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Abstract The standard approaches to solving overdetermined linear systems Ax ≈
b construct minimal corrections to the vector b and/or the matrix A
such that the corrected system is compatible. In ordinary least squares
(LS) the correction is restricted to b, while in data least squares (DLS)
it is restricted to A. In scaled total least squares (Scaled TLS) [15],
corrections to both b and A are allowed, and their relative sizes depend
on a parameter γ. Scaled TLS becomes total least squares (TLS) when
γ = 1, and in the limit corresponds to LS when γ → 0, and DLS when
γ →∞.

In [13] we presented a particularly useful formulation of the Scaled
TLS problem, as well as a new assumption that guarantees the existence
and uniqueness of meaningful Scaled TLS solutions for all parameters
γ > 0, making the whole Scaled TLS theory consistent. This paper
refers to results in [13] and is mainly historical, but it also gives some
simpler derivations and some new theory. Here it is shown how any
linear system Ax ≈ b can be reduced to a minimally dimensioned core
system satisfying our assumption. The basics of practical algorithms for
both the Scaled TLS and DLS problems are indicated for either dense
or large sparse systems.
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Introduction
Two useful approaches to solving the overdetermined linear system

Ax ≈ b, A an n by k matrix, b an n-vector, b /∈ R(A), (1)

are ordinary least squares (LS, or OLS, see for example [1], [8, §5.3]) and
total least squares (TLS, see [6; 7], also [1, §4.6], [8, §12.3], [11]). In LS
we seek (we use ‖ · ‖ to denote the vector 2-norm)

LS distance ≡ min
r,x
‖r‖ subject to Ax = b− r. (2)

In TLS, G and r are sought to minimize the Frobenius (F) norm in

TLS distance ≡ min
r,G,x
‖[r,G]‖F s. t. (A+G)x = b− r. (3)

The opposite case to LS is the data least squares problem (DLS), see
[9]. In DLS the correction is allowed only in A

DLS distance ≡ min
G,x
‖G‖F subject to (A+G)x = b. (4)

All these approaches can be unified by considering the following very
general scaled TLS problem (Scaled TLS), see the paper [15] by B. D.
Rao, who called it “weighted TLS”: for a given γ > 0,

Scaled TLS distance ≡ min
r̃,G̃,x̃

‖[r̃γ, G̃]‖F s. t. (A+G̃)x̃ = b− r̃. (5)

Here the relative sizes of the corrections in A and b are determined by
the real parameter γ > 0. As γ → 0 the Scaled TLS solution approaches
the LS solution, when γ = 1 (5) coincides with the TLS formulation,
and as γ → ∞ it approaches DLS. The case γ → 0 is not completely
obvious, since setting γ = 0 in (5) leads to G̃ = 0 but allows arbitrary r̃.
However consideration of very small γ should at least partially convince
the reader that the LS solution is obtained. The case γ = 1 is obvious,
and we see that γ → ∞ requires r̃ → 0, leading to DLS. For more
on Scaled TLS and DLS see also [2]. Scaling by a diagonal matrix was
considered in [7], and this motivated later researchers, leading eventually
to the Scaled TLS formulation in [15]. The paper [4] considered the case
where only some of the columns of the data matrix are contaminated,
and this also suggested a way of treating LS as well as TLS in the one
formulation.

The formulation of the Scaled TLS problem that we use is slightly
different from that in (5). For any positive bounded γ, substitute in (5)
r ≡ r̃γ, x ≡ x̃ and G ≡ G̃ to obtain the new formulation of the Scaled
TLS problem:

Scaled TLS distance ≡ min
r,G,x
‖[r,G]‖F s. t. (A+G)xγ = bγ−r. (6)
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We call the x = x(γ) that minimizes this distance the Scaled TLS solu-
tion of (6). In analogy with (3), we call x(γ)γ the TLS solution of (6).
In (6) we could have written x instead of xγ. We chose the present form
so that for positive bounded γ, the Scaled TLS solution x = x(γ) of
(6) is identical to the solution x̃ of (5). Thus (5) and (6) have identical
distances and solutions for positive bounded γ. Therefore our results
and discussions based on (6) apply fully to the Scaled TLS problem (5).

In [13, §6] we showed for (6) in the general case of complex data that as
γ → 0, x(γ) becomes the LS solution x of (2), (Scaled TLS distance)/γ
becomes the LS distance. As γ → ∞, x(γ) becomes the DLS solution
x of (4), and the Scaled TLS distance becomes the DLS distance. The
convergence of the Scaled TLS problem to the LS problem has been
described in [15], and essentially in [7], for the real case.

We found that the development of our results was more simple and
intuitive using the formulation (6) rather than (5). In particular, all
the known TLS theory and algorithms can be applied directly to (6).
The equivalence of (6) and (5) is extremely useful. This equivalence was
pointed out to us by Sabine Van Huffel [10] after she read an earlier
version of our work based on (6). We have not seen it stated in the
literature, but it is implicit in the paper by Rao [15].

In (6), γ simply scales the right-hand side vector b (and the Scaled TLS
solution x = x(γ)). Thus it is appropriate to call the formulation (6) the
Scaled TLS problem, rather than the “weighted” TLS problem as was
done in [15]. This also avoids the possibility of confusing the meaning of
“weighted” here with its different meaning in “weighted least squares”.

Using γ can have a statistical significance. Suppose that the elements
of A are known to have independent zero-mean random errors of equal
standard deviation δA. Suppose also that the elements of b have been
observed with independent zero-mean random errors of equal standard
deviation δb, and that the errors in b and A are independent. Then taking
γ = δA/δb in (6) will ensure that all the errors in that model have equal
standard deviation (and so variance), and (6) is the ideal formulation for
providing estimates. This agrees with the limiting behaviour described
above, for clearly if δA = 0 and δb 6= 0, then LS is the correct choice,
while if δA 6= 0 and δb = 0, then DLS is the correct choice. However (6)
can also be useful outside any statistical context, and then γ does not
have the above interpretation, see for example [14] which is summarized
in our other contribution in this book.

In all these formulations, if b ∈ R(A), then zero distance can be ob-
tained via a direct solution. Otherwise TLS, and so Scaled TLS solutions
can be found via the singular value decomposition (SVD). Let σmin(·)
denote the smallest singular value of a given matrix. To be precise,
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σmin(M) will denote the j-th largest singular value of an n by j matrix
M , and will be zero if n < j. The interlacing property for the eigen-
values of [A, b]T [A, b] and of ATA [16, Ch2, §47, pp. 103–4] tells us that
σmin([A, b]) ≤ σmin(A). When

σmin([A, b]) < σmin(A) (7)

the n by k matrix A must have rank k, the unique solution of the TLS
problem (3) is obtained from scaling the right singular vector of [A, b]
corresponding to σmin([A, b]), and the norm of the TLS correction sat-
isfies minr,G,x ‖[r,G]‖F = σmin([A, b]), (see for example [8, §12.3]).

However when σmin([A, b]) = σmin(A), the theory and solution meth-
ods became complicated, see for example the discussions on nongeneric
problems in [11]. For this and other reasons we argued in [13] that (7)
should not be used as a basis for the TLS theory.

A similar argument to that following (7) shows that when

σmin([A, bγ]) < σmin(A) for a given γ > 0, (8)

the Scaled TLS distance in (6) is σmin([A, bγ]), but we also showed in
[13] that this should not be used as a basis for the Scaled TLS theory.

In the general case, let Umin be the left singular vector subspace of
A corresponding to σmin(A). We showed in [13] that a satisfactory
condition for building the theory of the TLS, DLS and Scaled TLS for-
mulations for solving (1) is the γ-independent criterion:

the n× k matrix A has rank k, and b 6⊥ Umin. (9)

We showed in [13, Thm.3.1] that this implies

σ(γ) ≡ σmin([A, bγ]) < σmin(A) for all γ ≥ 0, (10)

which of course implies (7) and (8). The stronger condition (9) is the
simplest one. It can be checked using direct computations, see Secti-
non 2, while the others each apparently require two SVDs.

A crucial property of the criterion (9) is that any linear system Ax ≈ b
can in theory be reduced to a “core” problem satisfying (9). We show
how this can be done by direct computations that can be usefully applied
to all Scaled TLS and DLS problems.

This paper is necessarily short, and can be considered as an intro-
duction to [13] which contains the full theory that has been omitted
here. That paper presented a new and thorough analysis of the theoret-
ical foundations of the Scaled TLS problem, and of its relationships to
the LS and DLS problems. Here we mention some of those results, but
concentrate mainly on the concept of the core problem.
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The rest of the paper is organized as follows. Section 1 indicates why
the formulations (3)–(6) are incomplete without the criterion (9). Sec-
tion 2 shows how to handle the completely general Scaled TLS problem
by reducing it to a core problem that satisfies an even stronger criterion
than (9) — one which ensures the core problem is irreducible in the
sense of containing no information that is redundant or irrelevant to the
solution. Section 3 discusses how Scaled TLS problems can be solved
computationally, and describes a simple solution to the DLS problem.
Section 4 summarizes the advances and outlines the philosophy.

1. Conditions for meaningful solutions
The problem formulations (3)–(6) are not good for solving Ax ≈ b in
certain cases. It was shown in [13, §7] that (3)–(6) are not good when n
by k A does not have rank k. The formulations should at least demand
the solution vectors be orthogonal to the null space. It is preferable to
eliminate the null space, so now let us assume A has rank k.

We argue that (3)–(6) are best restricted to problems of the form (1)
satisfying (9). Suppose the data can be transformed so that[

b̃ Ã
]

= P T
[
b AQ

]
=
[
b1 A11 0
0 0 A22

]
, (11)

where P and Q are orthogonal. The approximation problem Ax ≈ b
then represents two independent approximation problems:

A11x1 ≈ b1, A22x2 ≈ 0, x ≡ Q
[
x1

x2

]
, (12)

in that the solution to each of these has no effect upon, and can be
found independently of, the other. In this case the non-core problem
A22x2 ≈ 0 has the solution x2 = 0, and only A11x1 ≈ b1 need be solved.

If b ⊥ Umin, see (9), then orthogonal P and Q clearly exist giving (11)
where A22 contains all the singular values of A equal to σmin(A). Then
it was shown in [13, §7] that (3)–(6) applied directly to the combined
problem Ax ≈ b can give meaningless solutions. But even when they give
meaningful solutions these minimum singular values are irrelevant, and
should be removed from the problem, since rounding errors effectively
introduce a nonzero vector below b1 in (11), and so cause these irrelevant
singular values to contaminate the solution. Although (2) in theory gives
x2 = 0, this last comment suggests we might gain by insisting on (9) for
LS too.

The criterion (9) leads to a clear and consistent theory, and ensures
that the minimum singular value of A is relevant to the solution. Fortu-
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nately there is an elegant transformation which produces the minimally
dimensioned core problem obeying (9) from any given [b, A].

2. The core problem within Ax ≈ b
Here we answer the following question. Given any n by k matrix A
and n-vector b, how can the problem Ax ≈ b be split into two indepen-
dent problems as in (11) and (12), giving a trivial problem A22x2 ≈ 0
of maximal dimensions, and the minimally dimensioned core problem
A11x1 ≈ b1 satisfying (9)? We can set x2 = 0, and then each of the
formulations (2)–(6) gives a unique meaningful solution to A11x1 ≈ b1.

We answer this by choosing orthogonal matrices P and Q to pro-
duce the following real bidiagonal matrix, see for example [8, §5.4.3–5,
pp. 251–254]. In the usual case of n×k A with n > k we obtain, (where
the bottom 0 either represents a zero vector or is nonexistent):

[b̃, Ã] ≡ P T
[
b A

] [ 1
Q

]
=



β1 α1

β2 α2

· ·
βk αk

βk+1

0


. (13)

Remember the Scaled TLS solution requires some knowledge of the SVD
of [bγ,A]. This SVD can quickly be computed from this bidiagonal form
for any choice of γ, see for example [8, §8.6.2, pp. 452–456].

There are two ways this algorithm can terminate prematurely: with a
βj = 0, giving (11) and (12) with A11x1 = b1 being a compatible system;
or with αj = 0, giving an incompatible system A11x1 ≈ b1 in (12).

The computations described in [8, §5.4.3–5, pp. 251–254] are designed
for dense matrices. If we have large sparse [b, A], then we could consider
the iterative bidiagonalization of Golub and Kahan in [5]. This iterative
bidiagonalization is the basis for the LSQR algorithm in [12] which solves
large sparse LS (as well as consistent) problems. In theory after j and a
half steps this produces the first j + 1 columns of P , the first j columns
of Q, and the leading j + 1 by j + 1 block of the right-hand side in
(13). Björck [1, §7.6.5, pp.310-311] suggested applying this iterative
bidiagonalization to the TLS problem, see also [3, §4.1]. Now we see
this approach is also applicable to solving the Scaled TLS problem, as
well as (at least in theory) delivering the core problem, for any large
sparse linear system Ax ≈ b. The adaptation of LSQR for solving large
sparse Scaled TLS or DLS problems using finite precision computations
will be further investigated. See Section 3 for the DLS solution using
(13).
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The main theoretical importance of the reduction (13) is that if βjαj 6=
0, j = 1, . . . , k, then our criterion (9) holds for the reduced bidiagonal
matrix. We now prove this in an extended version of [13, Thm.8.1].

Theorem 1 Suppose n by k A has SVD A =
∑k
i=1 uiσiv

T
i , and there

exist orthogonal matrices P and Q giving (13) with

βjαj 6= 0, j = 1, . . . , k. (14)

Then we have a stronger condition than (9) for this b and A:

rank(A) = k; bTui 6= 0, i = 1, . . . , k, (15)

and no nontrivial split of the form (11) can be obtained with orthogonal
P and Q, showing Ax ≈ b is the minimally dimensioned core problem.
Also the k singular values of A are distinct and nonzero; the k+1 singular
values of [b, A] are distinct, and all nonzero if and only if βk+1 6= 0.

Proof Ã and A have the same singular values, as do [b̃, Ã] and [b, A],
and Ã = P TAQ has the SVD Ã =

∑k
i=1 ũiσiṽ

T
i ≡

∑k
i=1 P

Tuiσiv
T
i Q, so

bTui = bTPP Tui = b̃T ũi, i = 1, . . . , k.

Write Ã ≡ [b1, A1], then ÃT Ã is k × k tridiagonal with nonzero next to
diagonal elements, and AT1 A1 remains when the first row and column are
deleted. Thus the eigenvalues of AT1 A1 strictly separate those of ÃT Ã,
see [16, Ch.5, §37, p.300], and the singular values of A1 strictly separate
those of Ã. Thus Ã, and so A, has distinct singular values. A similar
argument holds for [b, A]. A clearly has rank k, and [b, A] has rank k+ 1
if and only if βk+1 6= 0. Suppose σ is a singular value of Ã with singular
vectors u and v such that

b̃Tu = β1e
T
1 u = 0, uσ = Ãv, σvT = uT Ã, ‖u‖ = ‖v‖ = 1,

then 0 = eT1 uσ = eT1 Ãv = α1e
T
1 v, and eT1 v = 0. Writing v =

(
0
q

)
shows

Ãv = A1q = uσ, uTA1 = σqT , ‖u‖ = ‖q‖ = 1,

so σ is also a singular value of A1. This is a contradiction since the
singular values of A1 strictly separate those of Ã, so (15) holds.

Finally if (11) could exist with nontrivial A22, then b would be or-
thogonal to a left singular vector subspace of A, which (15) has proven
is impossible.

Thus we need not derive results for the most general possible [bγ,A].
We can instead assume (9). Any more general Ax ≈ b problem can be
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reduced to a core problem that satisfies (15) (and so (9)) by applying
the reduction (13) and stopping at the first zero βj or αj . Suppose the
resulting core data is [b1, A11], see (11). Then the theorem also showed
that A11 has no multiple singular values, so any singular value repeats
must appear in A22.

In theory we need not insist on (15), because a problem only satisfying
(9) will in theory give the same solution and distance as it would if it
were reduced to one satisfying (15). But in practice it is preferable to
carry out the reduction (13) leading to (15), see Section 3.

3. Computing Scaled TLS and DLS solutions
In order to compute either Scaled TLS solutions or the DLS solution
for given data [b, A], we recommend first carrying out a reduction of
the form (13) to the core problem in Section 2 — unless there are clear
reasons for not doing so. The reasons for doing so are hard to reject. For
general data we will not know if the formulations (2)–(6) have unique
meaningful solutions, but the reduction will give us a subproblem for
which this is so. Even if we know the original data satisfies (9), it
is (from the computational point of view) highly preferable to remove
all the irrelevant information from our data as early in the solution
process as possible, and this is exactly what the transformation (13)
does. In any case we still need some sort of SVD of the data, and this
will usually first perform a reduction as costly as that in (13). But
(13) allows us to find the SVD of [bγ,A] easily for different choices of
γ and so is the obvious choice. There are excellent fast and accurate
algorithms for finding all or part of the SVD of (13) with β1 replaced
by β1γ. We can find just the smallest singular value and its singular
vectors, from which the solution vector x(γ) can be simply attained.
If we have some idea of the accuracy of our data, then when we use
numerically reliable orthogonal transformations in (13), we will have a
good idea of what element of (13) (if any) we can set to zero to stop
the computation as soon as possible. Thus the crucial decisions can
be made before any SVD computations are carried out. This is more
efficient, but it is almost certainly more reliable to make such decisions
from (independent) orthogonal transformations of the original data than
from the elements of singular vectors, (see for example [11, p.23]). The
remaining computations for Scaled TLS are fairly obvious. Finally (13)
leads to a solution to the DLS problem (4), which we now describe. The
theory here is simpler than that in [13, §9].

Suppose that the core part [b̃, Ã] of the transformed [b, A] has the
form in (13) with (14). We will solve the DLS problem for this reduced,
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or core data. Now Theorem 1 proved (9) holds. If βk+1 = 0 the DLS
distance is zero, and the solution is obvious. Otherwise, writing

[b̃|Ã] ≡
[
β1 α1e

T
1

0 A2

]
≡ P T [b|AQ], G̃ ≡

[
gT

G2

]
≡ P TGQ, x̃ ≡ QTx,

we see for this reduced data that the DLS problem (4) becomes

min
g,G2,x̃

{‖g‖2 + ‖G2‖2F} s. t.
[
β1 α1e

T
1 + gT

0 A2 +G2

] [
−1
x̃

]
= 0.

Since β1 is nonzero, x̃ 6= 0, and the minimum ‖G2‖F in (A2 +G2)x̃ = 0
is σmin(A2), with x̃ proportional to the right singular vector v of A2

corresponding to σmin(A2). But then eT1 v 6= 0 (otherwise σmin(A2)
would also be a singular value of Ã) and we can take g = 0 so that

x̃D = vβ1/(α1e
T
1 v), σD = σmin(A2), (16)

are the DLS solution and distance in (4) for the reduced data [b̃, Ã]. The
smallest singular value and its right singular vector of the nonsingular
bidiagonal matrix A2 are relatively easy to find, see for example [8,
§8.6.2, pp. 452–456].

4. Summary and Conclusions
The philosophy behind our approach is radically different from that of
previous TLS, Scaled TLS or DLS work known to us. The Scaled TLS
formulation (6) makes it easy to analyze and solve the Scaled TLS prob-
lem (it shows the Scaled TLS problem is just the TLS problem with
its right-hand side b scaled by γ, so all the TLS artillery is available).
But more importantly than that, the approach of reducing a problem
Ax ≈ b to its “core” problem (Section 2) and solving that core problem
simplifies our understanding of the area. It also simplifies the develop-
ment of algorithms, while unifying the theoretical problems in the area.
Crucial to all this is the (γ-independent) criterion (9) for Scaled TLS
(also TLS, DLS and even possibly LS) problems, that was introduced
in [13]. The key is that any Scaled TLS (or LS or TLS or DLS) prob-
lem can in theory be transformed by direct orthogonal transformations
into two independent problems: a (possibly nonexistent) trivial prob-
lem, and a core problem, where the core problem automatically satisfies
(9). Solving the core problem then solves the original problem. Thus no
complicated conditions such as (7) or (9) need be tested, and no special
cases need be treated. All the decisions can be made by examining the
sizes of elements in the orthogonally transformed data. Both theory and
computations can thus be unified, simplified and clarified.
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[1] Å. Björck, Numerical Methods for Least Squares Problems, SIAM Publications,

Philadelphia PA, 1996.

[2] G. Cirrincione, A Neural Approach to the Structure of Motion Problem, PhD
thesis, LIS INPG Grenoble, 1998.

[3] R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O’Leary, Regularization by
truncated total least squares, SIAM J. Sci. Comput., 18:1223–1241, 1997.

[4] G. H. Golub, A. Hoffman and G. W. Stewart, A generalization of the Eckart-
Young-Mirsky matrix approximation theorem, Linear Algebra Appl., 88/89:317–
327, 1987.

[5] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse
of a matrix, J. SIAM, Series B, Numer. Anal., 2:205–224, 1965.

[6] G. H. Golub and C. Reinsch, Singular value decomposition and least squares so-
lutions, Numerische Mathematik, 14:403-420, 1970. Also in ”Handbook for Auto-
matic Computation Vol. 2: Linear Algebra”, by J. H. Wilkinson and C. Reinsch,
(eds.), pp. 134-151, Springer, New York, 1971.

[7] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem,
SIAM J. Numer. Anal., 17:883–893, 1980.

[8] , Matrix Computations, The Johns Hopkins University Press, Baltimore
MD, third ed. 1996.

[9] R. D. D. Groat and E. M. Dowling, The data least squares problem and channel
equalization, IEEE Trans. Signal Processing, 42(1):407–411, 1993.

[10] S. Van Huffel. Personal communication, June 1999.

[11] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computa-
tional Aspects and Analysis, SIAM Publications, Philadelphia PA, 1991.

[12] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations
and sparse least squares, ACM Trans. Math. Software, 8:43–71, 1982.
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