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1 Introduction

We will useR(B) to denote the range (column space) of a matrixB. Two
useful approaches to solving the overdetermined approximate linear system

Bx ≈ c, B ann by k matrix, c ann-vector, c /∈ R(B),(1.1)

are ordinary least squares (LS, see for example [1], [5, Sect. 5.3]) and scaled
total least squares (STLS, presented in [14] where it was called weighted
total least squares, and developed further in [12]). STLS is a generalization
of total least squares (TLS, see [3,4], and for example [1, Sect. 4.6], [5,
Sect. 12.3], [9]).

In LS we seek (we use‖ · ‖ to denote the vector 2-norm)
LS distance ≡ min

r,y
‖r‖ subject to By = c− r.(1.2)

In STLS, for a given parameterγ > 0, z, E ands are sought to minimize
the Frobenius (F) norm in

STLS distance≡ min
s,E,z

‖[s,E]‖F s. t. (B + E)zγ = cγ − s.(1.3)

We call thez = z(γ)whichminimizes this the STLS solution of (1.3). Here
the relative sizes of the correctionsE ands in B andcγ are determined by
the real scaling parameterγ > 0. As γ → 0 the STLS solution approaches
the LS solution, and whenγ = 1 (1.3) coincides with the TLS formulation.
The formulation (1.3) is studied in detail in [12]. In applicationsγ can have
a statistical interpretation, see for example [12, Sect. 1], but here we regard
γ simply as a variable.

STLSsolutionscanbe foundvia thesingular valuedecomposition (SVD).
Let σmin(·) denote the smallest singular value of a matrix, and letPk be
the orthogonal projector onto the left singular vector subspace ofB corre-
sponding toσmin(B). This paper will assume

then× (k + 1) matrix [B, c] has rankk + 1, and Pkc 
= 0.(1.4)

We showed in [12, (3.7)] that this implied

0 < σ(γ) ≡ σmin([B, cγ]) < σmin(B) for all γ > 0.(1.5)

In this case the unique solution of the STLS problem (1.3) is obtained from
scaling the right singular vector of[B, cγ] corresponding toσmin([B, cγ]),
and the norm of the STLS correction satisfies, for a givenγ > 0 (see for
example [12, (1.9)], or [5,§12.3] whenγ = 1),

STLS distance in (1.3)= σmin([B, cγ]).(1.6)
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This paper is greatly simplified by only dealing with problems where
(1.4) holds. The assumption (1.4) is equivalent to that in [12, (1.10)] plus
the restrictionc /∈ R(B), which eliminates the theoretically trivial case
c ∈ R(B). It is sufficient to note here that nearly all practical overde-
termined problems will already satisfy (1.4), but any overdetermined (and
incompatible) problem that does not can be reduced to one that does, see [12,
Sect. 8], and the bounds derived herewith this assumptionwill be applicable
to the original problem.

It is known that (see for example [12, (6.3)])

lim
γ→0

STLS distance in (1.3)
γ

= lim
γ→0

σmin([B, cγ])
γ

(1.7)

= ‖r‖, the LS distance in (1.2),

but here we examine the relationship between these distances foranyγ > 0.
This will bound the rate at which these quantities approach each other
for small γ, as well as provide bounds on the LS distance in terms of
σmin([B, cγ]), andvice versa, for all γ > 0. To facilitate this study we
assume (1.4) holds, and introduce the scaled total least squares ratio (STLS
ratio) τ(γ) for all γ > 0, where from (1.7)

τ(γ) ≡ γ‖r‖
σmin([B, cγ])

→ 1 asγ → 0.(1.8)

Thisτ(γ) is the ratio of the LS distance forBx ≈ cγ to the STLS distance,
and summarizes the relative behaviour of the LS (1.2) and STLS (1.3) dis-
tances when (1.4) holds.

Remark 1.1It will help in reading this paper to realize there are three dif-
ferent items we examine, all as functions ofγ:

1. The LS/STLS relationship, via the STLS ratioτ(γ) in (1.8).
2. Bounds on‖r‖ in terms ofσmin([B, cγ]).
3. Bounds onσmin([B, cγ]) in terms of‖r‖.
The second item motivated this study, and is examined at length in Sect. 7,
but both the second and third follow from the first.�
Remark 1.2The caseγ = 0 will either be obvious, for example
σmin([B, cγ]) = 0 at γ = 0, or undefined but with a limit, for example
τ(γ) in (1.8). It will in general simplify the presentation to assumeγ > 0,
since whenγ = 0 is meaningful, the values will be obvious.�

Van Huffel and Vandewalle [9] derived several useful bounds for TLS
versus LS (theγ = 1 case). Our results extend some of these to the case of
generalγ > 0, as well as provide new bounds. This work was initiated by
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our research [13] on the finite precision convergence behaviour of GMRES
[15]. The results on the second itemabove are particularly useful for this and
also for the analysis of any iterative method which at the stepk minimizes
‖Nrk‖ for some full column rank matrixN .

The paper is organized as follows. In Sect. 2 we review somemathemati-
cal tools thatweuse,andstate thesecularequationwhichσmin([B, cγ])must
satisfy. In Sect. 3 we introduce the important ratioδ(γ) ≡
σmin([B, cγ])/σmin(B), and use the secular equation to prove that when
(1.4) holds,δ(γ) is bounded away from unity for allγ. We then study the
STLS ratioτ(γ) and the relationship between the bounds onτ(γ), ‖r‖ and
σmin([B, cγ]). In Sect. 4 we use the secular equation to derive such bounds,
in particular, bounds on the least squares residual norm‖r‖ (LS distance)
in terms of the scaled total least squares distanceσmin([B, cγ])). We show
how good these bounds are, and how varyingγ gives important insights into
the asymptotic relationship between the LS and scaled TLS distances. In
Sect. 5 we compare our bounds to previous results. In Sect. 6 we extend to
the caseγ 
= 1 a result from [9], in order to obtain an expression forτ(γ) in
terms of the singular values ofB and of[B, cγ], as well as some related re-
sults. In Sect. 7we briefly discuss the generalizedminimum residualmethod
(GMRES) [15], since this is what first motivated the bounds in this paper,
and then present numerical results using GMRES to illustrate the theory.

2 Mathematical preliminaries

In this paper we will regularly use the following notation forc andB in
(1.1), and forr andy solving the LS problem (1.2). Letn > k in (1.1). Let
then× k matrixB have rankk and singular valuesσi with singular value
decomposition (SVD)

B = UBΣV
H , Σ ≡ diag(σ1, . . . , σk), σ1 ≥ . . . ≥ σk > 0.(2.1)

HereUB is n× k matrix,UH
B UB = Ik,Σ is k × k, andk × k V is unitary.

Choose a unitary matrixU = [UB|ÛB] = [u1, . . . , uk|uk+1, . . . , un] such
that(I − UBU

H
B )c = uk+1ρ, ρ ≥ 0. Then

UH [B, c]
[
V 0
0 1

]
=


Σ a

0 ρ
0 0


 ,(2.2)

a ≡ (α1, . . . , αk)T ≡ [u1, . . . , uk]Hc = UH
B c.

The elements ofa are the components of the vector of observationsc in the
directions of the left singular vectors of the data matrixB. With (1.2) we
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see that

UHr = UH(c−By) =


a−ΣV Hy

ρ
0


 =


0
ρ
0




gives the minimum for‖r‖. Then for the LS solution and residual

y = V Σ−1a, ‖y‖2 =
k∑

i=1

|αi|2
σ2

i

,(2.3)

‖r‖ = ρ.(2.4)

We will use some classical results. WhenC in G below is square and
nonsingular, the Schur complement(G/C) of C inG is defined below (see
for example [8, Sect. 0.8.5]), and the other results follow.

(G/C)≡F−EC−1D, G=
[
C D
E F

]
=

[
I 0

EC−1 I

][
C 0
0 (G/C)

][
I C−1D
0 I

]
,

det(G) = det(C) · det(G/C).(2.5)

For theanalysis of theSTLSproblem (1.3),wewill be interested in thesingu-
lar valuesσ of [B, cγ], see (1.6), andso theeigenvaluesσ2 of [B, cγ]H [B, cγ].
When (1.4) holds, the smallest singular value of[B, cγ] is the STLS distance
in (1.3). We now state a useful form of the secular equation for this STLS
distance.

Lemma 2.1 Foranyn×kmatrixB andn-vectorc letσ(γ)≡σmin([B, cγ]).
Assume (1.4) holds. Then using the notation in (2.1)–(2.4),0 < σ(γ) <
σk ≡ σmin(B) holds for all γ > 0, and the STLS distance in (1.3) is
σ(γ) ≡ σmin([B, cγ]), which is the smallest positive solution of

0 = ψk(σ(γ), γ) ≡ det([B, cγ]H [B, cγ] − σ(γ)2I)/det(BHB − σ(γ)2I)

= γ2‖r‖2 − σ(γ)2 − γ2σ(γ)2
k∑

i=1

|αi|2
σ2

i − σ(γ)2
.(2.6)

�
This was derived in [12, Sect. 4]. Withγ = 1, (2.6) was derived in [4], see
also [9, Thm. 2.7, & (6.36)]. These latter derivations assumed the weaker
conditionσmin([B, c]) < σmin(B), and so do not generalize to STLS for
all γ > 0, see [12].
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3 Two useful ratios,δ(γ) and τ (γ)

We wish to focus on the relationship between the STLS distance and the
LS distance, and its dependence on the scaling parameterγ. The ratioδ(γ)
defined next is crucial for the bounds we develop. For anyn× k matrixB
of rankk andn–vectorc, define for allγ ≥ 0

σ(γ) ≡ σmin([B, cγ]), δ(γ) ≡ σmin([B, cγ])/σmin(B).(3.1)

Clearlyσ(0) = δ(0) = 0. The following lemma onδ(γ) was proven in [12,
Corollary 4.1].

Lemma 3.1 If (1.4) holds andγ > 0, then0 < δ(γ) < 1, and δ(γ) in-
creases asγ increases, and decreases asγ decreases, strictlymonotonically.
�
Sinceweare assuming (1.4) holds, it follows that (1.5) holds, and throughout
this paper we have

0 < δ(γ) ≡ σmin([B, cγ])/σmin(B) < 1 for all γ > 0.(3.2)

We will give several results in terms of the ratioδ(γ). In particular, we
will get very tight bounds whenδ(γ) is small (δ(γ) � 1). We see from
Lemma 2.1 that when (1.4) holds,

σmin([B, cγ]) ≤ γ‖r‖, δ(γ) ≤ γ‖r‖/σmin(B) for all γ ≥ 0,(3.3)

and we can makeδ(γ) arbitrarily small by decreasingγ.
Some of our bounds will contain the factor(1 − δ(γ)2)−1, and would

be useless ifδ(γ) = 1 and of limited value whenδ(γ) ≈ 1. We now show
that when (1.4) holds,δ(γ) is bounded away from unityfor all γ, giving an
upper bound on(1 − δ(γ)2)−1. It is important that these bounds exist, but
remember they are worst case bounds, and give no indication of the sizes of
δ(γ) or (1 − δ(γ)2)−1 for the values ofγ we will usually be interested in.

Theorem 3.1With the notation and assumptions of Lemma 2.1, letn × k
B have singular valuesσ1 ≥ . . . ≥ σj > σj+1 = . . . = σk > 0. Then
since (1.4) holds, and denotingβk ≡ ‖Pkc‖,

β2
k ≡ ‖Pkc‖2 =

k∑
i=j+1

|αi|2 > 0,(3.4)

δ(γ)2 ≡ σ2
min([B, cγ])

σ2
k

≤ ‖r‖2

β2
k + ‖r‖2 < 1 for all γ ≥ 0,(3.5)

(1 − δ(γ)2)−1 ≤ 1 + ‖r‖2/β2
k for all γ ≥ 0.(3.6)
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Proof. Since (1.4) holds,β2
k > 0 and the minimum positive solutionσ(γ)

of (2.6) isσ(γ) ≡ σmin([B, cγ]) < σk for all γ ≥ 0. So

γ2‖r‖2 =σ(γ)2+
γ2σ(γ)2β2

k

σ2
k − σ(γ)2

+
j∑

i=1

γ2σ(γ)2|αi|2
σ2

i − σ(γ)2
≥ σ(γ)2+

γ2σ(γ)2β2
k

σ2
k − σ(γ)2

.

Multiplying by (σ2
k − σ(γ)2) > 0 and rearranging gives

σ(γ)2(γ2β2
k + γ2‖r‖2 + σ2

k − σ(γ)2) ≤ γ2‖r‖2σ2
k,

δ(γ)2 =
σ(γ)2

σ2
k

≤ γ2‖r‖2

γ2β2
k + γ2‖r‖2 + σ2

k − σ(γ)2
≤ ‖r‖2

β2
k + ‖r‖2 < 1,

(3.7)
proving (3.5), from which (3.6) follows. �

This shows that when (1.4) holds,δ(γ) is bounded away from unity, so
σmin([B, cγ]) is bounded away fromσmin(B), for all γ.

The inequality (3.5) has a useful explanatory purpose. We cannot have
δ(γ) ≈ 1unlessPkc, theprojectionofconto the left singular vector subspace
of B corresponding toσmin(B), is very small compared tor. WhenPkc is
small compared tor then replacingB by

B −
k∑

i=j+1

uiσmin(B)vH
i

in (1.2) would not increase the LS distance significantly. This confirms that
the criterion (1.4) in [12] is exactly what is needeed.

We now return to our second ratio, the STLS ratioτ(γ) in (1.8).

Lemma 3.2 With the notation and assumptions of Lemma 2.1, letτ(γ) ≡
γ‖r‖/σmin([cγ,B]). Since (1.4) holds,

1 < τ(γ)2 = 1 + γ2
k∑

i=1

|αi|2
σ2

i − σ2
min([cγ,B])

→ 1 asγ → 0.

Proof. The equality follows from Lemma 2.1, while (3.5) shows each de-
nominator is bounded away from zero, so the inequality and limit follow.
�
This STLS–LS relationshipτ(γ) → 1 (see (1.7)) has been presented and
proven in [14] for an earlier form of STLS, and in [12, (1.6), (6.3)] for the
form (1.3) (neither giving any quantitative results).

We pointed out in Remark 1.1 that we are interested in three items,τ(γ),
‖r‖ andσ(γ), and their bounds. Since some results for‖r‖ andσ(γ) can
be found from those forτ(γ), it will simplify the paper if we derive some
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general relationships here, and apply them later. We will useλ for lower
bounds andµ for upper, as in

1 ≤ λτ ≤ τ(γ) ≤ µτ , λr ≤ ‖r‖ ≤ µr, λσ ≤ σ(γ) ≤ µσ,(3.8)

where for brevity the dependence of the bounds onγ is implied. Bounds
derived forτ(γ) give bounds on‖r‖ or on σmin([B, cγ]) in the obvious
way, as we now document.

Lemma 3.3 Withσ ≡ σ(γ) ≡ σmin([B, cγ]) >0,τ(γ) ≡ γ‖r‖/σ,λτ ≥ 1
andγ > 0,

{λτ ≤ τ(γ) ≤ µτ} ⇔
{
λr ≡ λτσ

γ
≤ ‖r‖ ≤ µr ≡ µτσ

γ

}

⇔
{
λσ ≡ γ‖r‖

µτ
≤ σ ≤ µσ ≡ γ‖r‖

λτ

}
. �

We can easily derive asingleupper bound on the relative gaps between each
pair of upper and lower bounds in Lemma 3.3.

Lemma 3.4 In Lemma 3.3 the relative gaps between upper and lower
bounds satisfy

(µτ − λτ )/τ ≤ (µτ − λτ )/λτ ,

(µr − λr)/‖r‖ = (µτ − λτ )/τ ≤ (µτ − λτ )/λτ ,

(µσ − λσ)/σ = (µτ − λτ )τ/(µτλτ ) ≤ (µτ − λτ )/λτ . �
The advantage here is that if we can find bounds forτ(γ) such that
(µτ −λτ )/λτ is sufficiently small, than we can conclude thatall the bounds
in (3.8) are good. This is useful for simplifying the paper.

Lemma3.2 gave an explicit expression for0 < τ(γ)2−1 → 0 asγ → 0.
It seems natural to start with this result and to obtain bounds

0 ≤ λ ≤ τ(γ)2 − 1 ≤ µ .(3.9)

Then the bounds forτ(γ) can simply be given as

λτ ≡(λ+ 1)
1
2 ≤ τ(γ) ≤ µτ ≡(µ+ 1)

1
2(3.10)

and the bounds on‖r‖ andσ determined via Lemma 3.3. The relative gap
of theτ bounds (showing via Lemma 3.4 how good all these bounds are) is
examined in the following lemma.

Lemma 3.5 For γ > 0 andτ ≡ τ(γ), if we have bounds (3.9) and (3.10),
then

λ+ τ + 1
τ + 1

≤ λτ ≤ µτ ≤ µ+ τ + 1
τ + 1

,(3.11)

µτ − λτ

τ
≤ µτ − λτ

λτ
≤ µ− λ

λ+ τ + 1
<
µ− λ

2 + λ
<
µ− λ

2
.(3.12)
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Proof. With (3.9),

(µ+ τ + 1)2 − (τ + 1)2(µ+ 1) = µ2 + 2µ(τ + 1) − µ(τ + 1)2

= µ[µ− (τ2 − 1)] ≥ 0,
(λ+ τ + 1)2 − (τ + 1)2(λ+ 1) = λ2 + 2λ(τ + 1) − λ(τ + 1)2

= λ[λ− (τ2 − 1)] ≤ 0,

proving (3.11). Using (3.11),

µτ − λτ

λτ
≤ µ− λ

(τ + 1)λτ
≤ µ− λ

λ+ τ + 1
.

The rest of the proof is straightforward.�
The actual boundsλ, µ, and, consequently,λτ , µτ , λr, µr, λσ andµσ are

developed in the following section.

4 The basic bounds

We have found the following results relating the LS distance‖r‖ with the
STLS distanceσmin([B, cγ]) to be very useful.

Theorem 4.1 Given a scalarγ > 0, and ann by k + 1 matrix [B, c], use
σ(·) to denote singular values and‖ · ‖ to denote 2-norms. Ifr andy solve
minr,y ‖r‖ subject toBy = c− r, and (1.4) holds, then

0 < θ(γ) ≡ σmin([B, cγ])
σmax(B)

≤ δ(γ) ≡ σmin([B, cγ])
σmin(B)

< 1,(4.1)

and we have bounds onτ(γ)2 − 1 whereτ(γ) ≡ γ‖r‖/σmin([B, cγ]):

γ2‖y‖2<
γ2‖y‖2

1− θ(γ)2
≤ τ(γ)2−1 =

γ2‖r‖2

σ2
min([B, cγ])

−1≤ γ2‖y‖2

1− δ(γ)2
.

(4.2)
We also have individual bounds onτ(γ), ‖r‖ andσmin([B, cγ]):

λτ ≡{1 + γ2‖y‖2} 1
2 < {1 +

γ2‖y‖2

1− θ(γ)2
} 1

2

≤ τ(γ) ≡ γ‖r‖
σmin([B, cγ])

≤ µτ ≡ {1+
γ2‖y‖2

1− δ(γ)2
} 1

2 ,(4.3)

λr ≡ σmin([B, cγ]){γ−2+ ‖y‖2} 1
2 < σmin([B, cγ]) {γ−2+

‖y‖2

1− θ(γ)2
} 1

2

≤ ‖r‖ ≤ µr ≡ σmin([B, cγ]) {γ−2+
‖y‖2

1− δ(γ)2
} 1

2 ,(4.4)
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λσ ≡ ‖r‖/{γ−2 +
‖y‖2

1 − δ(γ)2
} 1

2 ≤ σmin([B, cγ])

≤ ‖r‖/{γ−2 +
‖y‖2

1 − θ(γ)2
} 1

2 ≤ µσ ≡ ‖r‖/{γ−2 + ‖y‖2} 1
2 .(4.5)

Proof. Since (1.4) holds, (4.1) follows immediately from (3.2).Withσ(γ) ≡
σmin([B, cγ]) andτ(γ) ≡ γ‖r‖/σ(γ), we see from Lemma 3.2,

k∑
i=1

γ2|αi|2
σ2

i

<

k∑
i=1

γ2|αi|2
σ2

i (1 − σ(γ)2/σ2
1)

≤ γ2‖r‖2

σ(γ)2
− 1 = τ(γ)2 − 1 =

k∑
i=1

γ2|αi|2
σ2

i − σ(γ)2
=

k∑
i=1

γ2|αi|2
σ2

i (1 − σ(γ)2/σ2
i )

≤
k∑

i=1

γ2|αi|2
σ2

i (1 − σ(γ)2/σ2
k)

(4.6)

which are apparently new bounds onτ(γ)2 −1. Using (2.3) and (4.1) shows
(4.6) is (4.2). We obtain (4.3) by adding1 to each term in (4.2) and then
taking the square root of each term. Both (4.4) and (4.5) follow directly from
(4.3), see Lemma 3.3.�
By subtractingγ2‖y‖2 from each term in (4.2), and then dividing byγ2‖y‖2

we obtain bounds of a particularly simple form.

Corollary 4.1 With the conditions and assumptions of Theorem 4.1

0 < θ(γ)2 <
θ(γ)2

1 − θ(γ)2
≤ τ(γ)2 − (1 + γ2‖y‖2)

γ2‖y‖2 ≤ δ(γ)2

1 − δ(γ)2
.(4.7)

�
Wewill now examine thetightnessof the bounds (4.3)–(4.5), to indicate

just how good they can be. In fact we will show thatall the relative gaps go
to zero (as functions of the scaling parameterγ) at least as fast asO(γ4).

Corollary 4.2 Under the same conditions as in Theorem 4.1, withσ ≡
σ(γ) ≡ σmin([B, cγ]), τ ≡ τ(γ), the notation in (4.3)–(4.5), and

ητ ≡ (τ − λτ )/τ, ηr ≡ (‖r‖ − λr)/‖r‖, ησ ≡ (σ − λσ)/σ,
ζτ ≡ (µτ − λτ )/τ, ζr ≡ (µr − λr)/‖r‖, ζσ ≡ (µσ − λσ)/σ,(4.8)

we have the following bounds

0 < ητ ≤ ζτ , 0 < ηr ≤ ζr, 0 < ησ ≤ ζσ,

0 < ζτ , ζr, ζσ <
γ2‖y‖2

2 + γ2‖y‖2 · δ(γ)2

1 − δ(γ)2
→ 0 as γ → 0,(4.9)

where the upper bound goes to zero at least as fast asO(γ4).
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Proof. Sinceµr,λr,µσ andλσ werederived fromµτ andλτ as inLemma3.3,
we see from Lemma 3.4 thatζτ , ζr and ζσ are all bounded above by
(µτ − λτ )/λτ . But λτ andµτ were obtained directly fromλ andµ. Based
on (4.2) the boundsλ andµ from (3.9) can be set toλ ≡ γ2‖y‖2 and
µ ≡ γ2‖y‖2/(1 − δ(γ)2). It follows from (3.12) that

µτ − λτ

λτ
≤ µ− λ

2 + λ
=

γ2‖y‖2

2 + γ2‖y‖2 · δ(γ)2

1 − δ(γ)2
,

proving the inequalities. Applying (3.3) shows theγ4 behaviour. �
Thus whenδ(γ) � 1, or γ is small, the upper and lower bounds in

(4.3)–(4.5) are not only very good, but very good in arelativesense, which
is important for small‖r‖ or σmin([B, cγ]). We see Corollary 4.2 makes
precise a nice theoretical observation with practical consequences — small
γ ensures very tight bounds (4.4) on‖r‖. In particular, for smallγ we see

‖r‖ ≈ λr ≡ σmin([B, cγ]) {γ−2 + ‖y‖2} 1
2 ,(4.10)

and the relative error is bounded above byO(γ4). Using (4.4) and (3.3) we
get another formulation of this result

0 <
‖r‖2−σ2

min([B, cγ])(γ−2+‖y‖2)
‖r‖2 ≤ σ2

min([B, cγ])‖y‖2δ(γ)2

‖r‖2(1 − δ(γ)2)
(4.11)

≤ γ2‖y‖2δ(γ)2

(1 − δ(γ)2)
≤ γ4‖r‖2‖y‖2

σ2
min(B)(1 − δ(γ)2)

.(4.12)

A crucial aspect of Theorem 4.1 is that it gives both an upper and a lower
bound on theminimum residual norm‖r‖, or onσmin([B, cγ]), which is the
STLS distance in (1.3). The weaker lower bound in (4.4), or upper bound
in (4.5), is sufficient for many uses, and is relatively easy to derive, but the
upper bound in (4.4), or lower bound in (4.5), is what makes the theorem so
strong.

Remark 4.1Whenδ(γ) < 1, [9, Thm. 2.7] showed (forγ = 1) the closed
form TLS solutionzγ = z(γ)γ of (1.3) is

z(γ)γ = {BHB − σ2
min([B, cγ])I}−1BHcγ,

and withrSTLS ≡ cγ −Bz(γ)γ, [9, (6.19)] showed (forγ = 1)

‖rSTLS‖ = σmin([B, cγ])(1 + ‖z(γ)γ‖2)
1
2 .(4.13)

Relation (4.10) can be seen to give an analogue of this for the LS solution:
sincerγ = cγ −Byγ in (1.2), (4.11) and (4.12) show a strong relationship
betweenγ‖r‖ andσmin([B, cγ]) for smallδ(γ), γ, ‖y‖ or ‖r‖:

γ‖r‖ ≈ σmin([B, cγ]) {1 + γ2‖y‖2} 1
2 . �(4.14)
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Remark 4.2It is often useful but difficult to find (a lower bound to) the
smallest singular value of a linear operator or a large sparse matrix. These
boundsmay help. For example supposewewant a lower bound onσmin(B).
If we can solve some LS problem (1.2) then we know from (4.5) that

‖r‖/{γ−2 +
‖y‖2

1 − δ(γ)2
} 1

2 ≤ σmin([B, cγ]) ≤ σmin(B).

However we have not looked further into using such bounds.�
Remark 4.3The assumptionPkc 
= 0 in (1.4) is not necessary for proving
the bounds (4.2)–(4.5). From the proof of Theorem 4.1 it is clear that these
bounds only requireδ(γ) < 1. Howeverδ(γ) < 1 does not guarantee
Pkc 
= 0. WhenPkc = 0, ‖r‖ contains no information whatsoever about
σmin(B), while theboundsdo, see (4.6). ByassumingPkc 
= 0weavoid this
inconsistency. Moreover, we will consider various values of the parameter
γ, and so we prefer the theorem’s assumption to be independent ofγ. �

We end this section by a comment on possible consequences of Theo-
rem 4.1 for understandingmethods for large TLS problems. It can be shown
that theSTLSdistanceσk+1([B, cγ]) canbeanalysed viaRayleighquotients
for [B, cγ]H [B, cγ]:

σ2
k+1([B, cγ]) = ‖[B, cγ]

( −zγ
1

)
‖2 / ‖

( −zγ
1

)
‖2 =

γ2‖c−Bz‖2

1 + γ2‖z‖2

wherez solves (1.3), see [2]. For smallσmin([B, cγ]), δ(γ), γ or ‖y‖, (4.5)
with (4.9) show

σ2
k+1([B, cγ]) ≈ γ2‖r‖2

1 + γ2‖y‖2 = ‖[B, cγ]
( −yγ

1

)
‖2 / ‖

( −yγ
1

)
‖2;

so the STLS distance is well approximated using the Rayleigh quotient
corresponding to the unique LS solution ofByγ = cγ − rγ. This was
pointed out byÅke Björck in a personal communication, and may help to
explain the behaviour of algorithms proposed in [2]. Alternatively, some
bounds here might be rederived via Rayleigh quotient theory.

5 Comparison with other bounds

We now relate our bounds to previous work. Kasenally and Simoncini [10]
examined a somewhat related problem for the case of Krylov subspace
methods, but did not develop any of the bounds given here. However in a
personal communicationSimoncini pointed out that if we restrict our discus-
sion to Krylov subspacemethods, the equivalent of our weaker lower bound
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λr ≤ ‖r‖ in (4.4) can be obtained from their results too. An explanation of
this relationship would require a detailed description of the methods anal-
ysed in [10], which is beyond the scope of this paper. The best previously
published bounds appear to be those of Van Huffel and Vandewalle [9], and
we now show how the relevant bounds of that reference, and a new bound,
can be derived from (4.2).

Corollary 5.1 Under the same conditions and assumptions as in Theo-
rem 4.1, withσ(γ) ≡ σmin([B, cγ]), τ(γ) ≡ γ‖r‖/σ(γ),

0 ≤ γ2‖c‖2 − σ(γ)2

‖B‖2 ≤ τ(γ)2 − 1 ≤ γ2‖c‖2 − σ(γ)2

σ2
min(B)

.(5.1)

Proof. Rememberσ1 ≡ σmax(B) = ‖B‖, σk ≡ σmin(B), θ(γ) ≡
σ(γ)/σ1 ≤ δ(γ) ≡ σ(γ)/σk < 1 from (4.1). Start with (4.2). To obtain the
upper bound, we first note from (2.2)–(2.4)

‖a‖2/σ2
1 ≤ ‖y‖2 ≤ ‖a‖2/σ2

k, ‖a‖2 = ‖c‖2 − ‖r‖2,(5.2)

giving
γ2‖r‖2

σ(γ)2
≤ 1 +

γ2‖y‖2

1 − δ(γ)2
≤ 1 +

γ2(‖c‖2 − ‖r‖2)
σ2

k − σ(γ)2

γ2‖r‖2

σ(γ)2
· σ2

k

σ2
k − σ(γ)2

≤ 1 +
γ2‖c‖2

σ2
k − σ(γ)2

γ2‖r‖2

σ(γ)2
≤ 1 − σ(γ)2

σ2
k

+
γ2‖c‖2

σ2
k

,

which proves the upper bound in (5.1).
To obtain the lower bound, again combine (4.2) and (5.2) to show

γ2‖r‖2

σ(γ)2
≥ 1 +

γ2‖y‖2

1 − θ(γ)2
≥ 1 +

γ2(‖c‖2 − ‖r‖2)
σ2

1 − σ(γ)2

γ2‖r‖2

σ(γ)2
· σ2

1

σ2
1 − σ(γ)2

≥ 1 +
γ2‖c‖2

σ2
1 − σ(γ)2

γ2‖r‖2

σ(γ)2
≥ 1 − σ(γ)2

σ2
1

+
γ2‖c‖2

σ2
1

.

Also σ(γ)2 ≤ γ2‖c‖2, so the rest of (5.1) follows. �
Whenγ = 1 the bound0 ≤ τ(γ)2 −1 and the upper bound onτ(γ)2 −1

in (5.1) are (rearrangements of) the equivalents for our situation of (6.34)
and (6.35) in [9]. The stronger lower bound seems new. A slightly weaker
upperboundwasderived in [6, (2.3)].Experimentsshow(seeSect. 7) thatour
bounds in (4.2) canbesignificantlybetter than those in (5.1).The relationship
of these bounds is, however, intricate. While (5.1) was derived from (4.2),
it is notalwaystrue that the latter is tighter. Whenδ(γ) ≈ 1 and‖r‖ ≈ ‖c‖,
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it is possible for the upper bound in (5.1) to be smaller than that in (4.2).
But in this caseσmin([B, cγ]) ≈ σmin(B), and then the upper bound in
(5.1) becomes the trivial‖r‖ <∼ ‖c‖. Summarizing, when the upper bound
in (5.1) is tighter than the upper bound in (4.2), the former becomes trivial
and the later is irrelevant. This behaviour is illustrated by our examples in
Sect. 7.

The bounds (5.1) and (4.2) differ because the easily available‖y‖ in
(4.2) was replaced by its upper and lower bounds in (5.2) to obtain (5.1).
But there is another reason (4.2) is preferable to (5.1). The latter bounds
require knowledge ofσmin(B), as well asσmin([B, cγ]). Admittedly (4.1)
shows we also need these to knowδ(γ) exactly, but, assuming that (1.4)
holds, we knowδ(γ) < 1, and is bounded away from1 always. In fact there
are situations where we knowδ(γ) � 1 (we will show practical examples
in Sect. 7). Thus (4.2) is not only simpler and often significantly stronger
then (5.1), it is more easily applicable.

6 The STLS–LS relationship: equations forτ (γ) and δ(γ)

In the previous section we obtainedboundsfor the STLS ratioτ(γ), the
LS residual norm‖r‖, and the STLS distanceσmin([B, cγ]) by using as
little additional information as possible. We derived these from the secular
equation in Lemma 2.1. Here we look forexactrelationships. The elegant
Theorem 6.9 of Van Huffel and Vandewalle [9] took a different approach
than the secular equation, to relate (forγ = 1) the TLS distance to the LS
residual norm‖r‖ using full information on the singular values ofB and
[c,B]. They treated the matrix equationBX ≈ C, but the proof is almost
identical to that for (1.1).We give the proof here for completeness (we allow
γ 
= 1), relevance (we state it in terms of the STLS ratioτ(γ)) and for the
beauty and brevity of their technique.

Theorem 6.1 Letn×kB have rankk,γ > 0,r solve (1.2), andσ1(·), σ2(·),
. . . denote singular values in nonincreasing order, then

τ(γ) ≡ γ‖r‖
σk+1([B, cγ])

=
σ1([B, cγ])
σ1(B)

· · · σk([B, cγ])
σk(B)

≥ 1.(6.1)

Proof. With r and y solving (1.2), the Schur complement ofBHB in
[B, cγ]H [B, cγ] is, sinceBHr = 0,

γ2cHc− γ2cHB(BHB)−1BHc = γ2(cHc− cHBy) = γ2cHr = γ2‖r‖2.

Using the Schur complement determinant property (2.5) we have

k+1∏
i=1

σ2
i ([B, cγ]) = det([B, cγ]H [B, cγ]) = det(BHB) γ2‖r‖2
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=
k∏

i=1

σ2
i (B) γ2‖r‖2,

giving the equality in (6.1). The bound (see also Lemma 3.2)) holds since
the singular values ofB interlace those of[B, cγ]. �

Note the difference of the squaresτ(γ)2 − 1 of the left and right hand
sides of the inequality (6.1) is bounded in (4.2). The above leads to a new
expression and bounds forδ(γ) in (4.1).

Corollary 6.1 Under the conditions of Theorem 6.1,

σk+1([B, cγ])
σ1([B, cγ])

≤ γ‖r‖
‖[B, cγ]‖ ≤ γ‖r‖

σ1([B, cγ])
· σ1(B)
σ2([B, cγ])

· · · σk−1(B)
σk([B, cγ])

=
σk+1([B, cγ])

σk(B)
= δ(γ) ≤ γ‖r‖

σk([B, cγ])
≤ γ‖r‖
σmin(B)

.(6.2)

Proof. (6.1) showsσk+1([B, cγ]) ≤ γ‖r‖ so the lowest bound follows. The
equalities follow from theequality in (6.1), and thedefinitionofδ(γ) in (4.1).
The remaining bounds hold since the singular values ofB interlace those of
[B, cγ]. The rightmost bound generalizes (3.3), since the requirements are
less restrictive than in (1.4). �

For what it is worth, these give a new expression relatingδ(γ) to τ(γ)
via ratios of singular values.

Corollary 6.2 Under the conditions of Theorem 6.1,

δ(γ) = τ(γ)
{
σk+1([B, cγ])
σk([B, cγ])

} {
σ1(B)

σ1([B, cγ])
· · · σk−1(B)

σk−1([B, cγ])

}
.(6.3)

Proof. This follows from the equalities in (6.1) and (6.2).�
Note that the quantities in parentheses{·} are each less than or equal to
unity since the singular values ofB interlace those of[B, cγ].

These relationships look very elegant, and the bounds are useful too.
In fact for k = 1 the tightest upper and lower bounds onδ(γ) in (6.2)
become equalities. We see from (6.2) that ifγ‖r‖ is small compared with
σk([B, cγ]) thenδ(γ) � 1, but ifγ‖r‖ is not small comparedwith‖[B, cγ]‖
thenδ(γ) cannot be small. If[B, cγ] is well-conditioned in the sense that
σmin([B, cγ]) is not too much smaller than‖[B, cγ]‖, then Corollary 6.1
gives us a very good idea ofδ(γ).

The computations we have carried out so far, see for example Sect. 7,
suggest that the lower bounds in Corollary 6.1 are often very loose, but that
the tighter of the following gives (and usually both give) very good upper
bounds:

δ(γ) ≤ min{1,
γ‖r‖

σk([B, cγ])
} ≤ min{1,

γ‖r‖
σmin(B)

}.(6.4)
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Some other interesting relationships for the residual norm‖r‖ can be
found in [11], but they are not motivated by the STLS–LS comparison.

7 The GMRES relationship and numerical experiments

Inorder to illustrateour theoretical resultsonnumerical experimentsweneed
examples representing various cases. Instead of giving several examples of
the matrixB and the right hand sidec we will generate sequences of LS-
STLS examples as parts of iterative processes.

It is well known that several iterative methods for solving linear alge-
braic systems form approximate solutions by generating and solving least
squares problems at each iteration step. Applying a properly choosen itera-
tive method to a linear system with the matrixA and the right hand sideb
we get the right hand sidec and the sequence of matricesBk, on which our
results can be conveniently and thoroughly illustrated.

But there is also another andmuchdeeper reason for using iterativemeth-
ods in our experiments. Theorem 4.1 with its corollaries is very useful in the
analysis of iterative solutions of nonsingular linear systems. Considerations
on bounding the norm of the residual in iterative methods motivated our
work which led to the results presented in this paper.

This section very briefly describes the connection to iterative methods
and then illustrates our theoretical resultswith numerical experiments. As an
example of an iterative method we will consider the GMRES method [15].
The reader who does not wish to relate our results to iterative methods can
simply skip the brief description of GMRES and take the results described
later individually (independently for each individual iteration). For a fixed
iteration step the displayed results illustrate our theory for some right hand
side and some particular (iteration–dependent) matrix.

For a givenn by n unsymmetric nonsingular matrixA andn-vector
b, we wish to solveAx = b using the GMRES method. Given an initial
approximationx0 we form the residualr0 = b − Ax0, ρ0 = ‖r0‖, v1 =
r0/ρ0, and usev1 to initiate the Arnoldi process. At stepk this forms
Avk, orthogonalizes it againstv1, v2, . . . , vk, and if the resulting vector
is nonzero, normalizes it to givevk+1, giving ideally (in exact arithmetic)
AVk = Vk+1Hk+1,k, V

H
k+1Vk+1 = Ik+1, Vk+1 = [v1, v2, . . . , vk+1]. Here

Hk+1,k is ak + 1 by k upper Hessenberg matrix with elementshij where
hj+1,j 
= 0, j = 1, 2, . . . , k − 1. If at any stagehk+1,k = 0 we would stop
with AVk = VkHk,k. Computationally (in finite precision arithmetic) we
are unlikely to reach such ak, and we stop when we assess the norm of the
residual is small enough.

In general, at each step we takexk = x0 + Vkyk as our approximation
to the solutionx, which gives the residualrk = b−Axk = r0 −AVkyk =
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v1ρ0 − Vk+1Hk+1,k yk whereyk solves the linear least squares problem

‖rk‖ = min
ỹ

‖e1ρ0 −Hk+1,k ỹ‖ = min
ỹ

‖v1ρ0 −AVkỹ‖
= ρ0 min

ỹ
‖v1 −AVkỹ‖.(7.1)

At any iteration step the relative residual norm‖rk‖/ρ0 can therefore be
viewed as the residual norm for the least squares problem with the matrix
AVk and the right hand sidev1. Consider the STLS problem for the matrix
AVk and the right hand sidev1γ, where we set the value of the scaling
parameterγ = 1. Assume thatv1 is not orthogonal to the left singular vector
subspace ofAVk corresponding toσmin(AVk). Then [12, (3.7)] implies
that the smallest singular valueσk+1([v1, AVk]) is less than the smallest
singular valueσk(AVk). Consequently, the STLS problem for the matrix
AVk and the right hand sidev1 has a unique solution, with STLS distance
σk+1([v1, AVk]).

In this way GMRES produces sequences of LS and STLS problems
wherec = r0/ρ0 = (b − Ax0)/ρ0 = v1, γ = 1, andB = Bk = AVk,
y = yk/ρ0, andr = rk/ρ0 are changing at each step. Please note that
for each GMRES iteration we get a new LS, and corresponding STLS,
problem.GMRESexperimentswill thereforeallowus to illustrate thevariety
of situations which were analysed above in this paper.

We could have choosen different right hand sides (for examplec = r0)
and different values of the scaling parameterγ, but our present choice is
simple and sufficient for illustrating our theory. A detailed study of the
possible values ofγ in relation to the analysis of GMRES will be presented
in [13].

In reasonable iterations withBk increasing in dimension withk, we will
usually haveσmin(Bk) → constant> 0, while σmin([v1, Bk]) eventually
becomes zero. Consequently

0 ≤ δk ≡ σmin([v1, Bk])/σmin(Bk) → 0,

and from Corollary 4.2

0 ≤ ‖rk‖−σmin([v1, Bk]){ρ2
0 + ‖yk‖2} 1

2

‖rk‖ ≡ ηk ≤ δ2k
1 − δ2k

→0,(7.2)

where for each stepk, ηk corresponds toηr in (4.8). This is a strong “asymp-
totic” relationship between the minimum residual norm and the minimum
singular value of[v1, Bk].

We will present results of three GMRES experiments, all of them using
matrices from theRutherford-Boeing collection. In all experiments themod-
ified Gram-Schmidt (MGS) orthogonalization was used for computing the
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Fig. 7.1. Residual bounds: previous upper and lower bounds from (5.1) (dotted lines), then
from (4.4) new upper bound (dashed line), new lower bound (dashed-dotted line), for the
relative residual norm (points), computed by MGS GMRES applied to IMPCOLC. Except
for the (5.1) upper bound, all values are nearly the same (the corresponding lines coincide)
until orthogonality is completely lost (here at the iteration step 128), after which the values
are not computed accurately

basis vectorsv1, v2, . . . , vk. In the first experiment (using the matrix IMP-
COLC) the value ofδk never becomes close to one and the bounds provided
by Theorem 4.1 are very tight. In the second and third experiments (both of
them using the matrix WEST0132)δk is close to one in some, respectively
many, iteration steps. All experiments were performed on a SGI ORIGIN
200Workstation using MATLAB 6.0, machine precisionε = 1.11×10−16.

We first present results of the MGS GMRES algorithm applied to the
matrix IMPCOLC,n = 137, ‖A‖ ≈ 120, κ(A) ≈ 1.8 ∗ 104, b = Ae, e is
the vector of all ones, withx0 = randn(137, 1) from MATLAB.

In Fig. 7.1 we plot relative residual bounds, that is, bounds on the relative
residual norm‖b−Axk‖/‖r0‖, which is denoted by points. The upper and
lower bounds from the equivalent of (5.1) (the best previous bounds of Van
Huffel and Vandewalle) are denoted by the dotted lines, while the upper
bound from (4.4) is given by the dashed line, and the lower bound by the
dashed-dotted line. The upper bound from (5.1) is seen to be particularly
weak compared with that from (4.4). The lower bound from (5.1) and the
bounds from (4.4) almost coincide with the actual values of the relative
residual norm.

Figure 7.2 is devoted to the tightness parameters, which show how
tight our lower and upper boundsλr andµr are for this test problem, see
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Fig. 7.2. Values of the tightness parametersδk
2 (solid line), ηk (dashed-dotted line) andζk

(dashed line) for MGS GMRES applied to IMPCOLC. The values have little meaning once
orthogonality is fully lost

(4.4), (4.8) and (4.9). The solid line shows the values ofδk
2 whereδk ≡

σmin([v1, Bk])/σmin(Bk), the dashed line the values ofζk and the dashed-
dotted line the values ofηk for each stepk, whereδk, ζk andηk correspond
to δ(γ) in (4.1) and toζr andηr in (4.8). The values have little meaning once
the orthogonality among the basis vectorsv1, . . . , vk is fully lost (here at the
stepk = 128), but until that point these computed results follow the theory.
For all of the stepsδ2k is satisfactory (< 1), whileηk andζk (the relative gaps
of the bounds) are quite good (they are reasonably small throughout). But
they all decrease impressively when the norm of the relative residual drops
towards the machine precision level.

Finally Fig. 7.3 is devoted to bounds onδk, which is represented by
points. The bounds are those in Corollary 6.1, the weaker upper bound is
denotedby thesolid line, thestrongerby thedashed line, and the tighter lower
bound by the dotted line. Note in every case the lower bound is particularly
weak, but this does not matter much as we are more interested in upper
bounds. The upper bounds are very tight (hereδk is always significantly less
than 1).

The relationship of the new bounds developed in our paper to the best
previous bounds is further illustrated by the following two examples. They
present results of the MGS GMRES algorithm applied to the matrix
WEST0132,n = 132, ‖A‖ ≈ 3.2 ∗ 105, κ(A) ≈ 6.4 ∗ 1011. We will
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Fig. 7.3. Bounds forδk from Corollary 6.1: weak upper bound (solid line), tighter upper
bound (dashed line), δk (points), all nearly the same; tighter lower bound (dotted line),
computed by MGS GMRES applied to IMPCOLC

only present the normalized residual bounds with the same meaning and
notation as in Fig. 7.1.

Figure 7.4 corresponds to the choiceb = Ae, with x0 = randn(132, 1)
from MATLAB. The upper bound from (5.1) is much weaker than the the
upper bound from (4.4). For the other bounds all values are nearly the same
except for the iterations 18–26 and 122–125 whereδk → 1. The maximal
value ofδk during this experiment was0.99998. Please note that even for
δk ≡ σmin([v1, Bk])/σmin(Bk) so close to one the new bounds from (4.4)
were reasonable, and whenever the upper bound from (4.4) looses its tight-
ness, the upper bound from (5.1) becomes trivial (its value is graphically
indistinguishable from one).

Figure 7.5 shows that the upper bound from (5.1) may in some cases
be smaller than the upper bound from (4.4). Here we usedb = e with
x0 = 0which resulted in a very slow decrease of the relative residual norm.
Consequently, whenδk becomes extremely close to one (in this experiment
the maximal value ofδk was0.999995) and the upper bound from (4.4)
looses its tightness, it may become larger than‖r0‖ and therefore worse
then the upper bound from (5.1). The lower bound from (4.4) is (due to
the values ofδk close to one) not tight for most of the iterations, but it is
always (and often significantly) better then the lower bound from (5.1). Note
also that the tightness of the bounds from (4.4) tends to improve while the
tightness of the bounds from (5.1) tends to worsen as the relative residual
norm decreases.
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Fig. 7.4. Residual bounds: previous upper and lower bounds from (5.1) (dotted lines), then
from (4.4) new upper bound (dashed line), new lower bound (dashed-dotted line), for the
relative residual norm (points), computed by MGS GMRES applied to WEST0132 with
x = e andx0 = randn(132, 1). The (5.1) upper bound is weak. For the other bounds all
values are nearly the same except for the iterations 18 – 26 and 122 – 125 whereδk → 1

8 Summary and conclusion

This paper analysed the relationship between the norm of the residual for
the least squares problem for the matrixB and the right hand sidec, and
the STLS distanceσmin([B, cγ]), which is the norm of the corresponding
total least squares correction for the TLS problem for the matrixB and the
right hand sidecγ. Hereγ is a positive parameter which scales the relative
sizes of the corrections toB andc. Among other things, we derived new
bounds for the LS residual norm‖r‖ = miny ‖c−By‖ in terms of the STLS
distanceσmin([B, cγ]), and proved several important corollaries describing
the tightness of the bounds and their dependence on the parameterγ. The
bounds were seen to be very good whenσmin([B, cγ]) was sufficiently
smaller thanσmin(B). Whenσmin([B, cγ]) ≈ σmin(B), it was shown that
the smallest singular valueσmin(B) and its singular vectors did not play a
significant role in the solution of the LS problem. The TLS problem for the
matrixB and the right hand sidecγ, γ > 0 was shown in [12, Sect. 1] to be
equivalent to an earlier formulation [14] of the STLS problem forB andc.
Our results quantify the relationship between the LS and STLS problems.

We illustrated our theory on the example of theGMRESalgorithmwhich
produces sequences of LS andSTLSproblems. But the relationship between
GMRES and the LS and STLS results that has been proven and discussed in
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Fig. 7.5. Residual bounds: previous upper and lower bounds from (5.1) (dotted lines), then
from (4.4) new upper bound (dashed line), new lower bound (dashed-dotted line), for the
normalized residual norm (points), computed by MGSGMRES applied to WEST0132 with
b = e andx0 = 0. In this extreme situationδk is close to one for most of the iterations.
Several times it becomes extremely close to one, and the new upper bound from (4.4) is then
weaker than the upper bound from (5.1) The new lower bound from (4.4) is always (and for
most of the iterations significantly) stronger than the lower bound from (5.1).

this paper is much deeper than shown by this illustration; this relationship is
truly fundamental. Our results allow us to explain the role of orthogonality
in the finite precision modified Gram-Schmidt GMRES computation and to
complete the numerical stability analysis of MGSGMRES started in [6]. In
this paper, however, we did not go into the effects of rounding errors (this
is why we used experiments in which the loss of orthogonality among the
computed Arnoldi basis vectors is minimal for most of the iterations). The
subsequent paper [13] will be devoted to the LS–STLS–GMRES relation-
ship and the questions mentioned (but not addressed) here will be treated
there in full depth.
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