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Abstract. Minimum residual norm iterative methods for solving linear systems Ax = b can be
viewed as, and are often implemented as, sequences of least squares problems involving Krylov sub-
spaces of increasing dimensions. The minimum residual method (MINRES) [C. Paige and M. Saun-
ders, SIAM J. Numer. Anal., 12 (1975), pp. 617–629] and generalized minimum residual method
(GMRES) [Y. Saad and M. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869] represent
typical examples. In [C. Paige and Z. Strakoš, Bounds for the least squares distance using scaled
total least squares, Numer. Math., to appear] revealing upper and lower bounds on the residual
norm of any linear least squares (LS) problem were derived in terms of the total least squares (TLS)
correction of the corresponding scaled TLS problem. In this paper theoretical results of [C. Paige
and Z. Strakoš, Bounds for the least squares distance using scaled total least squares, Numer. Math.,
to appear] are extended to the GMRES context. The bounds that are developed are important in
theory, but they also have fundamental practical implications for the finite precision behavior of the
modified Gram–Schmidt implementation of GMRES, and perhaps for other minimum norm methods.
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1. Introduction. Consider a system of linear algebraic equations Ax = b, where
A is a given n by n (unsymmetric) nonsingular matrix and b an n-dimensional vec-
tor. Given an initial approximation x0, one approach to finding x is to first compute
the initial residual r0 = b − Ax0. Using this, derive a sequence of Krylov subspaces
Kk(A, r0) ≡ span{r0, Ar0, . . . , Ak−1r0}, k = 1, 2, . . . , in some way, and look for ap-
proximate solutions xk ∈ x0 + Kk(A, r0) . Various principles are used for constructing
xk which determine various Krylov subspace methods for solving Ax = b. Similarly,
Krylov subspaces for A can be used to obtain eigenvalue approximations or to solve
other problems involving A.

Krylov subspace methods are useful for solving problems involving very large
sparse matrices, since these methods use these matrices only for multiplying vectors,
and the resulting Krylov subspaces frequently exhibit good approximation proper-
ties. The Arnoldi method [4] is a Krylov subspace method designed for solving the
eigenproblem of unsymmetric matrices. The generalized minimum residual method
(GMRES) [27] uses the Arnoldi iteration and adapts it for solving the linear system
Ax = b. GMRES can be computationally more expensive per step than some other
methods; see, for example, Bi-CGSTAB [30], QMR [8, 9] for unsymmetric A, and
LSQR [20, 19] for unsymmetric or even rectangular A. However, GMRES is widely
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used for solving linear systems arising from discretization of partial differential equa-
tions, and it is also interesting to study, since it does in theory minimize the 2-norm
of the residual ‖rk‖ = ‖b−Axk‖ over xk ∈ x0 + Kk(A, r0) at each step. Thus, theo-
retical results on GMRES can, for example, provide lower bounds for the residuals of
other methods using the same Krylov subspaces. GMRES is also interesting to study
computationally, especially since a strong relationship has been noticed between con-
vergence of GMRES and loss of orthogonality among the Arnoldi vectors computed
via (finite precision) modified Gram–Schmidt (MGS) orthogonalization; see [11, 24].
An understanding of this will be just as important for the practical use of the Arnoldi
method as it will be for GMRES itself.

This project is complicated, so we give an introduction involving simplified results.
Given an initial approximation x0 to the solution x of Ax = b, we form the residual

r0 = b−Ax0, ρ0 = ‖r0‖, v1 = r0/ρ0,

and use v1 to initiate the Arnoldi process [4]. In theory, after k steps this produces

Vk+1 = [v1, v2, . . . , vk+1], V T
k+1Vk+1 = Ik+1, span{v1, . . . , vk+1} = Kk+1(A, r0).

At each step GMRES takes xk = x0 + Vkyk as the approximation to the solution
x, which gives the residual rk = b − Axk. GMRES uses that yk which in theory
minimizes the 2-norm of this residual, so

‖rk‖ = min
y
‖r0 −AVk y‖ = min

y
‖[v1ρ0, AVk]

[
1
−y

]
‖.

So far this is rigorous and well known, but now we give some ideas in approximate
form, so that they will be easier to follow. It is the purpose of this paper to show for
the ratio of the largest to smallest singular value (condition number) κ([v1ρ0, AVk]),
which increases with k, and the normwise relative backward error

β(xk) ≡
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖
,(1.1)

which tends to decrease with k until it is eventually zero, that with exact arithmetic
we have something like the intriguing relationship

β(xk)κ([v1ρ0, AVk]) = O(1).(1.2)

In later sections we will develop rigorous theory for the more precise version of this.
There the columns of [v1ρ0, AVk] in κ(·) are scaled, and a certain condition must
be satisfied. We will argue that the precise version probably also holds even in fi-
nite precision arithmetic and present convincing numerical examples supporting this
hypothesis.

Now we explain why (1.2) is important. An efficient, and the most usual way
of computing the Arnoldi vectors v1, v2, . . . , vk+1 for large sparse unsymmetric A, is
to use the MGS orthogonalization. Unfortunately, in finite precision computations
this leads to loss of orthogonality among these MGS Arnoldi vectors. If these MGS
Arnoldi vectors are used in GMRES we have MGS GMRES. We want to show that
MGS GMRES succeeds despite the loss of orthogonality among the computed MGS
Arnoldi vectors. A similar hypothesis was published in [11, 24] with a justification
based on the link between loss of orthogonality among the Arnoldi vectors and the
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size of the GMRES relative residual. Here is how we hope to prove a significantly
stronger statement in [17] by using what is essentially the result (1.2) of this paper
as a fundamental intermediate step.

Following the important work [5] of Björck, and that of Walker [32], the papers [7]
and [11] showed a relationship between the finite precision loss of orthogonality in the
MGS Arnoldi vectors and the condition number κ([v1ρ0, AVk]). In particular, unless
A is extremely ill-conditioned (close to numericaly singular), for computed quantities

‖I − V T
k+1Vk+1‖F ≤ κ([v1ρ0, AVk])O(ε), ε the computer roundoff unit(1.3)

(where subscript F denotes the Frobenius norm). Combining it with a finite precision
version of (1.2) would show

‖rk‖ · ‖I − V T
k+1Vk+1‖F

‖b‖+ ‖A‖ · ‖xk‖
≤ β(xk)κ([v1ρ0, AVk])O(ε) = O(ε).(1.4)

This would imply that it is impossible to have a significant loss of orthogonality until
the normwise relative backward error is very small. It could then be shown that there
would be no meaningful deterioration in the rate of convergence, and significant loss
of orthogonality would imply convergence and backward stability of MGS GMRES.
These results would then be somewhat analogous to those shown for the Lanczos
method for the symmetric eigenproblem, where significant loss of orthogonality im-
plied that at least one eigenvalue had been found to about machine precision, and
the first eigenvalues to converge did so with no meaningful deterioration in rate of
convergence; see [16]. Perhaps the ideas here could be combined with some of those
from [16] to prove how the MGS Arnoldi method is affected by rounding errors.

If we can prove a result like (1.4), we will be able to justify theoretically the
well-known observation that, unless the matrix A is extremely ill-conditioned, MGS
GMRES competes successfully in both the rate of convergence and the final accuracy
with the more expensive GMRES implementation based on the Householder reflections
(HH GMRES)[31]. HH GMRES was proved backward stable in [7]. That proof relied
upon the fact that the Householder reflections keep the loss of orthogonality among
the computed Arnoldi vectors close to the machine precision. Orthogonality among
the Arnoldi vectors can be lost using MGS GMRES finite precision computations.
Therefore the results from [7] could not be extended to MGS GMRES, and a different
approach had to be used.

Despite its backward stability, HH GMRES is not widely used. A popular jus-
tification for this is based on the numerical stability versus computational efficiency
argument: It is generally believed that HH GMRES is favorable numerically, but the
cheaper MGS GMRES is accepted (sometimes with a fear of a possible unspecified
loss of accuracy) as a standard for practical computations. One aim of our work is to
eliminate that fear.

This paper is the third of a sequence starting with [22], which revised the funda-
mentals of the scaled total least squares theory. The subsequent paper [21] produced
general purpose bounds we will use here and in [17]. The present paper proves the-
oretical results motivated by the abovementioned finite precision behavior of MGS
GMRES but assumes exact arithmetic in all the proofs. Finite precision analogies of
the statements proven here will require detailed rounding error analyses, and these
are intended for the planned paper [17]. Thus, when completed, we think the work in
[21], in here, and in [17] will represent a substantial step forward in our understand-
ing of MGS orthogonalization in Krylov subspace methods and will also lead to a full
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justification for MGS GMRES computations. We also hope it will produce tools that
will help in the analysis of MGS Arnoldi computations. We would like to investigate
whether the MGS Arnoldi method still gives accurate approximations to eigenvalues,
but we will not consider this here.

Since the results in this paper assume exact arithmetic, they are independent of
any particular implementation of the GMRES method. They apply to any mathe-
matically equivalent residual minimizing Krylov subspace method (such as the MIN-
RES method for symmetric indefinite systems). Some mathematically equivalent
variants of the GMRES method are described in [15, 25]. In most practical appli-
cations some acceleration technique must be applied to improve convergence of the
basic method. For historical reasons such acceleration techniques are frequently and
imprecisely called preconditioning. Assuming exact arithmetic, preconditioning of a
given method is equivalent to the application of the (basic) method to some modified
(preconditioned) system. In this paper we assume, with no loss of generality, that
A represents the matrix and b the right-hand side of the preconditioned system. For
simplicity of notation we assume that A and b are real. Reformulation to the general
complex case is obvious.

The paper is organized as follows. In section 2 we will give the necessary mathe-
matics of GMRES, while in section 3, which represents the main connection with the
preceding papers [22] and [21], we will present bounds for the GMRES residual (The-
orem 3.1). Section 4 will give an extreme example which shows that the assumption
(3.5) required in Theorem 3.1 need not hold up until the very last step of the GMRES
iteration. This is, of course, a highly contrived situation and not indicative of any
realistic problem we have encountered. Section 5 will explain in more detail just why
the bounds from section 3 are so important for our understanding of GMRES and
related methods. We will prove Theorem 5.1, which is the precise version of (1.2)
and represents the main result of this paper. Section 6 will discuss its consequences
in light of possible scalings. Section 7 will display some computational results and
section 8 will present concluding remarks.

In the paper we will use σi(X) to denote the ith largest singular value of X, use
κ(X) to be the ratio of the largest to the smallest singular value of X, and refer to
κ(X) briefly as the condition number of X. The vector of elements i to j of a vector y
will be denoted yi:j , and ej denotes the jth column of the unit matrix I. We will use
‖ · ‖ to denote the 2-norm and ‖ · ‖F to denote the Frobenius norm. Several quantities
used in our bounds will depend on the iteration step k. For simplicity of notation we
sometimes omit the explicit reference to the iteration step when the dependence is
clear from the context and need not be stressed for any particular reason.

As explained above, this paper proves the precise version of (1.2), which is the
fundamental intermediate step of the whole project, and it assumes exact arithmetic
in all the proofs. However, the underlying discussion of MGS GMRES finite precision
behavior motivates the whole work and affects most of the particular considerations in
this paper. Though we separate the exact arithmetic results from the finite precision
arithmetic discussion as much as possible, we cannot split them entirely. Scaling,
for example, affects both (exact precision) bounds for the GMRES residual norm
developed in this paper and finite precision bounds for loss of orthogonality in the
Arnoldi process. Any discussion of scaling must consider both aspects, which are
generally in conflict. When it will be helpful, we will use the word “ideally” to
refer to a result that would hold using exact arithmetic, and “computationally” or
“numerically” to a result of a finite precision computation.



RESIDUAL BOUNDS IN KRYLOV SUBSPACE METHODS 1903

2. The GMRES method. For a given n by n (usually unsymmetric) nonsingu-
lar matrix A and n-vector b, we wish to solve Ax = b. Given an initial approximation
x0 we form the residual

r0 = b−Ax0, ρ0 = ‖r0‖, v1 = r0/ρ0,(2.1)

and use v1 to initiate the Arnoldi process [4]. At step k this forms Avk, orthogonalizes
it against v1, v2, . . . , vk, and if the resulting vector is nonzero, normalizes it to give
vk+1, giving ideally

AVk = Vk+1Hk+1,k, V T
k+1Vk+1 = Ik+1, Vk+1 = [v1, v2, . . . , vk+1].(2.2)

Here Hk+1,k is a k+1 by k upper Hessenberg matrix with elements hij , where hj+1,j 6=
0, j = 1, 2, . . . , k − 1. If at any stage hk+1,k = 0 we would stop with AVk = VkHk,k.
In this case all the eigenvalues of Hk,k are clearly eigenvalues of A. When hk+1,k 6= 0
the eigenvalues of Hk,k are approximations to some of those of A, and this gives
the Arnoldi method [4]. Computationally, we are unlikely to reach a k such that
hk+1,k = 0, and for solution of equations we stop when we assess the norm of the
residual (ideally given as below in (2.7)) is small enough.

In general, at each step we take xk = x0 + Vkyk as our approximation to the
solution x, which gives the residual

rk = b−Axk = r0 −AVkyk = v1ρ0 − Vk+1Hk+1,k yk

= Vk+1(e1ρ0 −Hk+1,k yk).(2.3)

GMRES seeks yk which minimizes this residual by solving the linear least squares
problem

‖rk‖ = min
y
‖r0 −AVk y‖ = min

y
‖v1ρ0 −AVk y‖.(2.4)

Using (2.2) and (2.3), (2.4) can be formulated as the least squares problem with the
upper Hessenberg matrix Hk+1,k

‖rk‖ = min
y
‖e1ρ0 −Hk+1,k y‖.(2.5)

To solve (2.5) we apply orthogonal rotations (Ji being the rotation in the i, i+ 1
plane through the angle θi) sequentially to Hk+1,k to bring it to upper triangular form
Sk:

Jk · · · J2J1Hk+1,k = QT
kHk+1,k =

(
Sk
0

)
.

The vectors yk and rk ideally then satisfy

Skyk = (QT
k e1ρ0)1:k,(2.6)

‖rk‖ = |eTk+1Q
T
k e1ρ0|

= |ξ1ξ2 · · · ξk| ‖r0‖, ξi = sin θi.(2.7)

The measure (2.7) of the (nonincreasing) residual norm is available without deter-
mining yk, and since yk+1 will usually differ in every element from yk, it would seem
preferable to avoid determining yk or xk until we decide the residual norm (2.7) is



1904 CHRISTOPHER C. PAIGE AND ZDENĚK STRAKOŠ

small enough to stop. Computationally, however, it is not clear that we can base the
stopping criterion on (2.7) alone. The step from (2.4) to (2.5) requires orthogonality
of the columns of Vk+1. However, even if orthogonality of the Arnoldi vectors com-
puted using finite precision arithmetic is well preserved (as in HH GMRES), (2.7)
will not hold for the computed quantities after the residual norm drops near the final
accuracy level; see [7].

Finally, little has been published about the choice of the initial approximation
x0. In many cases x0 = 0 is recommended or considered. For x0 = 0 we have r0 = b
and trivially ‖r0‖ ≤ ‖b‖. This last condition seems very natural and should always
be imposed. For a nonzero x0 it may easily happen that ‖r0‖ > ‖b‖ (even � for
some problems), and any such x0 is a poor initial approximation to the solution x.
Hegedüs [13] suggested that a simple way around this difficulty is to rescale the initial
approximation. Given a preliminary initial guess xp, it is easy to determine the scaling
parameter ζmin such that

‖r0‖ = ‖b−Axpζmin‖ = min
ζ
‖b−Axpζ‖, ζmin =

bTAxp
‖Axp‖2

.(2.8)

Thus, by setting x0 = xpζmin we ensure ‖r0‖ ≤ ‖b‖. The extra cost for implementing
this little trick is negligible; it should be used in GMRES computations whenever a
nonzero x0 is considered. For some related comments see the discussion concerning
the experiments in section 7.

We point out that the previous paragraph does not mean that an arbitrary xp with
(2.8) gives a proper initial approximation x0. Our general feeling is that, even with
(2.8), a nonzero x0 should not be used unless there is a good reason for preferring it
over x0 = 0. It has been observed that without such additional justification, a choice
of nonzero x0 satisfying ‖r0‖ ≤ ‖b‖ can significantly slow down GMRES convergence
[28].

3. Bounds for the GMRES residuals. From the previous section it is clear
that GMRES can be seen as a sequence of least squares problems (2.4) involving
Krylov subspaces of increasing dimensions. In [21] we considered the overdetermined
approximate linear system Bu ≈ c and bounded the least squares (LS) residual

LS residual ≡ min
r,y

‖r‖2 subject to By = c− r(3.1)

from above and from below in terms of the scaled total least squares (STLS) distance

STLS distance ≡ min
s,E,z

‖[s, E]‖F subject to (B + E)zγ = cγ − s,(3.2)

where γ > 0 is the scaling parameter. The bounds from [21] say nothing about an
iterative method, or where B or c come from, and so they are general results. In order
to apply the results from [21] to GMRES we have to identify B, c, and γ with the
proper quantities in GMRES. We have several choices, but as yet there is no choice
which is clearly superior to the others. Therefore we will formulate the bounds in the
following theorem and in section 5 in a general way. Particular scalings (γ and Dk in
the theorem) will be discussed in section 6.

To obtain useful bounds for the kth step of GMRES, we consider c = r0 = v1ρ0

and B = Bk = AVkDk, where Dk is a diagonal matrix of positive scaling coefficients
(Dk > 0). Note that the column scaling by the diagonal matrix Dk does not change
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the optimal residual rk (see (2.4)) and

‖rk‖ = min
y
‖v1ρ0 −AVk y‖ = min

D−1

k
y
‖c−Bk (D−1

k y)‖ .(3.3)

Clearly, for this c and Bk the solution of (3.1) is D−1
k yk, where yk is the solution of

the LS problem (2.4). The column scaling matrix Dk will prove useful later. Note
that, by construction, Bk has full column rank.

We now give bounds on the ‖rk‖ in GMRES, together with bounds on an impor-
tant ratio δk.

Theorem 3.1. Given a scalar γ > 0 and a positive diagonal matrix Dk, use σ(·)
to denote singular values and ‖ · ‖ to denote 2-norms. Let the n by n nonsingular
matrix A, the vectors r0, yk, and rk, the scalar ρ0, and the matrix Vk be as in the
GMRES algorithm (2.1)–(2.5) using exact arithmetic, and let AVk have rank k. De-
note Bk = AVkDk, c = v1ρ0, and define

δk ≡ δk(γ,Dk) ≡ σk+1([cγ,Bk])/σk(Bk) = σk+1([v1ρ0γ,AVkDk])/σk(AVkDk).(3.4)

If

v1 6⊥ {left singular vector subspace of Bk corresponding to σmin(Bk)},(3.5)

then δk < 1 and

µL ≡ σk+1([cγ,Bk]) {γ−2 + ‖D−1
k yk‖2}

1

2 ≤ ‖rk‖
≤ µU ≡ σk+1([cγ,Bk]) {γ−2 + (1− δ2

k)
−1‖D−1

k yk‖2}
1

2 ,(3.6)

‖rk‖
{
γ−2 +

‖D−1

k
yk‖2

1−δ2
k

} 1

2

σk(Bk)

≤ δk ≤
‖rk‖

{γ−2 + ‖D−1
k yk‖2}

1

2σk(Bk)
,(3.7)

γ‖rk‖
‖[cγ,Bk]‖

≤ δk ≤
γ‖rk‖

σk([cγ,Bk])
≤ γ‖rk‖

σk(Bk)
≤ γ‖rk‖

σn(A)σk(Dk)
.(3.8)

Proof. We see cγ = v1ρ0γ and Bk = AVkDk satisfy the conditions and assump-
tions of Theorem 4.1 of [21] for any γ > 0, and from (3.3) we see that rk and D−1

k yk
correspond to r and y in (3.1); so the theorem holds with [21, (4.4)] giving (3.6) and
its equivalent (3.7), while Corollary 6.1 of [21] gives all but the last inequality in (3.8),
which holds since V H

k Vk = I.
Note that apart from the last inequality in (3.8) the result does not depend on

orthogonality of the columns of Vk, since Theorem 4.1 of [21] requires nothing of
B = Bk = AVkDk here except that it has full column rank. The only requirement is
for ‖rk‖ to be a minimum (see (2.4), (3.1), and (3.3)) at each step. It should also be
pointed out that due to monotonicity of ‖rk‖ from GMRES, possible oscillations in
the upper bound (3.6) can be eliminated by taking the minimum

‖rk‖ ≤ min
j=1,...,k

{σj+1([v1ρ0γ,Bj ]) {γ−2 + (1− δ2
j )
−1‖D−1

j yj‖2}
1

2 }.(3.9)

In the paper [21] we compared the bounds for the LS residual used here with
other existing bounds. For example, [21, Corollary 5.1] gives

γ‖rk‖ ≤ δk {‖c‖2γ2 + σ2
k(Bk)− σ2

k+1([cγ,Bk])}
1

2

≤ δk {‖c‖2γ2 + σ2
k(Bk)}

1

2 .(3.10)
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As stated in [21, section 5], our bounds in (3.6) can be significantly better than those
from (3.10). They are also easily applicable to the problem investigated in this paper.
We will therefore not examine (3.10) and the other possible bounds which can be
derived from (3.10) here.

It will be important to examine the tightness of the bounds (3.6). The following
corollary is an immediate consequence of [21, Corollary 4.2].

Corollary 3.2. Under the conditions and assumptions of Theorem 3.1, and
using the notation there together with

η ≡ ‖rk‖ − µL
‖rk‖

, ζ ≡ µU − µL
‖rk‖

,(3.11)

we have the following bound on η and ζ:

0 ≤ η ≤ ζ ≤ γ2‖D−1
k yk‖2

2 + γ2‖D−1
k yk‖2

· δ2
k

1− δ2
k

→ 0 as γ → 0,(3.12)

where the upper bound goes to zero at least as fast as O(γ4) (see (3.8)).
The assumption (3.5) is not necessary for proving the bounds (3.6)–(3.8) and

(3.12). From the proof of [21, Theorem 4.1] it is clear that these bounds require only
δk < 1, and, moreover, the lower bound in (3.6), the upper bound in (3.7) and the
bounds in (3.8) also hold if δk = 1. (The upper bound in (3.6) and the lower bound
(3.7) become∞ and 0 when δk = 1, and so hold trivially.) Using (3.5), however, makes
the theory clean and consistent. The assumption (3.5) is independent of scaling and
it ensures that the bounds do not contain irrelevant quantities; see [22, Remark 4.3].

From (3.12) and (3.8) we see that small δk, γ, ‖rk‖ or ‖D−1
k yk‖/(1− δ2

k) ensures
that the bounds (3.6) are not only very tight, but very tight in a relative sense. The
tightness of the bounds depends in an important way on δk; for δk � 1 we get the
strong relationship from (3.6)

‖rk‖ ≈ σmin([v1ρ0γ,AVkDk]) {γ−2 + ‖D−1
k yk‖2}

1

2 .(3.13)

We know 0 ≤ δk ≤ 1 from (3.4). If δk ≈ 1 the bounds in (3.6) and (3.7) become weak,
so we need to see if δk ≈ 1 is possible. In the GMRES context δk will necessarily
be small as ‖rk‖ → 0 (see (3.8)). Proper scaling can always ensure δk � 1. (For
a fixed Dk it was shown in [22, Corollary 4.1] that if (3.5) holds, then δk < 1, δk
increases and decreases with γ, and (3.8) shows γ → 0 ⇒ δk → 0.) Using this
argument, it appears at first that the disturbing case δk ≈ 1 can easily be eliminated
from our discussion. It turns out, however, that this is not entirely true because the
use of scaling also has disadvantages. We will see that we cannot use an arbitrarily
small γ to ensure δk � 1 without (potentially) damaging the tightness of the bounds
for the loss of orthogonality among the Arnoldi vectors (the tightness of the scaled
version of (1.3)). On the other hand, a scaling which might be appropriate from the
point of view of the formulation of the main result (a scaled version of (1.2); see the
following section) might at the same time increase the value of δk. The choice of
scaling therefore represents a delicate task. Despite these subtle details, we will see
that δk ≈ 1 represents a technical problem but not a serious conceptual difficulty. We
will return to the detailed discussion of this point in section 6.

4. Delayed convergence of GMRES. It is possible for convergence of
GMRES to be very slow and stagnate entirely even with exact arithmetic. Suppose

A = [e2γ2, e3γ3, . . . , enγn, e1γ1], b = e1‖b‖, x0 = 0,
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for some γi 6= 0, i = 1, . . . , n; then in (2.1) and (2.2) for k < n

Vk+1 = [e1, e2, . . . , ek+1], Hk+1,k = [e2γ2, e3γ3, . . . , ek+1γk+1],

and in (2.3) and (2.5)

yk = 0, xk = 0, rk = r0, k = 1, 2, . . . , n− 1;

so any convergence at all is delayed until the solution is obtained at step k = n.
Here we have v1 = e1 ⊥ R(AVk) for k < n, so (3.5) does not hold and δk = 1 for
k = 1, 2, . . . , n− 1. In fact (3.6) degenerates to ‖rk‖ = ‖r0‖ for k < n.

5. Backward error theorem. Now we show why we consider the bounds from
Theorem 3.1 to be so important. This provides the scaled versions of (1.2)–(1.4).
Remember that the scaled equivalents of the finite precision results (1.3)–(1.4) are
only for motivation here, and the full proofs of these will be left to [17].

As noticed in [32] and used in [7] (see also [3]), the Arnoldi process (2.2) with
(2.1) ideally gives the QR factorization of [r0, AVk], since on defining upper triangular
Rk+1 ≡ [e1ρ0, Hk+1,k] we see

[r0, AVk] = Vk+1[e1ρ0, Hk+1,k] = Vk+1Rk+1, V T
k+1Vk+1 = Ik+1.(5.1)

By comparing this with (2.1) and (2.2), we see we may now refer to (5.1) as the
Arnoldi process.

If the orthogonalization in (2.2) is carried out by the MGS technique, then it
is straightforward to show that this MGS Arnoldi process provides Vk+1 and Rk+1,
which are computationally identical to those produced by the QR factorization of
[r0, ÃV k] by MGS. Here, ÃV k indicates that the multiplications Avj , j = 1, . . . , k,
are computed numerically. A parallel statement holds when classical Gram–Schmidt
orthogonalization is used in (2.2).

With a computer using finite precision with unit roundoff ε, the computed vectors
v1, v2, . . . tend to lose orthogonality. It was shown by Björck [5] that using MGS in
the QR factorization C = QR computationally leads to Q such that

‖I −QTQ‖F ≤ κ(C)O(ε).

(For convenience in numerical experiments we use the Frobenius norm.)
Thus from the discussion following (5.1), for the finite precision version of (2.2)

using MGS we have (see (1.3))

‖I − V T
k+1Vk+1‖F ≤ κ([v1ρ0, AVk])O(ε).(5.2)

Note that κ([v1ρ0, AVk]) is used here instead of κ([r0, ÃV k]). Using κ([v1ρ0, AVk]) sim-

plifies further considerations; the difference between κ([v1ρ0, AVk]) and κ([r0, ÃV k])
is absorbed in the multiplicative factor O(ε). For the detailed justification see [7] and
[11].

When MGS is used with exact arithmetic in (5.1), the resulting matrix Vk+1 is
invariant with respect to the column scaling in [v1ρ0γ,AVkDk], where γ > 0 and Dk

is a positive diagonal k by k matrix. It appears that, ignoring a small additional error
of O(ε), the matrix Vk+1 resulting from the finite precision MGS Arnoldi process
(5.1) is invariant with respect to positive column scaling. This important result was
noticed in [11, p. 711], and was partially exploited there. It can be justified by
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the following argument (which is a variant of the argument attributed to Bauer; see
[33, pp. 129–130]). If the scaling factors are always powers of the base of the floating
point arithmetic (powers of 2 for the IEEE FP arithmetic), then the resulting Vk+1

computed in finite precision arithmetic using the MGS Arnoldi process (5.1) will be
exactly the same as the Vk+1 computed in finite precision arithmetic using the same
MGS Arnoldi process for the scaled data [r0γ,AVkDk]. If the scaling factors are
not powers of the base of the floating point arithmetic, then there will be additional
rounding errors proportional to unit roundoff ε. Apparently no formal proof of the
last part has been given, so we hope to include one in [17].

If all the above are true, the loss of orthogonality among the MGS Arnoldi vec-
tors computed via (5.1) with a computer using finite precision arithmetic with unit
roundoff ε is bounded by

‖I − V T
k+1Vk+1‖F ≤ κ([v1ρ0γ,AVkDk])O(ε)(5.3)

for all γ > 0 and positive diagonal k by k matrices Dk. One possibility is to scale the
columns of [v1ρ0γ,AVkDk] so they have unit length. That is, take

γ = ρ−1
0 , Dk = diag (‖Av1‖−1, . . . , ‖Avk‖−1) ≡ diag (‖Avj‖−1).(5.4)

The corresponding condition number and the bound (5.3) would then be no more
than a factor

√
k + 1 away from its minimum (see [29]), so this is nearly optimal

scaling. Other convenient choices will be discussed in the next section. Extensive
experimental evidence suggests that for the nearly optimal scaling (5.4), the bound
(5.3) is tight, and usually

‖I − V T
k+1Vk+1‖F ≈ κ([v1ρ0γ,AVkDk])O(ε).(5.5)

It was observed that when MGS was used in (2.2), leading to the MGS GMRES
method (2.1)–(2.6), loss of orthogonality in Vk+1 was accompanied by a small relative
residual norm ‖rk‖/ρ0; see [11]. That is, significant loss of orthogonality in MGS
GMRES apparently did not occur before convergence measured by ‖rk‖/ρ0 occurred.
This fortuitous behavior was analyzed numerically in [11] and a partial explanation
was offered there. A much stronger and more complete theoretical explanation of
the observed behavior can be derived from the bounds (3.6)–(3.8). As a first step,
‖rk‖/ρ0 must be replaced by a more appropriate convergence characteristic.

We will use the terminology (such as normwise) and results reported in
[14, section 7.1]. The backward error for xk as an approximate solution for Ax = b is
a measure of the amounts by which A and b have to be perturbed so that xk is the
exact solution of the perturbed system (A+ ∆A)xk = b+ ∆b. The normwise relative
backward error of xk defined by

β(xk) ≡ min
β,∆A,∆b

{β : (A+ ∆A)xk = b+ ∆b, ‖∆A‖ ≤ β‖A‖, ‖∆b‖ ≤ β‖b‖}

was shown by Rigal and Gaches [23] (see [14, Theorem 7.1, p. 132]), to satisfy

β(xk) =
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖
=
‖∆Amin‖
‖A‖ =

‖∆bmin‖
‖b‖ .(5.6)

We strongly believe that if no other (more relevant and more sophisticated) cri-
terion is available (such as in [1]), this relative backward error should always be
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preferred to the (relative) residual norm ‖rk‖/‖r0‖ = ‖rk‖/ρ0 in (2.1) when mea-
suring convergence of iterative methods. In practice ‖A‖ has to be replaced by its
approximation—when available—or simply by the Frobenius norm of A. The theoret-
ical reasons for preferring the relative backward error are well known; see, for example,
[2] and [14]. We will add some more practical arguments in section 7. In particular
the residual norm can be very misleading and easily misinterpreted. It is surprising
and somewhat alarming that ‖rk‖/ρ0 remains in use as the main (and usually the
only) indicator of convergence of iterative processes. This statement applies to the
majority of computational results published by numerical analysts. Our results will
put a new emphasis on the importance of the backward error. For GMRES and the
other residual minimizing methods, this raises a key question. If the residual norm is
somewhat in doubt as a measure of convergence, how does this affect the position of
the minimal residual principle as one of the main principles on which practical Krylov
subspace methods are based? The answer needs work, and its further discussion is
beyond the scope of this paper. However, we do not expect that the position of the
minimal residual principle will be considerably shaken by such an analysis; rather
we think it will be reaffirmed. It seems that GMRES, though based on the minimal
residual principle, also produces a very good (nearly optimal) backward error.

We will now describe our main observation. This illustrates and supports the main
goal of our work on MGS GMRES, which is to prove a scaled version of (1.4). Consider
a plot with two lines obtained from the MGS GMRES finite precision computation.
One line represents the relative backward error ‖rk‖/(‖b‖+ ‖A‖ · ‖xk‖) and the other
the loss of orthogonality ‖I − V T

k+1Vk+1‖F (both plotted on the same logarithmic
scale) as a function of the iteration step k. We have observed that these two lines
are always very nearly reflections of each other through the horizontal line defined
by their intersection. For a clear example of this, see the dashed lines in Figure 7.1.
In other words, in finite precision MGS GMRES computations, the product of the
normwise relative backward error and the loss of orthogonality is (as a function of
the iteration step) almost constant and equal to the order of the machine precision ε.
The goal of this paper and [17] is to present a theoretical proof of this observed fact,
and its fundamental consequences, which are that orthogonality among the computed
MGS Arnoldi vectors is effectively maintained until convergence and total loss of
orthogonality implies convergence of the normwise relative backward error to O(ε),
which is equivalent to (normwise) backward stability of MGS GMRES.

Using the results presented in [21] the main ideas are simple and elegant. The
proof itself (as yet incomplete) is, however, technical and tedious. Therefore in
this paper we restrict ourselves to proving and discussing exact arithmetic results
about the product of the normwise relative backward error and the condition number
κ([v1ρ0γ,AVkDk]); with finite precision arithmetic this condition number controls the
numerical loss of orthogonality via (5.5). A detailed rounding error analysis, together
with the results relating the genuine loss of orthogonality ‖I − V T

k+1Vk+1‖F to the
relative backward error, is intended for [17].

In the following theorem the product of the normwise relative backward error of
GMRES and the condition number of the scaled matrix [v1ρ0γ,AVkDk] is bounded
from below and from above. Note that the theorem assumes exact arithmetic and
therefore the result holds for GMRES in general. The theorem is formulated for any
γ > 0 and any positive diagonal Dk; bounds corresponding to the specific choices of
γ and Dk will be given in section 6.
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Theorem 5.1. Under the conditions and assumptions of Theorem 3.1, and using
the notation there, let σ1 ≡ σ1([v1ρ0γ,AVkDk]) = ‖[v1ρ0γ,AVkDk]‖,
κk ≡ κ([v1ρ0γ,AVkDk]). Then

σ1√
2
· {γ

−2 + ‖D−1
k yk‖2}

1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

≤ σ1
{γ−2 + ‖D−1

k yk‖2}
1

2

‖b‖+ ‖A‖ · ‖xk‖
(5.7)

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{γ−2 + (1− δ2

k)
−1‖D−1

k yk‖2}
1

2

‖b‖+ ‖A‖ · ‖xk‖
≤ σ1

{γ−2 + (1− δ2
k)
−1‖D−1

k yk‖2}
1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

.

Proof. The tighter lower and upper bounds follow immediately from (3.6) in
Theorem 3.1. However,

1√
2
≤ f

(‖A‖ · ‖xk‖
‖b‖

)
=
{‖b‖2 + ‖A‖2‖xk‖2}

1

2

‖b‖+ ‖A‖ · ‖xk‖
≤ 1,(5.8)

since for ω ≥ 0, f(ω) ≡ (1 + ω2)
1

2 /(1 + ω) satisfies f(0) = 1, f(ω) < 1 for ω > 0,
f(ω) → 1 for ω → ∞, and f(ω) has for ω > 0 a single minimum f(1) =

√
2/2. This

gives the weaker lower and upper bounds in (5.7).

Note that the ratio of the tighter upper and lower bounds is (exactly as in (3.6))

ν ≡ {γ−2 + (1− δ2
k)
−1‖D−1

k yk‖2}
1

2

{γ−2 + ‖D−1
k yk‖2}

1

2

(5.9)

and the corresponding ratio of the weaker bounds is
√

2 ν. We will prefer the weaker
bounds because they are convenient for the discussion of the particular scalings in the
next section, and the factor

√
2 does not affect our considerations.

6. Scaling choices. There is no easy preference for the choice of scaling, since
we have to consider several aspects that are unfortunately in conflict.

As described before, our ultimate goal is to relate the loss of orthogonality among
the Arnoldi vectors to the convergence of MGS GMRES measured by the normwise
relative backward error by obtaining a scaled version of (1.4). Considering (5.3) it
seems that the role of scaling is to minimize κ([v1ρ0γ,AVkDk]), and the nearly opti-
mal scaling (5.4) seems to be the right choice. Scaling decreasing κ([v1ρ0γ,AVkDk])
may, however, increase the value of δ(γ,Dk) and therefore act against the tight-
ness of the bounds in Theorem 5.1; see (3.8) and (3.12). While decreasing γ de-
creases δk [22, Corollary 4.1], decreasing entries in Dk increase the upper bounds in
(3.8) and potentially also δk. In order to describe this in more detail we denote, for
the moment, ϑ ≡ (σk(Dk))

−1, D
′

k ≡ ϑDk, σk(D
′

k) = 1. Now ϑσ1([v1ρ0γ,AVkDk]) =

σ1([v1ρ0γϑ,AVkD
′

k]), κ([v1ρ0γ,AVkDk]) = κ([v1ρ0γϑ,AVkD
′

k]), and for δk in (3.4)

δk ≡ δk(γ,Dk) =
σk+1([v1ρ0γ,AVkDk])

σk(AVkDk)

=
σk+1([v1ρ0γϑ,AVkD

′

k])

σk(AVkD
′

k)
= δk(γϑ,D

′

k).(6.1)

This shows the bounds in Theorem 5.1 rescale trivially, giving the same results for
the scaling γ, Dk = ϑ−1D

′

k, as for the scaling γϑ, D
′

k. It is clear from [22, Corollary
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4.1] that, for a fixed D
′

k, δk(γϑ,D
′

k) increases monotonically with γϑ, and in some cir-
cumstances it can be close to unity. (We assume that the assumptions of Theorem 3.1
hold and therefore δk < 1 always.) It follows that if ϑ is very large (resulting in large
γϑ), then δk(γϑ,D

′

k) can be close to unity. This negatively affects the tightness of
the bounds in Theorem 5.1. Consequently, the near optimal tightness in (5.3) might
be achieved at the cost of weakening (5.7). Similarly, weakening (5.3) may result in a
tighter (5.7).

Please notice that varying ϑ (for a fixed D
′

k) has, due to (6.1), the same effect

on δk(γ,Dk) = δk(γ, ϑ
−1D

′

k) = δk(γϑ,D
′

k) as varying the scaling parameter γ. It
therefore need not be considered here.

To study further the effects of scaling, we will discuss three specific cases: no scal-
ing (γ = 1, Dk = I), the nearly optimal column scaling γ = ρ−1

0 , Dk = diag(‖Avj‖−1),
and the norm scaling γ = ‖b‖−1, Dk = ‖A‖−1I. We will consider only the weaker
bounds given by Theorem 5.1.

Proposition 6.1. Under the conditions and assumptions of Theorem 3.1 and
using the notation of Theorem 5.1, we have the following bounds:
With no scaling (γ = 1, Dk = I) we have δk ≡ δk(1, I), σ1 ≡ σ1([r0, AVk]), κk ≡
κ([r0, AVk]), and the weaker bounds from (5.7) give

χL1 ≡
σ1√

2
· {1 + ‖yk‖2}

1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{1 + (1− δ2

k)
−1‖yk‖2}

1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

≡ χU1.(6.2)

The nearly optimal column scaling γ = ρ−1
0 , Dk = diag(‖Avj‖−1) gives

δk ≡ δk(ρ
−1
0 , Dk), σ1 ≡ σ1([v1, AVkDk]), κk ≡ κ([v1, AVkDk]), and

χL2 ≡
σ1√

2
· {ρ2

0 + ‖D−1
k yk‖2}

1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{ρ2

0 + (1− δ2
k)
−1‖D−1

k yk‖2}
1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

≡ χU2.(6.3)

Finally, the scaling γ = ‖b‖−1, Dk = ‖A‖−1I gives

δk ≡ δk

(‖A‖
‖b‖ , I

)
, σ1 ≡ σ1

([
v1ρ0

‖b‖ ,
AVk
‖A‖

])
, κk ≡ κ

([
v1ρ0

‖b‖ ,
AVk
‖A‖

])
,(6.4)

χL3 ≡
σ1√

2
· {‖b‖

2 + ‖A‖2‖yk‖2}
1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{‖b‖2 + (1− δ2

k)
−1‖A‖2‖yk‖2}

1

2

{‖b‖2 + ‖A‖2‖xk‖2}
1

2

≡ χU3.(6.5)

Throughout this discussion of GMRES in exact arithmetic, we could have replaced
‖yk‖2 by ‖xk−x0‖2, since xk = x0 +Vkyk. However, we chose not to do this in order
that the results be relevant to the finite precision case as well, where Vk may lose
orthogonality. The exception which will follow will allow us to write the result (6.5)
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in a very simple form. Consider for the moment x0 = 0. Then (ideally) ‖xk‖ = ‖yk‖
and when δk(‖b‖−1‖A‖, I) � 1, (6.5) reduces to (with the definitions in (6.4))

σ1√
2
≤ κk

‖rk‖
‖b‖+ ‖A‖ · ‖xk‖

<∼ σ1 .(6.6)

For the scaling in (6.3), each of the k+ 1 columns of [v1, AVkDk] has a 2-norm of
1, so

1 ≤ σ1 ≡ ‖[v1ρ0γ,AVkDk]‖ ≤
√
k + 1 .(6.7)

For the scaling in (6.4) and x0 chosen from (2.8), the 2-norm of each column of
[v1ρ0‖b‖−1, AVk‖A‖−1] is bounded above by 1, so the upper bound in (6.7) holds. If
we assume x0 = 0 as well, then v1ρ0 = r0 = b, so the first column has the 2-norm
of 1, and all of (6.7) holds. However, generalizing a suggestion by Ruiz [26], for any
matrix partitioned into two submatrices

max {‖W‖, ‖Z‖} ≤ ‖[W,Z]‖ = max
‖w‖2+‖z‖2=1

‖Ww + Zz‖

≤ max
‖w‖2+‖z‖2=1

{‖W‖‖w‖+ ‖Z‖‖z‖}

= max
‖w‖2+‖z‖2=1

(‖W‖, ‖Z‖)(‖w‖, ‖z‖)T

≤ {‖W‖2 + ‖Z‖2} 1

2 .(6.8)

Applying these bounds to ‖[v1ρ0γ,AVkDk]‖ with scaling in (6.4) and x0 = 0 gives

1 ≤ σ1 ≡ ‖[v1ρ0γ,AVkDk]‖ ≤
√

2 .(6.9)

Thus for the scaling in (6.4) with x0 = 0, both (6.6) and (6.9) hold, which gives the
simplest form of our main result—the correct version of (1.2).

Proposition 6.2. Under the conditions and assumptions of Theorem 3.1, using
the notation of Theorem 5.1 and assuming that δk � 1, we have with γ = ‖b‖−1,
Dk = ‖A‖−1, and x0 = 0:

1√
2
≤ κk

‖rk‖
‖b‖+ ‖A‖ · ‖xk‖

<∼
√

2,(6.10)

which can be written as

κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖
= O(1) .(6.11)

The last results hold even for nonzero x0 whenever ‖yk‖ = O(‖xk‖). (Numerical
experiments suggest that for well chosen x0 (see (2.8)), this assumption is very re-
alistic.) Because of the simple form of (6.10) we call the scaling in (6.4) scaling for
elegance. In the experiments in section 7 we will compare the bounds χL1, χL2, and
χL3, and χU1, χU2, and χU3, together with the effects of the particular scalings on the
tightness of (5.3).

In an iterative solution of equations with nonsingular A we expect ‖rk‖ → 0
so δk → 0 (see (3.8)), and δk � 1 is necessary eventually. For a general (finite
dimensional) problem this seems trivial, but there are extreme possibilities: δk may,
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for example, be close to unity (or δk = 1 in some special cases) for k = 1, 2, . . . , n− 1
and δn = 0 (see section 4). However, in many practical problems there exists a k0

much smaller than n such that δk � 1 for k = k0, k0 + 1, . . . , and in Corollary 3.2

0 ≤ η = η(k) ≈ 0(6.12)

holds for k > k0. In other problems δk � 1 for a number of steps, but then suddenly
δk appears very close to unity. In these cases the smoothed upper bound (3.9) might
be considered—our experiments suggest it is usually close to ‖rk‖ for all iteration
steps k. Typical examples are shown in section 7.

Under the assumptions of Theorem 3.1 δk = δk(γ,Dk) is bounded away from
unity for all positive γ, Dk [21, Theorem 3.1] and, unless the projection of r0 onto
the left singular vector subspace corresponding to σmin(AVkDk) of the matrix AVkDk

is very small compared to ‖rk‖, we can expect that the bounds for ‖rk‖ given by
Theorem 3.1 are sufficiently tight. Still, the choices of Dk having small elements on
the diagonal seems very unfortunate because they (potentially) increase the value
of δk. Fortunately, as shown in section 7, in practical computations small diagonal
elements in Dk have a much less dramatic effect on δk, and on the tightness of the
bounds (3.6) for ‖rk‖, than the weaker upper bound in (3.8) would suggest. Moreover,
we will show that in our experiments the scaling γ = ‖b‖−1, Dk = ‖A‖−1I (which
provided the result (6.10)) indeed relaxed the tightness of the bounds (3.6) for ‖rk‖,
but the resulting relaxed bounds always remained very acceptable.

As mentioned above, under the assumption (3.5) δk is bounded away from unity,
but it can still get very close to unity for some k. We have observed numerically (see
also section 7) that with no scaling (γ = 1, Dk = I), δk gets close to unity quite
rarely. For the other scalings considered in this paper (which are important for the
formulation of our results), some δk may be much closer to unity, and that may also
happen more often. Still, as we will now show for the example of the scaling for
elegance γ = ‖b‖−1, Dk = ‖A‖−1I, the situation δk ≈ 1 cannot occur after GMRES
has converged to a reasonable accuracy, and therefore it does not represent a serious
obstacle for our theory. From (3.8) we have

δk ≤ γ‖rk‖/σk(AVkDk),(6.13)

which with the scaling γ = ‖b‖−1, Dk = ‖A‖−1I, and with ‖r0‖ ≤ ‖b‖ (perhaps via
(2.8)) and V T

k Vk = I, gives a bound in terms of the relative residual ‖rk‖/‖r0‖:

δk ≤
‖rk‖ · ‖A‖
‖b‖ · σk(AVk)

≤ ‖rk‖
‖r0‖

κ(A).(6.14)

Similarly (using the same scaling) with ‖xk‖ = ‖yk‖ we can obtain a bound in terms
of the relative backward error

δk ≤
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖
√

2κ(A) = β(xk)
√

2κ(A).(6.15)

This follows using (3.7) and (5.8), since

δk ≤
‖rk‖

{‖b‖2 + ‖A‖2‖xk‖2}1/2σk(AVk)/‖A‖
≤ β(xk)

√
2κ(A).

Thus, when the relative residual norm drops significantly below κ(A)−1, or the relative
backward error drops significantly below {

√
2κ(A)}−1, δk = δk(‖b‖−1‖A‖, I) � 1 and

(6.11) will hold.
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For any given Dk there is a particular value of the scaling parameter γ such that
δ(γ,Dk) is related to ‖rk‖ even in a more tight way than described above. For a

fixed Dk define γ
(k)
0 = γ

(k)
0 (Dk) = σk(AVkDk)/ρ0. With the scaling Dk, γ

(k)
0 the first

column of the matrix [v1ρ0γ
(k)
0 , AVkDk] is equal to σk(AVkDk)v1 and has the norm

equal to σk(AVkDk). Moreover, for this Dk, δk(γ,Dk) < 1 for all γ < γ
(k)
0 , and

‖rk‖ = ρ0 if and only if δk(γ
(k)
0 , Dk) = 1 ,(6.16)

δk(γ
(k)
0 , Dk) ≤ ‖rk‖/ρ0 ≤

√
2 δk(γ

(k)
0 , Dk);(6.17)

see [15, (3.11) and (3.12)]. Though with this particular scaling the relationship be-

tween δk(γ
(k)
0 , Dk) and ‖rk‖ is extremely simple, it will not lead to a simple form of

the main result (1.2). Also, possibly small value γ
(k)
0 may inconveniently relax the

bound (5.3) and significantly complicate the analysis left to [17]. Therefore we have
not used this scaling in our paper.

The approach here might also be useful for Krylov subspace methods which
minimize other norms, such as minimum error methods, as we now show. Let
Vk = [v1, . . . , vk] be generated in some way, and r0 = b−Ax0, ρ0 = ‖r0‖, v1 = r0/ρ0,
xk = x0 +Vkyk, rk = b−Axk = r0−AVkyk, with A nonsingular. Consider, for exam-
ple, a method that minimizes ‖A−1rk‖ = ‖x−xk‖ at each step (so yk will differ from
that in GMRES). Then taking [c,B] = A−1[v1ρ0, AVk] = [(x− x0), Vk] and γ = ρ−1

0 ,
Theorem 4.1 of [21] gives (with δk = σk+1([(x− x0)ρ

−1
0 , Vk])/σk(Vk)) the bounds

σk+1([(x− x0)ρ
−1
0 , Vk]) {ρ2

0 + ‖yk‖2}
1

2 ≤ ‖x− xk‖(6.18)

≤ σk+1([(x− x0)ρ
−1
0 , Vk]) {ρ2

0 + (1− δ2
k)
−1‖yk‖2}

1

2 ,

so at least this theory holds for more general minimum norm methods than just
GMRES. Of course, if V T

k Vk = I, then σk(Vk) = 1. We have not studied how this
might be used.

It appears that the approach can also be applied to methods which minimize some
norm with respect to other Krylov subspaces, such as LSQR [20, 19] for solution of
equations with unsymmetric A, or LS solutions with rectangular A. It may also be
useful for methods which are not based on Krylov subspaces.

7. Experimental results. We will illustrate our theoretical results with nu-
merical experiments. We initiated these to look for possible limitations in our theory.
We wished to check the validity of our assumptions in practical computations. We
also wished to find out to what extent the results developed here for exact precision
GMRES would hold for quantities computed in the presence of rounding errors.

In our theory δk = σk+1([v1ρ0γ,AVkDk])/σk(AVkDk) plays an important role.
Section 4 showed it is possible to have δk = 1 for all but the last step, and in that
example the residual stagnated at ‖r0‖ until the final step. On the other hand, δk ≈ 1

cannot in general (for scalings different from Dk, γ
(k)
0 (Dk), see (6.16), (6.17)) be linked

with the (approximate) stagnation of GMRES; the GMRES residual norm may almost
stagnate while δk � 1, and it can decrease rapidly while δk ≈ 1. If δk ≈ 1, then there
can be a large gap between the upper and lower bounds in (3.6). This does not negate
the argument that orthogonality is effectively maintained until convergence in finite
precision MGS GMRES (δk � 1 is necessary eventually), but it does make us question
the tightness of the bounds in (3.6).
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Fortunately, experiments suggest that (3.9) is always a sufficiently good (and
mostly very good) upper bound. We also found that with no scaling (γ = 1, Dk = I)
δk is often reasonably below unity during the entire computation. As k increases
δk can decrease, then increase, but it must eventually become small, for from (3.7),
(3.8), (6.14), and (6.15) we see the upper bound on δk must decrease as ‖rk‖ or
‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖) becomes sufficiently small. However, when δk � 1 from the
start to the end,

‖rk‖ ≈ σk+1([v1ρ0γ,AVkDk]) {γ−2 + ‖D−1
k yk‖2}

1

2

throughout the computation, and the lower and upper bounds are very close. Thus
we can have this unexpectedly very close relationship between ‖rk‖ and the smallest
singular value of [v1ρ0γ,AVkDk]. An interesting experience was that even when δk ≈
1, leading to the upper bound being significantly larger than the lower bound in (3.6),
it was not always the upper bound which was weak. We frequently observed that
the upper bound was tight while the lower bound was a noticeable underestimate
for ‖rk‖. Moreover, the dependence of δk and the tightness of the bounds (3.6) on
the scaling parameters γ,Dk was quite weak. We will illustrate these observations
by presenting results of numerical experiments showing different types of behavior of
δk. These observations could also be further studied theoretically using the results of
Proposition 6.1 or some other approach, but we do not wish to go into it here.

In all experiments b = e ≡ (1, . . . , 1)T . Except for the experiment shown in
Figure 7.10 (where x0 = randn(n, 1) from MATLAB 5.3), x0 is always determined
from (2.8) with xp = randn(n, 1) from MATLAB 5.3. These choices of x0 and xp are
worth a comment. We wish to illustrate our theoretical results on some nontrivial
examples. The randomly generated initial vectors x0 (or xp in (2.8)) were chosen in
our illustrations to avoid any correlation between the initial approximation and the
solution. This is because we sought to illustrate cases where there were no hidden
relationship that affected the computations. In practical computations, however, for
the very same reason, a randomly chosen initial approximation should be avoided.
Sometimes a random initial approximation x0 is reported to give faster convergence
than the other popular choice x0 = 0. As we explain later, we believe that statements
like that represent a serious misunderstanding caused by a superficial view of con-
vergence. As far as genuine convergence characteristics are concerned, we argue that
such statements are of no relevance.

Experiments were performed on a Silicon Graphics Origin 200 Workstation using
MATLAB 5.3, ε = 1.11 × 10−16. In all experiments matrices from the Rutherford–
Boeing collection were used. Results for the matrix FS1836 with n = 183, ‖A‖ ≈
1.2∗109, κ(A) ≈ 1.5∗1011 (see Figures 7.1–7.4) illustrate improvement of the tightness
of the bounds (3.6) as the residual norm drops. For the matrix WEST0132 with
n = 132, ‖A‖ ≈ 3.2 ∗ 105, κ(A) ≈ 6.4 ∗ 1011 (see Figures 7.5–7.8), the tightness of
the bounds (3.6) oscillates during the whole computation. Results for the matrix
STEAM1 with n = 240, ‖A‖ ≈ 2.2 ∗ 107, κ(A) ≈ 3.1 ∗ 107 (see Figures 7.9 and 7.10)
represent the case when the bounds (3.6) are very tight from the start to the end.

We have given two figures for STEAM1 and four figures for the other matrices,
so we now indicate what is in each figure. Figures 7.1, 7.5, 7.9, and 7.10 make the
same use of lines. The dots show the norm of the directly computed residual divided
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Fig. 7.1. Norm of the directly computed relative residual (dots), the smooth upper bound (solid
line), the loss of orthogonality among the Arnoldi vectors measured in the Frobenius norm (dashed
line, monotonically increasing) and the normwise relative backward error (dashed line, mostly de-
creasing), norm of the approximate solution (dotted line), and the relative error (dashed-dotted line)
for MGS GMRES applied to FS1836.
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Fig. 7.2. The product of the normwise relative backward error and the loss of orthogonality
among the Arnoldi vectors measured in the Frobenius norm divided by the machine precision unit
ε (dots), and the product of the normwise relative backward error β(xk) and the condition number
of the matrix [v1ρ0γ,AVkDk] for different scalings: the nearly optimal column scaling γ = ρ−1

0 ,
Dk = diag(‖Avj‖

−1) (solid line), the norm scaling (scaling for elegance) γ = ‖b‖−1, Dk = ‖A‖−1I

(dotted line), and no scaling γ = 1, Dk = I (dashed line) for MGS GMRES applied to FS1836.
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Fig. 7.3. Norm of the directly computed relative residual (dots), and its lower and upper
bounds µL and µU for different scalings: the nearly optimal column scaling (solid lines), the scaling
for elegance (dotted lines), and no scaling (dashed lines) for MGS GMRES applied to FS1836.
Until the orthogonality is completely lost, the upper bounds are indistinguishable from the actual
quantities.
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Fig. 7.4. Product of the backward error and the loss of orthogonality among the Arnoldi vectors
measured in the Frobenius norm divided by the machine precision unit ε (dots), and the values χL
and χU for different scalings: the nearly optimal column scaling (solid lines), the scaling for elegance
(dotted lines), and no scaling (dashed lines) for MGS GMRES applied to FS1836.
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Fig. 7.5. Norm of the directly computed relative residual (dots), the smooth upper bound (solid
line), the loss of orthogonality among the Arnoldi vectors measured in the Frobenius norm (dashed
line, monotonically increasing) and the normwise relative backward error (dashed line, mostly de-
creasing), norm of the approximate solution (dotted line), and the relative error (dashed-dotted line)
for MGS GMRES applied to WEST0132.
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Fig. 7.6. Product of the normwise relative backward error and the loss of orthogonality among
the Arnoldi vectors measured in the Frobenius norm divided by the machine precision unit (dots), and
product of the backward error and the condition number of the matrix [v1ρ0γ,AVkDk] for different
scalings: the nearly optimal column scaling (solid line), the scaling for elegance (dotted line), and
no scaling (dashed line) for MGS GMRES applied to WEST0132.
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Fig. 7.7. Norm of the directly computed relative residual(dots), and its lower and upper bounds
µL and µU for different scalings: the nearly optimal column scaling (solid lines), the scaling for
elegance (dotted lines), and no scaling (dashed lines) for MGS GMRES applied to WEST0132.
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Fig. 7.8. Product of the backward error and the loss of orthogonality among the Arnoldi vectors
measured in the Frobenius norm divided by the machine precision unit ε (dots), and the values χL
and χU for different scalings: the nearly optimal column scaling (solid lines), the scaling for elegance
(dotted lines), and no scaling (dashed lines) for MGS GMRES applied to WEST0132.
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Fig. 7.9. Norm of the directly computed relative residual (dots), the smooth upper bound (solid
line), the loss of orthogonality among the Arnoldi vectors measured in the Frobenius norm (dashed
line, monotonically increasing) and the normwise relative backward error (dashed line, mostly de-
creasing), norm of the approximate solution (dotted line), and the relative error (dashed-dotted line)
for MGS GMRES applied to STEAM240.
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Fig. 7.10. Norm of the directly computed relative residual (dots), the loss of orthogonality
among the Arnoldi vectors measured in the Frobenius norm (dashed line, monotonically increasing)
and the normwise relative backward error (dashed line, mostly decreasing), norm of the approxi-
mate solution (dotted line), and the relative error (dashed-dotted line) for MGS GMRES applied to
STEAM240 with randomly chosen initial approximation x0.
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by ‖r0‖, that is, ‖b−Axk‖/‖r0‖, which we call the relative residual. (We do not give
the iteratively computed residual norm (2.7); until near convergence, it was always
graphically indistinguishable from the norm of the directly computed residual.) The
solid line gives the smoothed upper bound (3.9) divided by ‖r0‖. The dashed-dotted
line gives the normalized norm of the error ‖x−xk‖/‖x−x0‖; the dotted line gives the
norm of the approximate solution ‖xk‖. The dashed lines give the loss of orthogonality
among the Arnoldi vectors measured in the Frobenius norm ‖I−V T

k Vk‖F (essentially
increasing), as well as the normwise relative backward error ‖rk‖/(‖b‖+ ‖A‖ · ‖xk‖),
which is mostly decreasing. Note the spectacular symmetry of the loss of orthogonality
and the backward error in every case.

For each matrix, the remaining figures present and compare convergence char-
acteristics, upper and lower bounds, and several quantities illustrating our theory
for different scalings of the matrix [v1ρ0γ,AVkDk]. In each of Figures 7.2, 7.3,
7.4 (for FS1836) and 7.6, 7.7, 7.8 (for WEST0132) dashed lines represent results
with no scaling γ = 1, Dk = I, solid lines the nearly optimal column scaling
γ = ρ−1

0 , Dk = diag(‖Avj‖−1), and dotted lines the scaling for elegance γ = ‖b‖−1,
Dk = ‖A‖−1I.

Figures 7.2 and 7.6 are devoted to the tightness of the bound (5.3) for the loss
of orthogonality among the Arnoldi vectors. The dots show the product of the norm-
wise relative backward error and the loss of orthogonality divided by the machine
precision unit {‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖)} · ‖I − V T

k Vk‖F / ε, the dashed, solid, and
dotted lines the product {‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖)} · κ([v1ρ0γ,AVkDk]) for different
scalings. The figures show that (5.5) is well justified for the nearly optimal column
scaling. Replacing the actual loss of orthogonality ‖I−V T

k Vk‖F in our considerations
by {κ([v1ρ0γ,AVkDk]) ε} does not cause a significant difference (except perhaps at
the beginning of the process with no scaling) even for the other scalings. Close to
convergence (5.5) holds for all the scalings considered in our paper.

Figures 7.3 and 7.7 are devoted to normalized residual bounds, that is, bounds on
‖b−Axk‖/‖r0‖, which are denoted by points. The pairs of dashed, solid, and dotted
lines give the upper and lower bounds µU and µL from (3.6) for different scalings. We
can see that the effect of scaling on the bounds in (3.6) is quite insignificant.

Finally, Figures 7.4 and 7.8 compare the product of the normwise relative back-
ward error and the loss of orthogonality divided by the machine precision unit, that
is, {‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖)} · ‖I − V T

k Vk‖F / ε (denoted by dots), with the upper
and lower bounds χU and χL from (6.2) (dashed lines), (6.3) (solid lines), and (6.5)
(dotted lines). These figures reflect the possible lack of tightness of the bound for the
loss of orthogonality among the Arnoldi vectors shown separately on Figures 7.2 and
7.6, as well as the lack of tightness of the bounds in (6.2)–(6.5). They demonstrate
that though the results developed in this paper assume exact arithmetic, and though
the form of the bounds in (6.2)–(6.5) seems a bit complicated, the simplest form of
our main result (6.11) holds as convergence is approached for all our scalings and for
the quantities actually computed using finite precision arithmetic.

The experiments for the figures discussed up to now (and for Figure 7.9) used
b = e and x0 determined from (2.8) with xp = randn(n, 1) from MATLAB 5.3. The
remaining Figure 7.10 was computed for x0 = randn(n, 1) from MATLAB 5.3 without
using (2.8). Both Figures 7.9 and 7.10 were computed for the matrix STEAM1, and
they show the same quantities as Figures 7.1 and 7.5. If we concentrate on the relative
residual norm only, then it looks as if Figure 7.10 shows much better convergence
(faster, and to much better accuracy) than Figure 7.9. Such a view on convergence,
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though understandable, is completely wrong. We cannot give a full quantitative
explanation within this paper; however, we will present an intuitive but clear argument
on which such an explanation will eventually be based. By using x0 = randn(n, 1)
and then computing the initial residual as r0 = b−Ax0 = e−Ax0 (as on Figure 7.10)
we correlate the initial residual strongly with the dominating parts of the operator
A. (Note that all the matrices used here have some dominating components.) In all
cases the norm of the resulting initial residual is large, ‖r0‖ � ‖b‖. At the early stage
of computation this artificially created dominating information is eliminated, which
creates an illusion of fast convergence. However, no real fast convergence is taking
place, as you can see on the error convergence curve, and the “good final accuracy”
is due to the fact that the initial residual is large. For b = e and x0 determined from
(2.8) with xp = randn(n, 1) from MATLAB 5.3 we get ‖x0‖ � 1 and x0 ≈ 0. Then
r0 contains practically no information about the dominating parts of A, the problem
is difficult to solve, and the convergence is (for many steps) slow. Still, this choice
(which produces results very close to those with the choice x0 = 0) gives the right
information about the behavior of GMRES when applied to the problem Ax = b,
b = e. The illusion of fast convergence and better final accuracy for a random x0

has evolved among some users of numerical software perhaps as a side effect of using
the norm of the relative residual for displaying convergence. Our point is that the
illusive role of a random x0 can easily be revealed by using the absolute values of the
residual norm for displaying convergence and by comparing the convergence curve
for a random x0 to that for the initial approximation set to zero (x0 = 0). Finally,
please note the correspondence of the error and the backward error when comparing
Figures 7.10 and 7.9.

Now we comment on particular characteristics of each problem. For the matrix
FS1836 in Figures 7.1–7.4 the value of δk rises until it is close to unity, stays there for
a few iteration steps, then follows the descent of the residual norm. For all scalings the
upper bounds µU (for ‖rk‖) are very tight until convergence, the lower bounds µL (for
‖rk‖) are weak when δk ≈ 1, but no scaling (γ = 1, Dk = I) gives a significantly tighter
lower bound than the other two at the early stages of the computation (Figure 7.3).
On the other hand, at the early stages of the computation the condition number of
the matrix [v1ρ0, AVk] is for no scaling much larger than for the other scalings, which
explains the difference between the dashed and the other lines on Figures 7.2 and 7.4
for k from 1 to 10. After convergence is approached, all scalings produce about the
same results.

For the matrix WEST0132 (in Figures 7.5–7.8) the value of δk is close to unity
(with some oscillations) for most iteration steps. The upper and lower bounds µU and
µL differ significantly until the sharp drop of the residual. Scalings are not important.
Note that despite the oscillations (we have chosen this matrix on purpose because it
seems to produce challenging results; many other examples not presented here give
much smoother behavior) all the lines on Figures 7.6 and 7.8 converge together as the
sharp drop of the residual is approached.

For the matrix STEAM1 we omit figures analogous to Figures 7.2–7.4 for FS1836
and Figures 7.6–7.8 for WEST0132. The omitted figures would show a good agreement
of the computed results with our theory; they do not offer any other information, and
therefore we see no reason for extending the length of the paper by including them.

Summarizing, our experiments suggest that the equivalents of Theorems 3.1 and
5.1, of the Propositions 6.1 and 6.2 (where κk will be replaced by ‖I−V T

k+1Vk+1‖F and
O(1) by O(ε)), hold for the numerically computed quantities. However, the statements
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must be slightly modified to account for the effect of rounding errors, especially for
the influence of the loss of orthogonality on the size of the directly computed residuals
‖b−Axk‖. A rigorous proof will require further work and is intended in [17].

8. Conclusion. In Krylov subspace methods, approximate solutions to matrix
problems are usually constructed by using orthogonality relations and projections.
Orthogonality and projections create a mathematical elegance and beauty in this
context. In the presence of rounding errors orthogonality and projection properties
are gradually (and sometimes very quickly) lost. Fortunately, as was first shown for
A symmetric and the Lanczos method (see, for example, [16], [10], [12]), not all the
mathematical elegance need be lost with them.

This paper is devoted to GMRES, and our fundamental hypothesis is as follows.
When the Arnoldi vectors are computed via the finite precision MGS process, the loss
of orthogonality is related in a straightforward way to the convergence of GMRES.
In particular, orthogonality among the Arnoldi vectors is effectively maintained until
the normwise relative backward error converges close to the machine precision level.
If we assume that the bound for the loss of orthogonality among the Arnoldi vectors
is tight and (5.5) holds, then our hypothesis could be strengthened to the following:
the product of the loss of orthogonality among the Arnoldi vectors (measured in the
Frobenius norm) and the normwise relative backward error is for any iteration step
a small multiple of the machine precision unit. This last statement would then im-
ply that total loss of orthogonality among the Arnoldi vectors computed via finite
precision MGS orthogonalization would mean convergence of the normwise relative
backward error to machine precision level, and, consequently, it would prove back-
ward stability of MGS GMRES. Our work can also be seen as another step on the
way (probably started by Sheffield (see [6], especially the abstract and section 2, also
[7])) towards the full justification of the MGS orthogonalization in competition with
orthogonalization by Householder reflections for certain classes of problems.

Note that in the present paper we have not proven the finite precision versions of
the statements formulated above. Our paper assumes exact arithmetic in its theoret-
ical part and carries out groundwork for the detailed rounding error analysis of the
MGS GMRES which we plan to publish in [17].
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