove the claim note that

min(f(a)) = −max(−f(a)) = 1−‖−f(a) + 1‖∞,
Therefore using the triangle inequality we have,

|min(f(a)}) −min(f(b))| =
= |1 − ‖−f(a) + 1‖∞ − (1− ‖−f(b) + 1‖∞)|
= | ‖−f(b) + 1‖∞ − ‖−f(a) + 1‖∞|
≤ ‖f(a) − f(b)‖∞
≤ ‖a− b‖∞.

The claim has thus been proven for all three con-
ditions.


