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The Lanczos algorithm for tridiagonalizing a symmetric matrix is the basis for several
methods for solving sets of linear equations as well as for solving the eigenproblem.
These methods are very useful when the matrix is large and sparse. A complete rounding
error analysis of the algorithm is presented here, giving among other results an important
expression for the loss of orthogonality of the computed vectors. The results here can be
used to analyze the many methods which are based on the Lanczos algorithm.

1. Introduction

IN 1950 Cornelius Lanczos described the application of the three term recurrence
relations for orthogonal polynomials to the reduction of a matrix to tridiagonal form.
In theory, for a given n x n symmetric matrix A and a given vector vy with unit 2-norm,
his algorithm produces in # steps an orthonormal matrix V = [Vi,¥2, .., v,] and a
tridiagonal matrix T such that

AV = VT.

The eigenvalues of T are clearly the eigenvalues of A, and so the eigen decomposition
of A can be found from that of the more easily handled symmetric matrix T. Lanczos
suggested this in his original paper on the subject (1950), but he also noted that
several of the eigenvalues of Ty, the leading & x k part of T, and the result of the first
k steps of the algorithm, were usually good approximations to some eigenvalues of
A, even for k < n. As a result of this behaviour, and because the matrix A is only
required in one matrix-vector multiplication per step, this algorithm can be used
economically to approximate eigenvalues of big matrices in far fewer than 7 steps.
Lehmann (1966) has shown how optimal eigenvalue intervals can be obtained in such
uncompleted cases.

Lanczos (1952) showed how his algorithm, which he called the method of
minimized iterations, could be applied to solving sets of linear equations. At about
the same time Hestenes & Stiefel (1952) published their method of Conjugate
Gradients for solving systems of linear equations with a positive definite matrix;
this too is based on the Lanczos algorithm. Householder (1964) describes this
connection between the method of Conjugate Gradients and the Lanczos algorithm,
and devotes considerable space to this important basic algorithm for tridiagonalizing
matrices. Some methods for solving linear least squares problems are also based on
the Lanczos algorithm (see for example Paige, 1974), as is a method for finding
singular values that was suggested by Golub & Kahan (1965). More recently some
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methods for solving systems of equations with an indefinite symmetric matrix have
been proposed by Paige & Saunders (1975), and these use the Lanczos algorithm
directly.

Unfortunately, because of the presence of rounding errors the Lanczos algorithm
does not behave in the way the mathematical theory indicates, and partly for this
reason the methods based on the Lanczos algorithm were largely ignored once they
had been superseded by superior methods for smali matrices. More recently a focusing
of attention on problems involving large sparse matrices has led to a reawakening of
interest in these methods, because they are so well suited to such problems. Paige
(1971, 1972) and Reid (1971, pp. 231-254; 1972), among others, have demonstrated
the effectiveness of some of these methods, both for the eigenproblem and for solutions
of equations. These studies indicate that these algorithms are competitive for problems
involving large sparse matrices, despite the effect of rounding errors. An understanding
of some of the error properties of the Lanczos algorithm has already led to a more
informed choice of computational algorithm (Paige, 1972), and the full rounding
error analysis to be given here will lead to more understanding, and hopefully better
computational methods, as well as to proofs of convergence of some of these methods
in the presence of rounding errors.

Because the Lanczos algorithm is so basic to many methods and so relevant to
many present day computations, a full rounding error analysis will be given here for
one computational variant. The analysis is lengthy and involved, and to counteract
this a little all the important results are summarized in equations (15) to (23) in a
theorem in Section 2, and the meaning of the results is discussed briefly following
the statement of the theorem. The results of an error analysis of another possible
computational variant of the algorithm will be quoted. In fact the two computational
algorithms to be considered are the successful ones described by Paige (1972).

The rounding error analysis only gives relations and bounds for the rounding errors
produced in computing V and T in AV = VT, and for the difference between VTV and
I. The applications of these results to specific methods for finding eigenvalues,
solving equations, etc., will be treated in later papers. The complete error analysis is
essentially different from those given by Wilkinson (1963, 1965), although the basic
tools for finding the initial error terms will come from those works, as did the initial
understanding of rounding error behaviour that led to the results presented here.

2. Rounding Error Analysis

The computational variant of the Lanczos algorithm that will be analyzed here will
be called Al, and in the absence of rounding errors can be described as follows.
Let v, be given with vTv, = 1, then

uy: = Av, (¢))
and for j = 1,2, 3, ... do steps (2) to (6)
o = Viu @
W= — oV 3)
i = +(w§wj)*, if By =0 then STOP 4)
Vier: = W/ (5)

Uppy: = Avj+1_ﬂ_,+1vj' 6)
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This essentially describes a way of producing the vectors v; and the coefficients
a;, Bj+q Of the symmetric tridiagonal matrix. The actual stopping criterion would
depend on the use to which these were being put. This particular variant has been
chosen for analysis because it is the one requiring the least storage, in fact only 2
vectors u; and v; are needed in (1) and (2), while w; can overwrite u; in (3) and v;,,
can overwrite w; in (5), so finally w;,; can overwrite v; in (6) if it is computed an
element at a time. The square root in (4) and the normalization in (5) are not essential,
but they prevent overflow or underflow, and make the algorithm and its analysis
more elegant, for a very small cost. Another satisfactory variant, A2, requires the
computation «;: = viAy;, however this requires a third storage vector. This second
algorithm has been analyzed in part, under the name A(l1, 7), by Paige (1972) and in
detail by Paige (1971), and the results will be quoted here. Paige (1972) shows that
not all computational variants of the Lanczos process are well behaved, and as a result
attention need only be focused on algorithms Al and A2 here.

In the rounding error analysis it will be assumed that floating point computation
with a relative precision ¢ is used, and the derivation of the basic error terms will
follow the work of Wilkinson (1963, 1965). For simplicity we will ignore terms in &*
and higher, as these would have a negligible effect on our results. What is more, the
symbol & will be used with some abandon to represent terms whose absolute values
are bounded by the relative precision, as well as representing the relative precision
itself when ¢ appears as a factor in a bound. Finally D(f(¢)) will be used to represent a
diagonal matrix each of whose diagonal elements is bounded by f(relative precision).
The purpose of this approach is to avoid the essentially straightforward parts of the
analysis being drowned in unwieldy subscripts and superscripts.

It will be assumed that

lAll =0, Al = Bo, )]
where from now on || - || represents the 2-norm, and [A] is the matrix with elements
Jee;;l, &;; being the elements of A.

Several basic computations are used repeatedly, and so their results will be sum-
marized here (see Wilkinson, 1963), with u, v and w representing n-vectors, and « and
B scalars.

Vector subtraction
Au—av) = u—av—"5w,  [[ow]| < (flali+2]av])e (¥
where f1 represents floating point computation, and éw represents the error.

Vector inner-product

AT = (v+ov)Tu,  [lov]] < nelv] ©®
Matrix-vector multiplication

If there are at most m non-zero elements per row of A, then

SA(Au) = (A+5A)u, [0A] < melA|, (10)
so with (7)

IOAll < 16A] || < mell |A] | = mpeo. 11
This bound will be used in place of the usual || |A| || < #*||A|, as this latter bound
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would give a poor indication of the accuracy of the process for large n and small m,
which is just the case where the algorithm is most useful.

Normalization

Making use of (9) and assuming that taking a square root introduces a relative error
no greater than ¢,

B = A((WTW)?) = [L+2(n+2)/2] |Iwi] 12)
v = fl(w/f) = D(1 +e)w/B (13)

which gives the theoretical result
viv = (142w w/B? = 1+ (n+4s. 14

We have now supplied the necessary background for the error analysis. The
analysis itself is surprisingly lengthy and involved, and so we will now give a theorem
summarizing the results that will be proved in the remainder of this section.

THEOREM. Let A be an n x n real symmetric matrix with at most m non-zero elements in
any row, and such that |A|| = o, || |A| || = Bo. If the variant of the Lanczos algorithm
described by equations (1) to (6) is implemented on a floating point digital computer with
relative precision & and applied for k steps to A starting with a normalized initial vector v,,
then o, Bj.1, Vi1 Will be computed for j = 1,2, .. ., k such that

AV, = VT + Bii1Virs€f +0V, (15)
V=V, ..l T, =To; B2
B wz By
oV, = [0vy, ..., OV, e
Be o
where e, is the kth column of the unit matrix, and forj = 1,2, .. ., k,
|VJTHV,'+1—1| SE) (16)
6v; 1l < a8, )
BialVivil < 208 (18)
|87 +aF+Bie 1 — | AV, 1P| < 4)(3e9+61)0, (19)
and we have used the notation
g = (n+4)e, g, = (T+mpPe. (20)
What is more, if Ry is the strictly upper triangular matrix such that
ViV, = R +diag (v]v))+ R, (@3}
then
TR, —RT, = By Vivis e +H, (22)
where H,, is upper triangular with elements n;; such that
714 < 2089
andforj=2,3,...,k
;1 < 4oeg (23)

[7-1,51 < 20(e0+2;)
lrlijl 6,20'81, I = 1, 2,...,j-*2.
Throughout this theorem it has been assumed that §;,, # 0 and 4j(3¢,+¢,) < 1, and
terms in ¢ and higher have been ignored. A full analysis has shown that with a
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restriction on » similar to that on j here, the results are essentially the same when no
terms are ignored.

To gain some insight into these resuits, we note that (16) is to be expected from the
normalization, while (15) and (17) express an obvious discrepancy between the ideal
and computed results. (18) describes the orthogonality of a vector to its predecessor,
and indicates that a cancellation that results in small ;. can cause significant loss of
orthogonality. The surprising result (19) shows that the jth column of T; has almost
the same 2-norm as Av;. To make use of this error analysis in methods using the
Lanczos algorithm to find eigenvalues or solve equations, it turns out to be important
to have an expression describing the total loss of orthogonality, and this is why R,
has been introduced in (21). The growth of this orthogonality loss can be described by
(22), with (23) giving bounds on the elements of H,. Equation (22) is therefore very
important for subsequent analyses.

Two more comments are relevant. First, the effect of double length accumulation
of vector inner products can essentially be accounted for by replacing » in (20) by
unity. Second, with the algorithm A2 mentioned earlier, for which the unnormalized
version has been described and analyzed by Paige (1971), the results are essentially
the same except that two of the bounds become

Bjs1 |V§Vj+1| < 2jog, 24)
;1 < 4joeo, (25)

the only important difference being the factor j.
The remainder of this section will now be devoted to proving the theorem by making

use of the results (7) to (14).
To start with, the vectors v; are obtained by normalization in (4) and (5), and so

(14) shows that (16) holds. Next, using (10)
u; = Av,—du,, [yl = l[6Av, || < mpfeo, (26)
u, || < [1+e(n+2mB+4)/2]o 27
where it is assumed that v, was found by normalizing a given vector as in (14).
In the initial stages of the analysis it will be impossible to give a posteriori bounds on
all variables, and so several bounds will initially be given in terms of [lu;|.. It will be
proved later that

lu, | € 6{1+2j[7+mp+3(n+4e}. (28)
The analysis of (2) is carried out by using (9) to give

o; = v?uj—éaj, |0%;| < nlju;lle 29
loe;l < [1+e(3n-+4)/2]]|u; . 30

Equations (3) and (8) then give
w; = u;—o;v;— 0w, flow; 1l < 3ilu;lle, (€2))

which combine with (29) to give
w12 = Nl 4+ od( v, 12— 2)= 2000, = 205w, —av) + 1w, 1 (32)

and uvsing the bounds (16), (29), (30) and (31)

wj 2+e2— w2 < G+ 10l % 33)

23
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The vector w; must now be normalized as in (4) and (5), so by using (12) and (33)
Biv1 = [M+e(m+2)/2][w;ll < [1+@2n+6)elilu;ll, (34
Bit1Vjr1 = W;+ 06w, llow) ) < g fle. (35)
Finally it can be seen by using (10) and (8), with the bounds (11) and (34), that the
computation of (6) gives

u; = Av;—f;v;_,—du,, 6wl < A+mpP)oe+2|u;_, e, (36)
and the special case of j = | is given in (26).

All the rounding errors that can be introduced by the computation have now been
described and bounded in terms of [ju;||. It now remains to manipulate these error
terms to obtain a bound on |lu;|| and to indicate what effect these rounding errors
have on the computed results.

The error in each step is found by combining (35), (31) and (36) to give

Biv1Virn = AV;—ov; —Bv;_y —0v,, (37
6v; 1l = llow;—ow;—ou;|l < (1+mpP)ae+(@iju;||+2(lm;_; [De. (38)
It can be seen that equation (37) is just the jth column of equation (15).

1t was shown by Paige (1972) that the performance of the algorithm depends partly
on the successive vectors v; and v;.; not losing orthogonality unnecessarily. This
orthogonality can be displayed by combining equations (35), (31) and (29) to give

Bis1VivVies = Viuy—o Vv, +Vi(oW;—ow))
= So;— o (Viv;— 1)+ V] (GW)—Ow))
which with (16) gives
ﬁj+11V,TVj+1] < 2(n+Mlulle, (3%
as a result we see that orthogonality between these two vectors can be lost only if
there is significant cancellation in (3), resulting in a small f,, ;.

In order to examine the possible loss of orthogonality in all the vectors vy, . . ., ;g
we consider the strictly upper triangular matrix R,, with elements p;;, defined in (21).
If (15) is multiplied on the left by VT and the resulting right hand side is equated with
its own transpose, then

T(R{ +Ry)— RE+RIT, = Bry (Vi 8 —€¥ e (V) + V{0V, — 6V V,+

diag (v/v)T,—T, diag (v/v),  (40)

where the diagonal elements on each side must be zero. Now
M, = T,R,—RT, 41)
is upper triangular, and since the left hand side of (40) is just M,—MT, the strictly
upper triangular portion of M, can be equated directly to that of the right hand side
of (40). But it follows directly from (41) that the diagonal elements u;; of M, are just

By = —B2piz, Proe = BiPr—1,x
ti; = Bipi—1.;— Bir1Pijv1 i=2..,k-1
where the individual terms are bounded in (39). Thus

M; = TR, —RT; = By, ViVir €l +H, 42)
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where H, is upper triangular with elements #;; satisfying

Hi1 =

andforj=2,...,k

Mis =
— vT T T T,
— VJ__15VJ—5VJ_1Vj+ﬂj(VJ-_1VJ_1——VJVJ)

Nj-1,j

My =

e DY

ﬂjpj—l,j_ﬁj+lpj,j+1

v/ oV, —6v]v),

i=1,2,...j-2

347

(43)

From now on it will simplify matters to use the notation
k= max {” u;l|}. (44)
ers J

Using this with (32), (38), (34) and (16) gives the following bounds on the elements
of H,
[n21] < 2(n+4)uye,

k

and forj = 2,3,...,
Inj,l < 4n+ue,
|'1ij’ < 2[(1 +mﬁ)a+6ﬂj]89 i= 1: 27 .. -7j_2’
11,1 < 2[(A+mP)e+(n+10)p;le.
A bound must first be found on p;_, ; = vIv;_, before a bound can be given for
A, and to do this, note that the (1, 2) element of (42) gives
01P12—0%2P12— B3p13 = Yy2
while for j = 3,4, ..., k the (j—1,j) element gives
ﬁjflpj—Z,j_i_(aj—l_(xj)pj—l,j—'ﬂj+.lpj—1,j+1 = Nj-1,j
sothatforj = 2,3,.. ., k, defining
§i = @ =adBipj 1, ;= Bmj1,, (46)

(45)

it follows that

:Bjﬂjﬂpjvl,jﬂ = ﬂj—lﬁjpj—z,j+Cj = Cj-l-cj_l—l- o+,
which with (46), (45), (39) and (30) gives

BiBiialpi—1, 41l < 2= DB+6)u;+(1 +mp)olue. 47
We can now proceed towards proving (28). Equation (36) gives
lu;+8wli* = | A |2+ B3 1Iv;- 1 > —2B;v]Av;_, (48)

and using (37)
VAV o= BVI(BV it Vi B Ve OV ))
= Bj+op;
where from (16), (34), (30), (39), (47) and (38)
16B;] < (Zj— DB+ 6)u;+ (1 +mP)aluje.
This suggests, incidentally, that a small §;canresultin 8, and vIAv;_, beingsignificantly

different (see Paige, 1972)
The above results combine with (36) to give

la; 1 = 1AV, 12+ B3(liv;= 1 P —2)+6B; (49)
168)] < {4/(1+mPB)o+[(2] — 1)6(n+6)+4]n,}ue. (50)
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Now let
# = max (u;, 0);
if p = ¢ then (28) holds, otherwise p = p; and (49) gives with (16)
;P < o2 +4j[7+mB+3(n+4)u’e
Clearly this bound holds for fju;|%, i = 1,2, .. .,J, and so it also holds for ulj = 2,
and then
12 < {1 +4j[T+mp+3(n+4)e}
so that, on taking the square root, (28) is seen to hold in this case as well. Thus (28)
may be combined with (38) to give (17), with (39) to give (18), and with (45) to give
(23), with the proviso of course that
25 [T+mB+3(n+4))e < 1. (51)
The only equation that has not yet been proved is (19), and to do this we combine
(33), (35), (49) and (28), to give
IﬁJz+ V41 11 —28;+ 1VjT+ 10W; +[|ow; II? +°‘? +ﬁ12'(2 —vj-1 1 - llAv; f?— i
< (3n+10)eg?
and (19) follows immediately on applying the bounds in (16), (34), (35) and (50).

All the stated rounding error results in (15) to (23) have now been obtained, and
so the theorem has been proved.

3. Discussion

It was pointed out by Dr J. H. Wilkinson (personal communication) that algorithm
Al here is really the modified Gram-Schmidt approach to computing the Lanczos
vectors, whereas the more usual approach, as in A2, is the classical Gram~Schmidt
approach. Since Ay; is only orthogonalized against two previous vectors v; and v;_,,
it is not surprising that there is no great difference in the results. However it is
interssting to note that the bounds for Al are definitely superior to those for A2;
in fact comparing (24), (25) with (18) and (23) we see that an extra factor of j occurs
in some of the bounds for A2. This suggests that Al might be superior to A2 on all
counts, although the computations carried out by Paige (1972) did not indicate any
significant numerical difference between the two when used for the eigenproblem,
even with j = 600 in one simple case.

4. Conclusion

The purpose of this paper has been to present the results (15) to (23) for the rounding
error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. This
makes a deliberate distinction between this algorithm and its many applications, some
of which have been mentioned in the introduction. Now that these basic results have
been set down, they can be used to analyze the performance of the many methods
which have the Lanczos algorithm as a basis. The results that are given here have been
used by Paige (1971) to study the behaviour of the method that was originally proposed
by Lanczos (1950) for finding eigenvalues, and have also been used to study the method
proposed by Lehmann (1966) for finding eigenvalue bounds. The results have also
been used to study several of the methods for solving solutions of equations that are
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based on the Lanczos algorithm. It is intended that these applications of the present
analysis will be published separately. One interesting observation on that work is that
the analysis of each application of the Lanczos algorithm made great use of (22), and
it appears that equation (22), with the bounds in (23), gives the key to the performance
of the Lanczos algorithm and its many applications in the presence of rounding errors.
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