
Online Learning for Global Cost Functions

Eyal Even-Dar
Google Research.

evendar@google.com

Robert Kleinberg∗
Cornell University

rdk@cs.cornell.edu

Shie Mannor†
Technion and

McGill University
shiemannor@gmail.com

Yishay Mansour‡
Google Research and
Tel Aviv University.

mansour@tau.ac.il

Abstract

We consider an online learning setting where at
each time step the decision maker has to choose
how to distribute the future loss between k alter-
natives, and then observes the loss of each alterna-
tive. Motivated by load balancing and job schedul-
ing, we consider a global cost function (over the
losses incurred by each alternative), rather than a
summation of the instantaneous losses as done tra-
ditionally in online learning. Such global cost func-
tions include the makespan (the maximum over the
alternatives) and the Ld norm (over the alterna-
tives). Based on approachability theory, we de-
sign an algorithm that guarantees vanishing regret
for this setting, where the regret is measured with
respect to the best static decision that selects the
same distribution over alternatives at every time
step. For the special case of makespan cost we
devise a simple and efficient algorithm. In con-
trast, we show that for concave global cost func-
tions, such as Ld norms for d < 1, the worst-case
average regret does not vanish.

1 Introduction
We consider online learning with a global cost function. Namely,
a decision maker who is facing an arbitrary environment is
trying to minimize a cost function that depends on the entire
history of his choices (hence we term it a global cost func-
tion). To motivate the discussion, consider a job scheduling
problem with a job that can be distributed to multiple ma-
chines and each job incurs a different loss per machine. At
each stage the decision maker first selects a distribution over
machines and only then observes the losses (loads) of each

∗Supported by NSF grants CCF-0643934 and CCF-0729102, an
Alfred P. Sloan Foundation Fellowship, and a Microsoft Research
New Faculty Fellowship.

†Supported by Horev Fellowship and by the ISF under grant
890015

‡This work was supported in part by the IST Programme of
the European Community, under the PASCAL2 Network of Ex-
cellence, by a grant from the Israel Science Foundation and by
a grant from United States-Israel Binational Science Foundation
(BSF). This publication reflects the authors’ views only

machine. The loss per machine adds up weighted by the dis-
tribution the decision-maker selected. The objective of the
decision maker is to have his makespan (i.e., the loss of the
worst machine, or the infinity norm of the losses) as small as
possible. The comparison class the decision maker considers
is that of all static allocations and the decision maker wants
to minimize the difference between the cost of the loss vector
and the cost of the best static allocation.

The online learning (or regret minimization) framework
have had many successful applications in machine learning,
game theory, and beyond; see [9]. In spite of the advantages
of this approach it suffers from some inherent limitations.
First, the size of the comparison class affects the magnitude
of the regret (although only in a logarithmic way). Second,
the approach usually assumes that there is essentially no state
of the system and that the decision problem is the same at
every stage (see [4, 5, 6, 17, 10] for deviations from this
standard approach). Finally, there is a tacit assumption that
the objective function is additive in the losses over the time
steps. This last assumption does not hold in many natural
problems such as job scheduling and load balancing settings,
for example.

While there are similarities in the motivation between on-
line competitive algorithms [8] and the regret minimization
setup, the models have some significant differences. First,
the comparison class is substantially different. While com-
petitive analysis allows the optimal scheduler to be “arbi-
trary,” regret minimization limits the size of the comparison
class. On the other hand, the competitive analysis approach
bounds only the ratio of the performances, while the regret
minimization bounds the difference between them. Finally,
there is also a very important difference in the information
model. In regret minimization the decision maker first se-
lects an alternative (or a distribution over alternatives) and
only then observes the losses, while in the standard online
setup the algorithm first observes the loads (losses) and only
then selects a machine (alternative).

Our model assumes a finite number of alternatives (ma-
chines). The information model is similar to the regret mini-
mization: the decision maker first selects a distribution over
machines (alternatives) and only then observes the losses
(loads). We have a static comparison class, which includes
the algorithms that use the same distribution over the ma-
chines in every time step. Our objective function is much
in the spirit of the job scheduling, including objective func-
tions such as makespan or L2-norm. We bound the differ-



ence between the performance of our online algorithm and
the performance of the best static distribution with respect
to a global cost function (say makespan). Note that as op-
posed to many regret minimization works, we consider not
only the best alternative, but rather the best distribution over
alternatives, so the comparison class in our setup is infinite.1

Our contributions include the following:

• We present the online learning model for a global cost.
This model is natural in the online learning setup and it
has not been studied to the best of our knowledge.

• We present an algorithm for global cost functions (such
as makespan, or any Ld-norm, for d > 1) that min-
imizes the difference between the cost of our online
algorithm and the best static distribution in a rate of
O(
√

k/T ), where T is the number of time steps. Our
algorithm only requires that the objective function is
convex and Lipschitz and that the optimal cost is a con-
cave and Lipschitz function. Our general algorithm guar-
anteeing a vanishing average regret is based on approach-
ability theory. In spite of its good rates, the explicit
computation of the regret minimizing strategy does not
seem to be easy.

• For the important special case of makespan cost func-
tion we provide a specialized simple deterministic on-
line algorithm, which is both computationally efficient
and has a regret bound of O(log(k)/

√
T ), where k is

the number of different alternatives. Our algorithm is
based on a recursive construction where we first solve
the case of two alternatives and then provide a recur-
sive construction for any number of alternatives. Our
recursive construction maintains the computational ef-
ficiency of the two alternative algorithm, and its regret
depends only logarithmically on the number of alterna-
tives.

• We complement our algorithms with an impossibility
result. We show that one cannot hope to have a simi-
lar result for any global cost function. Specifically, we
show for a wide class of concave function (including
any Ld-norm, for 0 < d < 1) that any online algorithm
would have Ω(1) regret. More specifically, we show
that the ratio of the online cost to the best distribution
cost is bounded away from one.

Related Work: Unfortunately, we can not give a compre-
hensive review of the large body of research on regret mini-
mization algorithm, and we refer the interested reader to [9].
In the following we highlight a few more relevant research
directions.

There has been an ongoing interest in extending the ba-
sic comparison class for the regret minimization algorithm,

1It is instructive to discuss the difference between minimizing an
additive loss (as in the best experts) and minimizing the makespan
(the alternative with the maximum loss). Consider two alternatives
and a sequence of T identical losses of (2, 1). Minimizing the ad-
ditive loss would always select alternative 2, and have cost T . Min-
imizing the makespan would select a distribution (1/3, 2/3) and
would have cost (2/3)T .

for example by introducing shifting experts [12] time selec-
tion functions [7] and wide range regret [16]. Still, all those
works assume that the loss is additive between time steps.

A different research direction has been to improve the
computational complexity of the regret minimization algo-
rithms, especially in the case that the comparison class is
exponential in size. General computationally efficient trans-
formation where given by [15], where the cost function is
linear and the optimization oracle can be computed in poly-
nomial time, and extended by [14], to the case where we are
given only an approximate-optimization oracle.

There has been a sequence of works establishing the con-
nection between online competitive algorithms [8] and on-
line learning algorithm [9]. One issue is that online learn-
ing algorithms are stateless, while many of the problems ad-
dress in the competitive analysis literature have a state (see,
[4]). For many problems one can use the online learning al-
gorithms and guarantee a near-optimal static solution, how-
ever a straightforward application requires both exponential
time and space. Computationally efficient solutions have
been given to specific problems including, paging [5], data-
structures [6], routing [2, 1], adverserial MDPs [11, 18] and
bin packing [13].

In contrast to our work, all the above works concentrate
on the case where the global cost function is additive be-
tween time steps.

2 Model

We consider an online learning setup where a decision maker
has a finite set K = {1, . . . , k} of k alternatives (machines)
to choose from. At each time step t, the algorithm A se-
lects a distribution αA

t ∈ ∆(K) over the set of alternatives
K, where ∆(K) is the set of distributions over K. Fol-
lowing that the adversary selects a vector of losses (loads)
`t ∈ [0, 1]k. The average loss of alternative i is denoted by
LT (i) = 1

T

∑T
t=1 `t(i). The average loss of the online algo-

rithm A on alternative i is LA
T (i) = 1

T

∑T
t=1 αA

t (i)`t(i) and
its average loss vector is LA

T = (LA
T (1), . . . , LA

T (k)). Let the
loss vector of a static allocation α ∈ ∆(K) be Lα

T = α�LT

where x� y = (x(1)y(1), . . . , x(k)y(k)).

The objective of the online algorithm A is to minimize
a global cost function C(LA

T ). In traditional online learn-
ing the global cost C is assumed to be an additive func-
tion, i.e., C(LA

T ) =
∑k

i=1 LA
T (i). The main focus of this

work is to consider alternative cost functions which arise
in many natural problems such as job scheduling. More
specifically we consider the following norms: the makespan,
C∞(LA

T ) = maxk
i=1 LA

T (i), and the d-norm cost, Cd(LA
T ) =

(
∑k

i=1(L
A
T (i))d)1/d for d > 0. Note that for d > 1 the

d-norm cost is convex while for d < 1 it is concave.

Our comparison class is the class of static allocations for
α ∈ ∆(K). We define the optimal cost function C∗(LT )
as the minimum over α ∈ ∆(K) of C(Lα

T ). We denote by
α∗C(LT ) a minimizing α ∈ ∆(K) and called the optimal



static allocation,2 i.e.,

C∗(LT ) = min
α∈∆(K)

C(Lα
T ) = min

α∈∆(K)
C(α� LT )

= C(α∗C(LT )� LT ).

We denote by C∗
d and C∗

∞ the global optimal cost function
C∗ of the d-norm cost and the makespan, respectively.

The regret of algorithm A at time T is defined as,

RT (A) = C(LA
T )− C∗(LT ).

Given a subset of the time steps B we denote by LB =
1
T

∑
t∈B `t the average losses during the time steps in B, and

for an algorithm A we denote by LA
B (i) = 1

T

∑
t∈B αA

t (i)`t(i)
its average loss during B on alternative i, and by LA

B =
(LA

B (1), . . . , LA
B (k)) the average loss of A during B.

3 Preliminaries

For the most part of the paper we will assume that the cost
function, C, is a convex function while C∗ is a concave func-
tion. The following is immediate from the definition of the
norms.

Lemma 1 The d-norm global cost function Cd, for d > 1,
and the makespan global cost function C∞ are both convex
and Lipschitz functions.

The challenging part is to show that the optimal cost
function C∗ is a concave function. In Appendix A we prove
this for d-norm (Lemma 20) and the makespan (Lemma 21).

Lemma 2 The d-norm global optimal cost function C∗
d , for

d > 1, and the makespan global optimal cost function C∗
∞

are both concave and Lipschitz functions.

In Appendix A we derive for both the d-norm and the
makespan their optimal cost function and optimal static allo-
cation (Lemmas 19 and 22).

Lemma 3 For the d-norm global optimal cost function we

have α∗Cd
=

(
1/LT (i)

d
d−1Pk

j=1 1/LT (j)
d

d−1

)
i∈K

and

C∗
d(L) =

(
1Pk

j=1 1/L
d

d−1
j

) d−1
d

, and for the makespan global

optimal cost function we have α∗C∞ =
(

1/LT (i)Pk
i=1 1/LT (j)

)
i∈K

and C∗
∞(`) =

(
1Pk

j=1 1/LT (j)

)
.

We now prove that given any partition of the losses to
subsets, if we bound the regret in each subset, then the sum
of the subsets’ regrets will bound the regret of the online
algorithm.

2When the minimum is not unique we assume it can be selected
according to some predefined order.

Lemma 4 Suppose that C is convex and C∗ is concave. Let
Ti be a partition of the T time steps to m sets, and let ON be
an online algorithm such that for each Ti we have C(LON

Ti
)−

C∗(LTi) ≤ Ri. Then

C(LON
T )− C∗(LT ) ≤

m∑
i=1

Ri

Proof: From the assumption in the theorem we have that∑m
i=1 C(LON

Ti
) −

∑m
i=1 C∗(LTi) ≤

∑m
i=1 Ri Since Ti is a

partition, LT =
∑m

i=1 LTi and LON
T =

∑m
i=1 LON

Ti
. Since

C∗ is concave, C∗(LT ) ≥
∑m

i=1 C∗(LTi), and since C is
convex, C(LON

T ) ≤
∑m

i=1 C(LON
Ti

). Combining the three
inequalities derive the theorem.

The importance of Lemma 4 is the following. If we are
able to partition the time steps, in retrospect, and bound the
regret in each part of the partition, then the above theorem
states that the overall regret is bounded by the sum of the
local regret.

Remark: Our model is essentially fractional, where the
decision maker selects a distribution, and each alternative re-
ceives exactly its fraction according to the distribution. How-
ever, in a randomized model we can simulate our fractional
model, and use its distributions to run a randomized algo-
rithm. Using standard concentration bounds, the additional
loss per action, due to the randomization, is at most
O(
√

(log k)/T ), with high probability. Together with the
fact that C is Lipschitz we would obtain similar results.

4 Low regret approachability-based
algorithm

In this section we use Blackwell’s approachability theory to
construct a strategy that has zero asymptotic regret. Recall
that according to approachability, one considers a vector-
valued repeated game. The main question that is consid-
ered is if the decision maker can guarantee that the average
(vector-valued) reward can be made asymptotically close (in
norm sense) to some desired target set. We provide the es-
sential background and relevant results from approachability
theory in Appendix B. This section starts with construction
of the game followed by a definition of the target set and the
application of approachability theory to prove that the set is
approachable. We finally describe explicitly a regret mini-
mizing strategy based on approachability theory.

Consider a repeated game against Nature where the de-
cision maker chooses at every stage an action α ∈ ∆(K)
and Nature chooses an action ` ∈ [0, 1]k. The vector valued
reward obtained by the decision maker is a 2k dimensional
vector whose first k coordinates are α � ` and the last k co-
ordinates are `. Let us denote this immediate vector-valued
reward by mt = (αt � `t, `t). It easily follows that the aver-
age reward m̂T = (

∑T
t=1 mt)/T = (LA

T , LT ). We are now
ready to define the target set in this game.

S = {(x, y) ∈ Rk × Rk : x, y ≥ 0;C(x) ≤ C∗(y)}. (1)

Note that S is a set in R2k. We will show below that S is
approachable (see Appendix B). We first claim that S is con-
vex.



Lemma 5 Suppose that C is convex and C∗ is concave. Then
S is convex.

Proof:Suppose that (xi, yi) ∈ S for i = 1, 2 and fix β ∈
[0, 1] (we let xi and yi denote vectors in Rk). Since C is
convex we have that C(βx1 + (1 − β)x2) ≤ βC(x1) +
(1 − β)C(x2). Since (xi, yi) ∈ S for i = 1, 2 we have
that C(xi) ≤ C∗(yi) for i = 1, 2. So that βC(x1) + (1 −
β)C(x2) ≤ βC∗(y1) + (1 − β)C∗(y2). Using the fact that
C∗ is concave we obtain that βC∗(y1) + (1 − β)C∗(y2) ≤
C∗(βy1 + (1− β)y2). Combining the above inequalities we
conclude that C(βx1 +(1−β)x2) ≤ C∗(βy1 +(1−β)y2),
completing the proof.

We are going to use Blackwell’s approachability theory.
We note that in standard approachability it is usually as-
sumed that the set of available actions is finite. In our game,
both players can choose from compact action spaces. Namely,
the decision maker’s action is α ∈ ∆(K) and Nature’s action
is ` ∈ [0, 1]k. Let p ∈ ∆(∆(K)) denote a probability dis-
tribution over α and let q ∈ ∆([0, 1]k) denote a probability
distribution over `. (See Appendix B for further discussion.)
We can define the expected vector-valued reward as:

m(p, q) =
∫

α∈∆(K)

∫
`∈[0,1]k

pαq`(α� `, `).

Theorem 6 The set S is approachable.

Proof:According to Blackwell’s theorem for convex sets (The-
orem 24 in Appendix B) it suffices to prove that for ev-
ery q ∈ ∆([0, 1]k) there exists a p ∈ ∆(∆(K)) such that
m(p, q) ∈ S. Indeed, consider some q ∈ ∆([0, 1]k) and let
L(q) denote the mean of ` under q (that is L(q) =

∫
q``),

and let p be a singleton whose mass is centered at α∗c(L(q)).
Then m(p, q) = (α∗C(L(q)) � L(q), L(q)) and is in S by
definition.

Since S is approachable let us explain how to approach it
in a constructive way. We follow Blackwell’s first approach-
ability theorem specialized for convex sets (Theorem 23).
Given the current vector valued reward m̂t = (LA

t , Lt) we
first compute the direction into the set S. For that, we need
to solve the following convex optimization problem:

min
x,y∈Rk

‖(LA
t , Lt)− (x, y)‖2 (2)

s.t. C(x) ≤ C∗(y)
x ≥ 0.

According to Blackwell’s approaching strategy (see Appendix
B), if the solution to (2) is 0, i.e., m̂t ∈ S the decision maker
can act arbitrarily at time t. If not, then let u = (x, y) − m̂t

where (x, y) are the minimizers of (2), and let us write u =
(uα, u`) to denote the two k dimensional components of u.
We are looking for a mixed action p ∈ ∆(∆(K)) that guar-
antees that the expected reward at time t + 1 is on the other
side of the supporting hyperplane at (x, y). We know that
such a mixed action exists since S is approachable and con-
vex (Theorem 23). The optimization problem we try to solve

is therefore:

sup
p∈∆(∆(K))

inf
q∈∆([0,1]k)

∫
α

∫
`

pαq`

(
u>α (α� `) + u>` `

)
(3)

= sup
p∈∆(∆(K))

min
`∈[0,1]k

∫
α

pαu>α (α� `) + u>` ` (4)

= sup
α∈∆(K)

min
`∈[0,1]k

u>α (α� `) + u>` ` (5)

= max
α∈∆(K)

min
`∈[0,1]k

u>α (α� `) + u>` `, (6)

where (3) is the problem that we are trying to solve (in the
lifted space); Eq. (4) holds since the dependence in ` is lin-
ear in q so that for any p there is a singleton q which obtains
the minimum; Eq. (5) holds since p only affects Eq. (4) lin-
early through α so that any measure over ∆(∆(K)) can be
replaced with its mean; and Eq. (6) holds because of conti-
nuity and the compactness of the sets we optimize on. Now,
the optimization problem of Eq. (6), is a maximization of a
convex function or alternatively, the solution of a zero-sum
game with k actions for one player and 2k for the other player
and can be efficiently solved (for a fixed k). We summarize
the above results in the following Theorem.

Theorem 7 The following strategy guarantees that the av-
erage regret goes to 0.

1. At every stage t solve (2).

2. If the solution is 0, play an arbitrary action.

3. If the solution is more than 0, compute u = (x, y)− m̂t

where (x, y) are the minimizers of (2) and solve (6).
Play a maximizing α.

Furthermore, the rate of convergence of the expected regret
is O(

√
k/T ).

Proof:This is an approaching strategy to S. The only miss-
ing part is to argue that approaching S implies minimizing
the regret. This is true by construction and since C and C∗

are Lipschitz. As for the rate of convergence for approacha-
bility: see the discussion in Appendix B. .

5 Algorithms for Makespan

In this section we present algorithms for the makespan global
cost function. We presnet algorithms, which are simple to
implement, computationally efficient, and have an improved
regret bound. For k alternatives the average regret vanishes
at the rate of O((log k)T−1/2).

The construction of the algorithms is done in two parts.
The first part is to show an algorithm for the basic case of
two alternatives (Section 5.1). The second part is a recur-
sive construction, that builds an algorithm for 2r alternatives
from two algorithms for 2r−1 alternatives, and one algorithm
for two alternatives. The recursive construction essentially
builds a complete binary tree, the main issue in the construc-
tion is to define the losses that each algorithm observes (Sec-
tion 5.2).



The DIFF Algorithm:
At time t = 1 we have p1(1) = p1(2) = 1/2,
at time t ≥ 2 we have,
pt+1(1) = pt(1) + pt(2)`t(2)−pt(1)`t(1)√

T
,

and pt(2) = 1− pt(1).

Figure 1: Algorithm for two alternatives.

5.1 Two Alternatives
The DIFF Algorithm: We denote the distribution of DIFF at
time t by αD

t = (pt(1), pt(2)). Algorithm DIFF starts with
p1(1) = p1(2) = 1/2, and the update of the distribution of
DIFF is done as follows,

pt+1(1) = pt(1) +
pt(2)`t(2)− pt(1)`t(1)√

T
,

and by definition pt(2) = 1 − pt(1). Note that we are guar-
anteed that pt(1) ∈ [0, 1], since pt(1) ≥ pt−1(1)(1− 1√

T
).

We first provide some high level intuition. Assume that
in a certain subset of the time steps T the algorithm uses ap-
proximately the same probabilities, say (ρ, 1 − ρ) and that
the load on the two alternative increased by exactly the same
amount at time stpes T . This will imply that ρLT (1) ≈
(1−ρ)LT (2), so it has to be the case that ρ ≈ LT (2)

LT (1)+LT (2) .
Note that the right hand side is the optimal static allocation
for time steps T . Now, using Lemma 4, if we partition the
time steps to such T ’s, we will have low regret (originat-
ing mainly from the fact that we are using approximately the
same distribution ρ).

For the analysis sake, we present a sequence of modifi-
cation to the input sequence. Our objective is to guarantee
a partition of the time steps to T ’s with the above properties
on the modified sequence. In addition the modified sequence
will ensure that the static optimal policy’s performance is
similar on both sequences. First, we add O(

√
T ) losses to

get the DIFF algorithm to end in its initial state, where the
difference between the alternatives is 0 (See Lemma 8.) Sec-
ond, we consider a partition [0, 1] (action distribution) to bins
of size Θ(T−1/2) each. We modify the sequence of losses to
make sure that for each update, DIFF’s allocation distribu-
tion before and after the update are in one bin, possibly by
splitting a single update to two updates. (See Lemma 10.)
The ith sub-sequence is the set of times where DIFF’s action
distribution is at the ith bin. We show that the optimal action
for each sub-sequence is close to the actions distribution per-
formed in the bin (recall that any two actions in the bins can
differ by at most Θ(T−1/2). (See Lemma 11.) Since during
each T the increase in the online load on the alternatives is
identical, then DIFF action distribution is near optimal. We
complete the proof by summing over the subsequences. (See
Lemma 12 and Theorem 13.)

We would abuse notation and given a sequence of losses
` we let LD

t (`, i) =
∑t

τ=1 pτ (i)`τ (i) be the aggregate loss
of alternative i, after t steps using the DIFF algorithm, and
LD

t (`) be the aggregate loss vector. Let Λt(`) = LD
t (`, 2)−

LD
t (`, 1). Equivalently, algorithm DIFF sets pt(1) = (1/2)+

Λt(`)/T 1/2. The proof will be done by a sequence of trans-
formation of the sequences of losses `, where for each trans-
formation we would bound the effect on the online DIFF
algorithm and the optimal static assignment α∗C∞(`).

Given the sequence of losses ` we extend the sequence by
m additional losses to a loss sequence ˆ̀such that the DIFF
algorithm would end with two perfectly balanced losses, i.e.,
ΛT+m(ˆ̀) = 0.

Lemma 8 The following holds for ˆ̀:

1. LD
T+k(ˆ̀, 1) = LD

T+k(ˆ̀, 2),

2. C∞(LD
T+m(ˆ̀)) = C∞(LD

T (`)), and

3. C∗
∞(ˆ̀) ≤ C∗

∞(`) + m where m ≤ 2T 1/2.

Proof: Without loss of generality assume that ΛT (`) > 0,
then we add losses of the form (1, 0). After each such loss
we have in the DIFF algorithm that pt+1(1) = pt(1)(1 −

1
T 1/2 ). This implies that for some m ≤ 2T 1/2 we have
pT+m(1) ≤ 1/2. If the last inequality is strict, then the last
loss will be (η, 0) for some η ∈ [0, 1] such that pT+m(1) =
1/2.

As a by product of our proof, we obtain that the loss on
the two alternatives is similar at time T .

Corollary 9 ΛT (`) ≤ 2
√

T .

Consider a grid G which includes 0.1 T 1/2 points zi =
10T−1/2. We say that the update crosses the grid at point zi

at time t if either pt−1(1) < zi < pt(1) or pt−1(1) > zi >
pt(1).

Let BINi be [zi, zi+1], and Ti be the set of time steps
that either start or end in bin BINi, i.e., Ti = {t : pt(1) ∈
BINi or pt−1(1) ∈ BINi}. (Each time step can be in at
most two consecutive bins, since |pt(1)−pt−1(1)| ≤ T−1/2.)
We will modify the loss sequence ˆ̀ to a loss sequence b̂ and
an action distrbution sequence q such that in each bin, all the
updates start and end inside the bin. D will act according to
qt at time t and will observe loss b̂t. We define LD(b̂) to be
(
∑

t b̂t(1)qt(1),
∑

t b̂t(2)qt(2)) and for any subset of times
steps, S, LD

S (b̂) = (
∑

t∈S b̂t(1)qt(1),
∑

t∈S b̂t(2)qt(2)).

Lemma 10 C∞(LD(b̂)) = C∞(LD(ˆ̀))
and C∗

∞(b̂) = C∗
∞(ˆ̀).

Proof: If at time t we have that both pt(1) and pt−1(1) are
contained in one bin, then we set b̂2t−1 = (`t, pt) and b̂2t =
((0, 0), pt). Otherwise, pt(1) and pt−1(1) are contained in
two consecutive bins, say BINi and BINi+1. We add to b̂

two elements, b̂2t−1 = (λ`t, pt) and b̂2t = ((1 − λ)`t, pt),
such that pt−1(1)+λ(pt(2)`t(2)−pt(1)`t(1))/T 1/2 = zi+1.
Since we replace each entry in ˆ̀ by two entries in b̂, this
implies that the length of b̂ is at most 2(T + T 1/2) ≤ 4T .

By definition we have, LD(b̂, a) = LD
T+m(ˆ̀, a) and

LA(b̂, a) =
∑T+m

t=1
ˆ̀
t(a) = LT+m(ˆ̀, a).



Now we can define a partition of the time steps in b̂. Let
δt = (wt(2)qt(2)−wt(1)qt(1))/

√
T . (Note that for updates

which do not cut a boundary we have δ2t−1 = pt+1(1) −
pt(1), while for updates that cut the boundary we have δ2t−1+
δ2t = pt+1(1)−pt(1). Let vt = 1/2+

∑t
i=1 δt. We say that

update t in b̂ belongs to bin BINi if vt, vt−1 ∈ [zi−1, zi].
(Note that by construction we have that every update belongs
to a unique bin.) Let Ti be all the time points in b̂ that belong
to BINi. (Note that

∑
t∈Ti

δt = 0, i.e. the increased load
for the two alternatives in DIFF is the same.) Since {Ti} is
a partition of the indexes of b̂, by Lemma 4 we can lower
bound the optimal cost by

C∞(LD
2(T+m)(b̂))−C∗

∞(b̂) ≤
0.1T 1/2∑

i=1

C∞(LD
Ti

(b̂))−C∗
∞(b̂Ti)

Our main goal is to bound the difference

C∞(LD
Ti

(b̂))− C∗
∞(b̂Ti).

Given the losses at time steps Ti of b̂, we denote static opti-
mal allocation, α∗C∞(b̂Ti), by (q∗i , 1− q∗i ).

Lemma 11 |q∗i − zi| ≤ 30T−1/2.

Proof: For the updates in Ti we have that
∑

t∈Ti
δt = 0.

Consider the function,

f(x) =
∑
t∈Ti

xwt(1)−
∑
t∈Ti

(1− x)wt(2)

= x(LTi(1) + LTi(2))− LTi(2).

First, for q∗i we have that f(q∗i ) = 0. Second, since for any
t ∈ Ti we have that pt(1) ∈ [zi−1, zi+2] then f(zi−1) ≤∑

t∈Ti
δt = 0 ≤ f(zi+2). Therefore q∗i ∈ [zi−1, zi+2].

Since, zi+2 − zi−1 = 30T−1/2, we have that |zi − q∗i | ≤
30T−1/2.

Lemma 12
0.1T 1/2∑

i=1

C∞(LD
Ti

(b̂))− C∗
∞(b̂Ti) ≤ 240T 1/2

Proof: By Lemma 11 for any t ∈ Ti we have that |pt(1) −
q∗i | ≤ 30T−1/2. This implies that,

C∞(LD
Ti

(b̂))−C∗
∞(b̂Ti) ≤ 30T−1/2 max{LTi(b̂, 1), LTi(b̂, 2)}

and therefore

0.1T 1/2∑
i=1

C∞(LD
Ti

(b̂))− C∗
∞(b̂Ti) ≤

30T−1/2
0.1T 1/2∑

i=1

max{LTi(b̂, 1), LTi(b̂, 2)} ≤

30T−1/2 · 2(4T ) = 240T 1/2.

The MULTI Algorithm AK
2r :

Alternative set: K of size 2r partitioned
to I and J , |I| = |J | = 2r−1.

Procedures: A2, A
I
2r−1 , AJ

2r−1 .
Action selection:

Algorithm AI
2r−1 gives xt ∈ ∆(I).

Algorithm AJ
2r−1 gives xt ∈ ∆(J).

Algorithm A2 gives (zt, 1− zt).
Output αt ∈ ∆(I ∪ J) where,

for i ∈ I set αt(i) = xt(i)zt, and
for j ∈ J set αt(j) = yt(j)(1− zt).

Loss distribution:
Given the loss `t.
Algorithm AI

2r−1 receives `t(I).
Algorithm AJ

2r−1 receives `t(J).
Algorithm A2 receives (ωt(I), ωt(J)),

where ωt(I) = 2−r+1
∑

i∈I `t(i)xt(i),
and ωt(J) = 2−r+1

∑
j∈J `t(j)yt(j).

Figure 2: Algorithm for multiple alternatives.

Theorem 13 For any loss sequence `, we have that
C∞(LD(`))− C∗

∞(`) ≤ 241T 1/2.

Proof: Given the loss sequence `, we define the loss se-
quence ˆ̀. By Lemma 8 we have that
C∞(LD

T+m(ˆ̀))≥C∞(LD
T (`)) and C∗

∞(ˆ̀) ≤ C∗
∞(`)+T 1/2.

By Lemma 10 we have that
C∗
∞(ˆ̀) = C∗

∞(b̂), and C∞(LD
T+m(ˆ̀)) = C∞(LD

2(T+m)(b̂)).
From Lemma 12 we have that∑0.1T 1/2

i=1 C∞(LD
Ti

(b̂))− C∗
∞(Ti) ≤ 240T 1/2. By Lemma 4

and Lemma 22, we can bound the sum by the global function,
hence we have that C∞(LD

2(T+m)(b̂))− C∗
∞(b̂) ≤ 240T 1/2.

Therefore, C∞(LD
T (`))− C∗

∞(`) ≤ 241T 1/2.

5.2 Multiple alternatives
In this section we show how to transform a low regret al-
gorithm for two alternatives to one that can handle multi-
ple alternatives. For the base case we assume that we are
given an online algorithm A2, such that for any loss sequence
`1, . . . , `T over two alternatives, guarantees that its average
regret is at most α/

√
T . Using A2 we will build a sequence

of algorithms A2r , such that for any loss sequence `1, . . . , `T

over 2r alternatives, A2r guarantees that its average regret is
at most O(α r/

√
T ).

Our basic step in the construction is to build an algorithm
A2r using two instances of A2r−1 and one instance of A2.
A2r would work as follows. We partition the set of actions
K to two subsets of size 2r−1, denoted by I and J ; for each
subset we create a copy of A2r−1 which we denote by AI

2r−1

and AJ
2r−1 . The third instance AM

2 would receive as an input
the average loss of AI

2r−1 and AJ
2r−1 . Let us be more precise

about the construction of A2r .
At each time step t, A2r receives a distribution xt ∈

∆(I) from AI
2r−1 , a distribution yt ∈ ∆(J) from AJ

2r−1 and



probability zt ∈ [0, 1] from AM
2 . The distribution of A2r

at time t, αt ∈ ∆(I ∪ J), is defined as follows. For ac-
tions i ∈ I we set αt(i) = xt(i)zt, and for actions j ∈ J
we set αt(j) = yt(j)(1 − zt). Given the action αt, A2r

observes a loss vector `t. It then provides AI
2r−1 with the

loss vector (`t(i))i∈I , AJ
2r−1 with the loss vector (`t(j))j∈J ,

and AM
2 with the loss vector (ωt(I), ωt(J)), where ωt(I) =

2−r+1
∑

i∈I `t(i)xt(i) and ωt(J) = 2−r+1
∑

j∈J `t(j)yt(j).
The tricky part in the analysis is to relate the sequences

xt, yt and zt to the actual aggregate loss of the individual
alternatives. We will do this in two steps. First we will
bound the difference between the average loss on the alter-
natives, and the optimal solution. Then we will show that
the losses on the various alternatives are approximately bal-
anced, bounding the difference between the maximum and
the minimum loss.

The input to algorithm AM
2 on its first alternative (gener-

ated by AI
2r−1) has an average loss

W (I) =
1
T

∑
t

ωt(I) =
1
T

[∑
t

2−r+1
∑
i∈I

xt(i)`t(i)

]
,

similarly, on the second alternative it has an average loss

W (J) =
1
T

∑
t

ωt(J) =
1
T

∑
t

2−r+1
∑
j∈J

yt(j)`t(j)


First, we derive the following technical lemma (its proof

is in Appendix C).

Lemma 14 Assume that AM
2 is at hight r (part of AI∪J

2r ).
Then

W (I∪J) ≤ 1
1

W (I) + 1
W (J)

+
α√
T
≤ 1∑

a∈I∪J
1

LT (a)

+
rα√
T

.

The following claim, based on Corrollary 9, bounds the
difference between the average of all alternatives and the loss
of a specific alternative.

Claim 15 For any alternative i ∈ K we have, |W (K) −
LA2r

T (i)| ≤ r√
T

.

Proof: We can view the algorithm A2r as generating a com-
plete binary tree. Consider a path from the root to a node that
represents alternative i ∈ K. Let the sets of alternatives on
the path be I0, . . . , Ir, where I0 = K and Ir = {i}. We are
interested in bounding |W (I0)−W (Ir)|. Clearly,

|W (I0)−W (Ir)| ≤
r∑

i=1

|W (Ii−1)−W (Ii)|.

Since W (Ii−1) = 1
2 (W (Ii) + W (Ii−1 − Ii)), we have that

|W (Ii−1) − W (Ii)| = 1
2 |W (Ii) − W (Ii−1 − Ii)|. Since

the alternative sets Ii and Ii−1 − Ii are the alternatives of
an AM

2 algorithm (at depth i), by Corollary 9 we have that
|W (Ii)−W (Ii−1−Ii)| ≤ 2√

T
. This implies that |W (Ii−1)−

W (Ii)| ≤ 1√
T

. Therefore, |W (I0)−W (Ir)| ≤ r√
T

.

Now we can combine the two claims to the following
theorem.

Theorem 16 Suppose the global cost function is makespan.
For any set K of 2r alternatives, and for any loss sequence
`1, . . . , `T , algorithm A2r will have regret at most
O( log |K|√

T
), i.e., C∞(LA2r

T )− C∗
∞(`) ≤ 242 r√

T
.

Proof: By Lemma 14 we have that W (K) − C∗
∞(`) ≤

rα√
T

. By Claim 15 we have that for any alternative i ∈ K,

LA2r

T (i)−W (K) ≤ r√
T

. Therefore, C∞(LA2r

T )−C∗
∞(`) ≤

242 r√
T

, since α ≤ 241 by Theorem 13.

6 Lower Bound for Non-Convex functions
In this section we show a lower bound that holds for a large
range of non-convex global cost functions, defined as fol-
lows.

Definition 17 A function f is γf -strictly concave if for every
x > 0: (1) f(x/3)+f(2x/3)

f(x) ≥ γf > 1, (2) limx→0 xf ′(x) =
0. (3) f is non-negative concave and increasing (4) limx→0

f(x) = 0

Note that any function f(x) = xβ for β < 1, is γf -strictly
concave with γf =

(
2
3

)β +
(

1
3

)β
.

Theorem 18 Let C(LA
T ) =

∑k
i=1 f(LA

T (i)), where f is (γf )-
strictly concave. For any online algorithm A there is an input
sequence such that C(LA

T )/C∗(LT ) > γf .

The proof can be found in Appendix D.

7 Open Problems
In this work we define the setting of an online learning with
a global cost function C. For the case that C is convex and
C∗ is concave, we showed that there are online algorithms
with vanishing regret. On the other hand, we showed that for
certain concave functions C the regret is not vanishing. Giv-
ing a complete characterization when does a cost function C
enable a vanishing regret is very challenging open problem.
In this section we outline some possible research directions
to address this problem.

First, if C is such that for some monotone function g,
C ′ = g(C) satisfy the same properties as d-norm: C ′ is
convex, C ′∗(L) = minα C ′(L�α) is concave, and α∗(L) is
Lipschitz, the algorithm of Section 4 for C ′ would still lead
to vanishing regret. For example, C(L) =

∑k
i=1(LT (i))d

can be solved with that approach.
A more interesting case is when the properties are vio-

lated. Obviously, in light of the lower bound of Section 6,
attaining C∗ in all cases is impossible. The question is if
there is some more relaxed goal that can be attained. As
in [17], one can take the convex hull of the target set in
Eq. (1) and still consider an approaching strategy. It can
be shown that by using the approachability strategy to the
convex hull, the decision maker minimizes the regret ob-
tained with respect to the function CC defined below (i.e.,
RC

T (A) = C(LA
T )− CC(LT )). Specifically:

CC(L) = sup
L1,L2,...,Lm, β1,...βm, βj≥0:P

βj=1,
Pm

j=1 βjLj=L

C

 m∑
j=1

βjα∗C(Lj)� Lj

 .



It follows that C∗(L) ≤ CC(L) and C∗(L) = CC(L) if C is
convex and C∗ concave (since in that case the convex hull of
S equals S). In general, however, CC may be strictly larger
than C∗. The question if CC is the lowest cost that can be
attained against any loss sequence is left for future research.

A different open problem is a computational one. The
approachability-based scheme requires projecting a point to
a convex set. Even if we settle for ε projection (which would
lead to a vanishing regret up to an ε), the computational com-
plexity does not seem to scale better than (1/ε)k. It would
be interesting to understand if the complexity minimizing the
regret for cost functions other than the makespan can have
better dependence on ε and k. In particular, it would be inter-
esting to devise regret minimization algorithms for d-norm
cost functions.

References
[1] B. Awerbuch and R. Kleinberg. Online linear opti-

mization and adaptive routing. J. Comput. Syst. Sci.,
74(1):97–114, 2008.

[2] B. Awerbuch and Y. Mansour. Adapting to a reliable
network path. In PODC, pages 360–367, 2003.

[3] D. Blackwell. An analog of the minimax theorem for
vector payoffs. Pacific J. Math., 6(1):1–8, 1956.

[4] A. Blum and C. Burch. On-line learning and the metri-
cal task system problem. In COLT, pages 45–53, 1997.

[5] A. Blum, C. Burch, and A. Kalai. Finely-competitive
paging. In FOCS, pages 450–458, 1999.

[6] A. Blum, S. Chawla, and A. Kalai. Static optimality
and dynamic search-optimality in lists and trees. Algo-
rithmica, 36(3):249–260, 2003.

[7] A. Blum and Y. Mansour. From external to internal re-
gret. Journal of Machine Learning Research, 8:1307–
1324, 2007.

[8] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
1998.

[9] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning,
and Games. Cambridge University Press, New York,
2006.

[10] D. P. de Farias and N. Megiddo. Combining expert
advice in reactive environments. Journal of the ACM,
53(5):762–799, 2006.

[11] E. Even-Dar, S. M. Kakakde, and Y. Mansour. On-line
markov decision processes. Mathematics of Operations
Research, 2009.

[12] Y. Freund, R. Schapire, Y. Singer, and M. Warmuth.
Using and combining predictors that specialize. In
STOC, pages 334–343, 1997.

[13] A. Gyrgy, G. Lugosi, and G. Ottucsk. On-line sequen-
tial bin packing. In COLT, pages 447–454, 2008.

[14] S. M. Kakade, A. Tauman-Kalai, and K. Ligett. Playing
games with approximation algorithms. In STOC, pages
546–555, 2007.

[15] A. Kalai and S. Vempala. Efficient algorithms for on-
line decision problems. Journal of Computer and Sys-
tem Sciences, 71(3):291 – 307, 2005. An earlier version
appeared in COLT 2003.

[16] E. Lehrer. A wide range no-regret theorem. Games and
Economic Behavior, 42:101–115, 2003.

[17] S. Mannor and N. Shimkin. The empirical Bayes en-
velope and regret minimization in competitive Markov
decision processes. MOR, 28(2):327–345, 2003.

[18] J.-Y. Yu, S. Mannor, and N. Shimikin. Markov decision
processes with arbitrary reward processes. Mathemat-
ics of Operations Research, 2009.



A Properties of Norms
We are now ready to extend the results to any norm. Let us
start by computing what is the optimal assignment and what
is its cost.

Lemma 19 Consider the d-norm global cost function and a
sequence of losses `1, . . . , `T . The optimal stationary distri-

bution is given by α∗Cd
(`) = ( 1/LT (i)

d
d−1Pk

j=1 1/LT (j)
d

d−1
)i∈K and the

optimal global cost function is given by

C∗
d(`) =

1
T

(
1∑k

j=1 1/LT (j)
d

d−1

) d−1
d

.

Proof: Recall that LT (1), . . . , LT (k) are the average losses
of the alternatives. To compute the optimal d norm static
distribution, we need to optimize the following cost function

Cd(`) =
(∑k

i=1(α(i)LT (i))d
)1/d

subject to the constraint

that
∑k

i=1 α(i) = 1. Using Lagrange multipliers we obtain
that the optimum is obtained for the following values

(α∗Cd
(`))(i) = α(i) =

1/LT (i)
d

d−1∑k
j=1 1/LT (j)

d
d−1

.

This implies that the cost of the optimal distribution is given
by

C∗
d(L) =

(
k∑

i=1

(α(i)LT (i))d

)1/d

=

 k∑
i=1

(
1/LT (i)

d
d−1∑k

j=1 LT (j)
d

d−1
1/LT (i)

)d
1/d

=

 k∑
i=1

 1

LT (i)
1

d−1∑k
j=1 1/LT (j)

d
d−1

d


1/d

=
1∑k

j=1 1/LT (j)
d

d−1

(
k∑

i=1

1

LT (i)
d

d−1

)1/d

=

(
1∑k

j=1 1/LT (j)
d

d−1

) d−1
d

.

After computing C∗
d we are ready to prove its concavity.

Lemma 20 The function C∗
d(`) is concave.

Proof:In order to show that C∗
d is concave we once again

will prove that its Hessian is semidefinite negative. We first
compute the derivative and the partial derivatives of order 2,
we use for notation β = d

d−1 > 1 and γ∗(x) = 1Pk
j=1 1/Lβ

j

thus C∗
d(x) = γ∗(x)1/β

∂C∗
d

∂x(i)
=

1
β

(γ∗(x))1/β−1 βx(i)−(β+1)(∑k
m=1

1
x(m)β

)2

= x(i)−(β+1)γ∗(x)
1
β +1

∂2C∗
d

∂x(i)∂x(j)
= x(i)−(β+1)(

1
β

+ 1)(γ∗(x))1/β

βx(j)−(β+1)(∑k
m=1

1
x(m)β

)2

= (β + 1)γ∗(x)
1
β +2x(i)−(β+1)x(j)−(β+1)

∂2C∗
d

∂2x(i)
= −(β + 1)x(i)−(β+2)γ∗(x)

1
β +1

+x(i)−(β+1)(
1
β

+ 1)γ∗(x)
1
β

βx(i)−(β+1)(∑k
m=1

1
x(m)β

)2

= −(β + 1))x(i)−(β+2)γ∗(x)
1
β +1

+(β + 1)x(i)−2(β+1)γ∗(x)
1
β +2

= (β + 1)γ∗(x)
1
β +2(

−x(i)−(β+2)
k∑

m=1

x(m)−β + x(i)−2(β+1)

)
= (β + 1)γ∗(x)

1
β +2−x(i)−(β+2)

k∑
m=1,k 6=i

x(m)−β

 .

Since all entries of the Hessian are factor of (β+1)γ∗(x)
1
β +2

which is positive we can eliminate it without effecting the
semidefinte negative property.

aHa′ =
k∑
i=

k∑
j=i+1

2x(i)−(β+1)x(j)−(β+1)aiaj

+
k∑

i=1

a2
i

−x(i)−(β+2)
k∑

m=1,k 6=i

x(m)−β


=

k∑
i=1

k∑
j=i+1

(
− a2

i x(i)−(β+2)x(j)−β

−a2
jx(j)−(β+2)x(i)−β

+2x(i)−(β+1)x(j)−(β+1)aiaj

)
=

k∑
i=1

k∑
j=i+1

x(i)−βx(j)−β

(
− a2

i

x(i)2
−

a2
j

x(j)2
+

2aiaj

x(i)x(j)

)

=
k∑

i=1

k∑
j=i+1

−x(i)−βx(j)−β(
ai

x(i)
− aj

x(j)
)2 ≤ 0.

Lemma 21 The function C∗
∞ is concave.

Proof: In order to do so we will show that the Hessian of C∗

is semi definite positive. We start by computing the partial



derivatives of C∗.

∂C∗

∂x(i)
=

1/x(i)2

(
∑k

j=1 1/x(j))2
∂2C∗

∂x(i)∂x(j)

=
2/(x(i)2x(j)2)

(
∑k

j=1 1/x(j))3
,

∂2C∗

∂x(i)2

=
−2
∑

j 6=i
1

x(i)3x(j)

(
∑k

j=1 1/x(j))3
.

Next we show that aHa′ < 0 where is the Hessian and a
is any vector. To simplify the computation we eliminate the
common factor 2/(

∑k
j=1 1/x(j))3 which is positive from all

entries.

aHa′ =
k∑

i=1

k∑
j=i+1

2aiaj

x(i)2x(j)2
−

k∑
i=1

∑
j 6=i

a2
i

x(i)3x(j)

=
k∑

i=1

k∑
j=i+1

1
x(i)x(j)

(
− a2

i

x(i)2
+

2aiaj

x(i)x(j)
−−

a2
j

x(j)2

)

=
k∑

i=1

k∑
j=i+1

−1
x(i)x(j)

(
ai

x(i)
− aj

x(j)

)2

≤ 0.

Therefore, we showed that C∗ is concave and we conclude
the proof.

Consider the makespan metric which is the standard met-
ric for load balancing and job scheduling tasks.

Lemma 22 Consider the makespan global cost function and
a sequence of losses `1, . . . , `T . The optimal stationary dis-
tribution is given by α∗C∞(`) = ( 1/LT (i)Pk

j=1 1/LT (j)
)i∈K and the

optimal global cost function is given by

C∗
d(`) =

1
T

(
1∑k

j=1 1/LT (j)

)
.

B Approachability theory
In this appendix we provide the basic results from approach-
ability theory in the context of compact action sets. We start
with the definition of the game. Consider a repeated vector-
valued game where player 1 chooses actions in A ⊂ Ra and
player 2 chooses actions in B ⊂ Rb. We assume both A and
B are compact. We further assume that there exists a con-
tinuous vector-valued reward function m : A × B → Rk.
At every stage t of the game, player 1 selects action at ∈ A
and player 2 selects action bt ∈ B as a result player 1 ob-
tains a vector-valued reward mt = m(at, bt). The objective
of player 1 is to make sure that the average vector-valued
reward

m̂t =
1
t

t∑
τ=1

mt

converges to a target set T ⊂ Rk. More precisely, we say that
a set T is approachable if there exists a strategy for player 1
such that for every ε > 0, there exists an integer N such that,
for every opponent strategy:

Pr (dist(m̂t, T ) ≥ ε for some n ≥ N) < ε,

where dist is the point-to-set Euclidean distance.
We further consider mixed actions for both player. A

mixed action for player 1 is a probability distribution over
A. We denote such a distribution by ∆(A). Similarly, we
denote by ∆(B) the set of probability distributions over B.
We consider the lifting of m from A × B to ∆(A) ×∆(B)
by extending m in the natural way: for p ∈ ∆(A) and q ∈
∆(B) we define the expected reward as:

m(p, q) =
∫

A

∫
B

paqbm(a, b)∂a∂b.

The following is the celebrated Blackwell Theorem for con-
vex sets. The proof is essentially identical to Theorem 7.5 of
[9] and is therefore omitted.

Theorem 23 A convex set V is approachable if and only if
for every u ∈ Rk with ‖u‖2 = 1 we have that:

sup
p

inf
q

m(p, q) · u ≥ inf
x∈V

x · u,

where · is the standard inner product in Rk.

The following strategy can be shown to have a conver-
gence rate of O(

√
k/t) as in [9], page 230. At time t calcu-

late st = arg mins∈V ‖m̂t − s‖2. If st = m̂t act arbitrarily.
If st 6= m̂t play p ∈ ∆(A) that satisfies:

inf
q

m(p, q) · (st − m̂t) ≥ st · (st − m̂t).

(Such a p must exist or else the set V is not approachable
according to Theorem 23.)

The following theorem is a variant of Blackwell’s origi-
nal theorem for convex sets (Theorem 3 in [3]).

Theorem 24 A closed convex set V is approachable if and
only if for every q ∈ ∆(B) there exists p ∈ ∆(A) such that
m(p, q) ∈ V .

Proof:The proof is identical to Blackwell’s original proof,
noticing that for every q the set {m(p, q), p ∈ ∆(A)} is a
closed convex set.

C Proof of Lemma 14
Let W1 = W (I) and W2 = W (J). The first inequality
follows from the fact that our assumption of the regret of
AM

2 implies that max{W1,W2} ≤ 1
1/W1+1/W2

+ α√
T

. This
also proves the base of the induction for r = 1.

For the proof let π1 =
∏

i∈I LT (i), π2 =
∏

j∈J LT (j)
and π = π1π2. Also, s1 =

∑
i∈I

∏
k∈I\{i} LT (k), s2 =∑

j∈J

∏
k∈J\{j} LT (k), and s = s1π2 + s2π1. One can

verify that the optimal cost opt = (
∑

i 1/LT (i))−1 equals
to π/s.



Let β = (r−1)α√
T

. From the inductive assumption that we
have Wi ≤ πi/si +β for i ∈ {1, 2}. The proof follows from
the following.

1
1/W1 + 1/W2

+
α√
T

≤ 1
1

π1/s1+β + 1
π2/s2+β

+
α√
T

=
1

s1
π1+s1β + s2

π2+s2β

+
α√
T

=
(π1 + s1β)(π2 + s2β)

s1(π2 + s2β) + s2(π1 + s1β)
+

α√
T

=
π1π2 + β(s1π2 + s2π1) + β2s1s2

s1π2 + s2π1 + 2s2s1β
+

α√
T

=
π + βs + β2s1s2

s + 2s2s1β
+

α√
T

≤ π

s
+ β

s + βs1s2

s + 2s2s1β
+

α√
T

≤ opt + β +
α√
T

= opt + r
α√
T

.

D Lower bound for a concave loss function
Proof:[Theorem 18] Consider the following three sequences
of losses: (1) sequence σ1 has t time steps each with losses
(δ, δ), (2) sequence σ2 starts with sequence σ1 followed by t
time steps each with losses (1, δ), (3) sequence σ3 starts with
sequence σ1 followed by t time steps each with losses (δ, 1)
and δ will be determined later

The opt for all sequences σ1, σ2 and σ3 has a loss of
f(δ).

Given an online algorithm A, after σ1 it has an average
loss of βδ on alternative 1 and (1 − β)δ on alternative 2.
Therefore, its loss on σ1 is f(βδ) + f((1 − β)δ). If β ∈
[1/3, 2/3] then the loss of A is at least f((1/3)δ)+f((2/3)δ)
compared to a loss of f(δ) of OPT . Hence C(LA

T )/C∗(σ1) ≥
γf .

If β > 2/3 then consider the performance of A on σ2.
On the first t time steps it behaves the same as for σ1 and
at the remaining t time steps it splits the weight such that its
average loss on those steps is λ for alternative 1 and (1 −
λ)δ for alternative 2. Therefore its cost function is f((βδ +
λ)/2) + f((1 − β + 1 − λ)δ/2). First, we note that for
λ > 1/2, we have that C(LA

T ) ≥ f(1/4). Since the cost of
OPT is f(δ) and as δ goes to 0 C∗(σ2) goes to zero, then for
sufficiently small δ we have that C(LA

T )/C∗(σ2) ≥ γf . For
λ ≤ 1/2 define h(λ) = f((βδ + λ)/2) + f((1 − β + 1 −
λ)δ/2)δ/2. First, we would like to show that h′(λ) > 0 for
every λ ∈ [0, 1/2]. Consider,

h′(λ) = f ′((βδ +λ)/2)/2− δ

2
f ′((1−β +1−λ)δ/2) > 0.

Since f is concave f ′ is decreasing and given our assumption
that δf ′(δ/2) goes to zero as δ goes to zero, then for small
enough δ and λ ≤ 1/2 we can bound as follows:

f ′((βδ + λ)/2) ≥ f ′(1) ≥ 4δf ′(δ/4)
≥ δf ′((1− β + 1− λ)δ/2).

Thus h(λ) is increasing and its minimum is obtained at
λ = 0. Therefore the cost function of algorithm, A, is at least
f(2δ/3) + f(δ/3) while the optimum achieves f(δ). Hence
C(LA

T )/C∗(σ2) ≥ γf .
The case of β < 1/3 is similar to that of β > 2/3, just

using σ3 rather than σ2.


