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MAJORIZATION BOUNDS FOR RITZ VALUES OF HERMITIAN MATRICES  *

CHRISTOPHER C. PAIGEAND IVO PANAYOTOV#

Abstract. Given an approximate invariant subspace we discuss thetieffieess of majorization bounds for
assessing the accuracy of the resulting Rayleigh-Ritz ceqipations to eigenvalues of Hermitian matrices. We
derive a slightly stronger result than previously for themgimation ofk extreme eigenvalues, and examine some
advantages of these majorization bounds compared witkictasounds. From our results we conclude that the
majorization approach appears to be advantageous, anthénatis probably much more work to be carried out in
this direction.
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1. Introduction. The Rayleigh-Ritz method for approximating eigenvalues dier-
mitian matrix A finds the eigenvalues af ¥ AY’, where the columns of the matrix form
an orthonormal basis for a subspagewhich is an approximation to some invariant sub-
spaceX of A, andY " denotes the complex conjugate transpos& ofHere) is called a
trial subspace. The eigenvaluesof’ AY do not depend on the particular choice of basis
and are called Ritz values of with respect to). See Parlett]l, Chapters 10-13] for a
nice treatment. Ify is one-dimensional and spanned by the unit vegttrere is only one
Ritz value—namely the Rayleigh quotiep Ay. The Rayleigh-Ritz method is a classical
approximation method. With the notatifm|| = v 2z write

Spr(A) = Amax(A) — Amin(A4), A= A",
O(z,y) = arccos|:1cHy| € [0,7/2], lz] = |lyll = 1,

6(x,y) being the acute angle betweeandy. The classical result that motivates our research
is the following: the Rayleigh quotient approximates areeigalue of a Hermitian matrix with
accuracy proportional to theguareof the eigenvector approximation error, sé€][and for
example 1]: when Az = z - 2% Az, ||z]| = ||y = 1,

|ot Az — yH Ay| < spr(A)sin®0(z,y). 1.1)

Let Az = z), thenz Az = X\ so |z Ax — yH Ay| = |y (A — AI)y|. We now plug in
the orthogonal decomposition= u + v whereu € span{z} andv € (span{z})*. Thus
(A — X)u = 0and|v|| = sin6(x, y), which results in

[y (A = A)y| = [ (A = ADv| < [|A= M| [[v]* = |A = M| sin® 6(z, y),

where|| - || denotes the matrix norm subordinate to the vector nprrif. But ||A — AI|| <
spr(A), proving the result.

It is important to realize that this bound depends on the anknquantityd(z, y), and
thus is ama priori result. Such results help our understanding rather thathyseocomputa-
tionally usefula posterioriresults. As Wilkinson]4, p. 166] pointed outa priori bounds are
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of great value in assessing the relative performance ofigthgos. Thus while 1.1) is very
interesting in its own right—depending em? §(x, y) rather thansin 6(z, y)—it could also
be useful for assessing the performance of algorithmstiate vectorg approximatinge,
in order to also approximate” Az.

Now suppose an algorithm produced a successidndifnensional subspac@g?) ap-
proximating an invariant subspace of A. For example the block Lanczos algorithm of
Golub and Underwood] is a Krylov subspace method which does this. In what ways can
we generalize1.1) to subspaced” and) with dim X = dim )Y = k& > 1? In [7] Knyazev
and Argentati stated the following conjecture generatjfih 1) to the multidimensional set-
ting. (See Sectio@.1for the definitions ofA(-) andd(-, -)).

CONJECTUREL.1. Let X', Y be subspaces @" having the same dimensidn with
orthonormal bases given by the columns of the matri¢esdY respectively. Led € C™**"
be a Hermitian matrix, and let’ be A-invariant. Then

INXTAX) = MY HAY)| <, spr(A) sin? (X, ). (1.2)

Here '<,,’ denotes the weak submajorization relation, a concepthvisiexplained in Sec-
tion 2.2 Argentati, Knyazev, Paige and Panayotalgrovided the following answer to the
conjecture.

THEOREM 1.2. Let X, ) be subspaces @" having the same dimensidn with or-
thonormal bases given by the columns of the matriceandY” respectively. Letl € C**™
be a Hermitian matrix, and let’ be A-invariant. Then

sin® (X
INXHTAX) = ANYHAY)| <, spr(A) <sin2 0(X,Y) + w> . (1.3)
Moreover, if thed-invariant subspac&’ corresponds to the set bflargest or smallest eigen-

values ofA then
INXHTAX) = MY AY)| <, spr(A)sin® 6(X, ). (1.4)

REMARK 1.3. This is slightly weaker than Conjecturd—we were unable to prove the
full conjecture, although all numerical tests we have damggsst that it is true. In numerical
analysis we are mainly interested in these results as tHesabhgcome small, and then there
is minimal difference between the right hand sides b and (L.2), so proving the full
Conjecturel.1is largely of mathematical interest.

Having thus motivated and reviewed Conjectlirg in Section2 we give the necessary
notation and basic theory, then in Sectiprove a slightly stronger result thah.{), since in
practice we are usually interested in the extreme eigeasalin Sectiont we derive results
to show some benefits of these majorization bounds in cosgravith the classica priori
eigenvalue error bound&.(l), and add comments in SectiénThis is ongoing research, and
there is probably much more to be found on this topic.

2. Definitions and Prerequisites.

2.1. Notation. Forz = [¢1,.... &0 y =0, - oma) T w = [ua, ..., ] T € R™, we
usex! = [¢},..., €47 to denoter with its elements rearranged in descending order, while
2! =[¢l, ..., ¢l]T denotes: with its elements rearranged in ascending order. We:tjge
denote the vectar with the absolute value of its components and useto compare real
vectors componentwise. Notice that< y = z! < y!, otherwise there would exist a first
isuch thatet > --- >z} >y} > ... > ¢!, leaving onlyi —1 elementg}, ...y} | to
dominate the elementsz!, ..., =}, a contradiction.

g
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For real vectorse andy the expressiom < y means that: is majorized byy, while
x <4 y means that: is weakly submajorized by. These concepts are explained in Sec-
tion 2.2

In our discussioM € C™*™ is a Hermitian matrix/X', ) are subspaces 6", andX is
A-invariant. We writeX = R(X) C C" whenever the subspacgéis equal to the range of
the matrix X with » rows. The unit matrix i ande = [1,...,1]7. We useoffdiag(B) to
denoteB with its diagonal elements set to zero, whilieg_of (B) = B — offdiag(B).

We write A\(A) = Al (A) for the vector of eigenvalues ofA = A" arranged in de-
scending order, and(B) = o!(B) for the vector of singular values d¢ arranged in de-
scending order. Individual eigenvalues and singular \saare denoted b¥;(A) ando;(B),
respectively. The distance between the largest and sralg=nvalues ofA is denoted by
spr(A) = A (A) — A\, (A), and the 2-normoB is o1 (B) = || B|.

The acute angle between two unit vectosndy is denoted by)(z, y) and is defined by
cosf(z,y) = |z y| = o(zMy). Let X and)y C C" be subspaces of the same dimengipn
each with orthonormal bases given by the columns of the oethi andY” respectively. We
denote the vector of principal angles betwegmnd) by 0(X,)) = 6'(X,)), and define
itusingcosO(X,Y) = o' (XY); e.q., Bl, [5, §12.4.3].

2.2. Majorization. Majorization compares two real-vectors. Majorization inequal-
ities appear naturally, e.g., when describing the specwursingular values of sums and
products of matrices. Majorization is a well developed tmplied extensively in theoretical
matrix analysis (see, e.92,[6, 10]), but recently it has also been applied in the analysis of
matrix algorithms; e.qg.,d). We briefly introduce the subject and state a few theoremnislwh
we use, followed by two nice theorems we do not use.

We say that: € R™ is weakly submajorized by € R™, writtenz <, v, if

k k
dYE<>m,  1<k<n, (2.1)
i=1 i=1

while x is majorized byy, writtenx < v, if (2.1) holds together with

d&=> n. (2.2)
i=1 i=1

The linear inequalities of these two majorization relasiaiefine convex sets iR". Geo-
metrically x < y if and only if the vectorz is in the convex hull of all vectors obtained by
permuting the coordinates gf see, e.g.,4, Theorem 11.1.10]. Ifz <,, y one can also in-
fer thatz is in a certain convex set dependingsrbut in this case the description is more
complicated. In particular this convex set need not be bednHowever ifr, y > 0 then the
corresponding convex set is indeed bounded, see for exdahgfentagon in Figurg.2
FromQR.)z <y =zt <yl =z <,y butz <, y A =t < y'. The majorization
relations <’ and ‘<,,’ share some properties with the usual inequality relatioh but not
all, so one should deal with them carefully. Here are basalte we use. It follows from
(2.1) and @.2) thatz +u < = + u' (see, e.g.,4, Corollary I1.4.3]), so with the logical&’

{z<wy}&{u<pv}& -+ = z+ut-- < atdut+--- <, yrHot+---. (2.3)

Summing the elements shows this also holds with “replaced by <’
THEOREM2.1.Letz,y € R™. Then

T <y < JueR” suchthate <u & u < y; (2.4)
T <y Yy < JueR” suchthate < u & u <y. (2.5)
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Proof. See, e.g.,4, p. 39]for R.4). If 2 < u & u < y, thenu! < y! and from
(2.) x <, y. Supposer = zt <, y = y!. Definer = Ty — eTx, thent > 0. Define
u=y—e,7, thenu < yandu = ul. Bute?u = Ty — 7 = T2 with }7_, & <
Z{Zl N = Z{Zl wiforl <j<n-—1,s0z < u, proving €.5).0

THEOREM2.2. (Lidskii [9], see also, e.g.2] p. 69]).

Let A, B € C™*™ be Hermitian. Then\(A) — A\(B) < A\(A — B).

THEOREM 2.3. (See, e.g.6f Theorem 3.3.16],4, p. 75]). ¢(AB) < ||A||¢(B) and

o(AB) < ||Bl|o(A) for arbitrary matricesA and B such thatA B exists.

THEOREM2.4. (“Schur’'s Theorem”, see, e.g2, p. 35]).

Let A € C"*" be Hermitian, thenrliag_of (A)e < A\(A).

For interest, here are two results involving,,,” that we do not use later.

THEOREM2.5. (Weyl, see, e.g.6] Theorem 3.3.13 (a), pp- 175-6])
Forany A € C" ", [A\(A)| <w o(A).

Majorization inequalities are intimately connected witirm inequalities:

THEOREM 2.6. (Fan 1951, see, e.gh,[Corollary 3.5.9], 13, § I11.3]). LetA,B €
C™*™ Theno(A) < o(B) < |||A]]] < |||B]|| for every unitarily invariant norm|| - |||.

3. The special case of extreme eigenvaluek (1.1) we saw that itz is an eigenvector
of a Hermitian matrix4 andy is an approximation ta, 2 =y y = 1, then the Rayleigh
quotienty™ Ay is a superior approximation to the elgenvalztféAx of A. A similar situ-
ation occurs in the multi-dimensional case. Supp&isé” € C***k, XX =Yy = [,
X=R(X),Y=R(Y), whereX is A-invariant, i.e. AX = X(X7AX). Then\(X# AX)
is a vector containing thé eigenvalues of the matriXd corresponding to the invariack.
Suppose thal is some approximation t&, then\(Y # AY"), called the vector of Ritz val-
ues of A relative to)), approximates\(X AX). Theoreml.2 extends {.1) by provid-
ing an upper bound fod = |N(YH#AY) — A\(X AX)|. The componentwise inequality
d' < spr(A)sin? §(X,)) is false, but it can be relaxed to weak submajorization t@ giv
Theoreml.2. For the proof of the general statemeht3) of Theoreml.2and for some other
special cases not treated here we refer the readét.td iat paper also shows that the con-
jectured bound cannot be made any tighter, and discussessties which make the proof of
the full Conjecturel.1 difficult.

Instead of {.4) in Theoreml.2, in TheorenB.3we prove a stronger result involving'
(rather than <,,") for this special case of extreme eigenvalues. We will grthe result for
X = R(X) being the invariant space for tltelargest eigenvalues of. We would replace
A by — A to prove the result for thé smallest eigenvalues. The eigenvalues and Ritz values
depend on the subspac&s) and not on the choice of orthonormal bases. If we chatse
such thafy = R(Y), YH#Y = I, andY? AY is the diagonal matrix of Ritz values, then the
columns ofY” are called Ritz vectors. In this section we choose baseswisioally are not
eigenvectors or Ritz vectors, so we use the notaliol” to indicate this. We first provide a
general result fort = A7,

THEOREM 3.1. (See]]). LetX, Y be subspaces di" having the same dimension
k, with orthonormal bases given by the columns of the matticeand Y respectively. Let
A € C™*™ be a Hermitian matrix,X’ be A-invariant, [X, X ;] € C"*™ unitary, and write
C=XHy, S = XfY, Ay = XHAX, Agy = XfAXL. ThenX andY may be chosen
to give real diagonal’ > 0 with C? 4+ SH# S = I, and

d=MXTAX) = ANYHTAY) = MA11) — M(CA1C + ST Ay 8). (3.1)
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Proof. By using the singular value decomposition we can chadsad unitary[)?, )?l]
to givek x k diagonalX #Y# = ¢ > 0, and(n—k) x k S, in

Xy

X¥=R(X), Y=RY), XX )V =|C,5 —[C], C?+S"S =1, (3.2)
Xy

S

where with the definition of angles between subspaces, gm@ppate ordering,
cosf(X,Y) = o (XHY) = Ce,
sin? (X, ) = e — cos? (X, ) = M — C?) = A\(SS) = o(ST9). (3.3)
SinceX is A-invariant and X, X, | is unitary:
(X, X, J"A[X, X ] =diag(A11, Ax), andA = [X, X | ]| diag(Ay1, A)[X, X 17,

whereX# AX = Ay € CH** and(X | )HAX, = Ay € C(n—R)x(n—k)
We can now us& [ X, X, ] = [CH,SH] = [C, SH] to show that

YHAY = yH ([)?, X 1] diag(A1, A)[X, fg]H) %

A 0 C
— H 11 _ H
= [C S } |: 0 !22:| |:S:| = CA110+ S AQQS.

The expression we will later bound thus takes the fornBid)( O

Now assumed; in TheorenB.1has thek largest eigenvalues of. We see that3.1) is
shift independent, so we assume we have shiftedt A — \,,,;,,(A11)I to make both the new
Aq; and—Ass nonnegative definite, see Figusel, and we now have nonnegative definite

square roots/A;; andy/— Ass, giving

[A11]| + [[Azz|| = spr(A). (3.4)
—— ([ A2z | Axal
— i i i
An T Ak A=00 A A

FIGURE 3.1.Eigenvalues of the shifted matrix

We give a lemma to use in our theorem for the improved versigm.g).

LEMMA 3.2. If —Ayy € C—k)x(n=k) js Hermitian nonnegative definite arffl €
(C(n_k)Xk, then0 < )\(_SHAQQS) < ||A22||U(SHS)

Proof. With the Cholesky factorization A5, = L2L§I we have from Theorerh.3

0< )\(—SHAQQS) = cr(—SHAQQS) = 02(L§S) < HLQHQUQ(S) = ||A22||0(SHS). a
THEOREM3.3. Assume the notation and conditions of Theo®eimbut now also assume

that the A-invariant X corresponds to thé: largest eigenvalues ofl. If we shift so that
A= A—Anin(411)1, then the newl,; and— A4, are nonnegative definite and

0<d=ANXTAX)-AYHAY) <u=A (\/AUSHS«/AU) F (=S A 9)
< spr(A)sin? (X, ). (3.5)
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Proof. Cauchy'’s Interlacing Theorem shows> 0; see, e.g.,4, p. 59]. From 8.1)
d={\(A11) = MCA;1C)} + {ANCA1C)—NCA;LC+STA»S)}. (3.6)
Using Lidskii's Theorem (Theorerd.2 here) we have in3.6)
MCA1C) = MNCAC + S ApS) < AN—STA59), (3.7)
where since- A5 is honnegative definite we see from Lemfaand @3.3) that
0 < A(=5749,9) < [|Aga|0(S7S) = || Agal| sin® O(X, ). (3.8)

Next sinceAB and BA have the same nonzero eigenvalues, by using Lidskii's T@rmepr
C? + SH S = I, and Theoren2.3, we see in §.6) that (this was proven inl]):

0 < A(A1)=ACALC) = AV/AnVA) - A (VALCHAL)
A (VARVA - VARC V)
=\(VAL (1-¢?) VAL) = A(VALSTsVAL) - 39)

< ||A11]|o(SHS) = spr(A;1)sin® (X, D). (3.10)
Combining B8.6), (3.7) and 3.9) via the ‘<’ version of 2.3) gives
4= MXTAR) = NVTAY) <= A (VALSTSVAL) + A5 4z8),  (3.11)
and using the bound8 @) and 3.10) with (3.4) proves 8.5).O
REMARK 3.4. Since) < d, we see fromZ.5) that 3.5) implies (1.4), and (.4) implies

(3.5 for someu. The improvement in Theore®.3 is that it provides a useful such in
(3.11). This is a small advance, but any insight might help in théaa

spr(A) -sin® 01(x,))

poss.d z < spr(A) -sin? (X, )

———————————————————————— » spr(A) - sin? 01 (X, )
u and possd

0
FIGURE3.2.0 < d < u < b =spr(A) -sin? 0} (X, ), sod <. b, andd must lie in the pentagon.

Figure3.2 illustrates theR? case of possibld andu if we know only the vectob =
spr(A) - sin? 9(X,)). Note that this illustrates possibié as well asi!. Later we show we
can do better by using more information abaut A (v/A11SHSv/A11) + A(—=S7 Az 5).
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4. Comparison with the classical bounds.Here we compare the present majorization
approach with the classical approach in the case where thjeatared boundi(.2) holds.
For comments on this see Remdrls. We can add:

COROLLARY 4.1.If Conjecturel.lis true, then from 2, Example 11.3.5 (jii)]

INXTAX) = MYHAY)|P <, spr(A)Psin®? 9(X,)) and
IMXTAX) = MY TAY) |, < [|spr(A) sin® 6(X, V)], forp>1, (4.1)

where the exponentis applied to each element of a vedtay,domes from the last inequality
in (2.1), and these are the standard vectenorms; see, e.g.2] p. 84].

Given anA-invariant subspac&’ and an approximatiopy, both of dimensiork, the
choice of respective orthonormal basésandY does not change the Ritz values. Take=
[©1,...,2],Y = [y1,-..,yx], €ach with orthonormal columns so th&t! AX, Y7 AY are
diagonal matrices with elements decreasing along the magodal. Thus the; are (some
choice of) eigenvectors of corresponding to the subspage while they; are Ritz vectors
of A corresponding tQ). Then the classical result () shows that

leH Az; — yP Ay;| < spr(A)sin® 0(z;, v;), i=1,...,k. (4.2)

Because it uses angles between vectors rather than angleselnesubspaces, this bound
can be unnecessarily weak. As an extreme example, #nd x5 correspond to a double
eigenvalue, then it is possible to haye= x> andys = z1, giving the extremely poor bound
in (4.2 of 0 = |2H Az; — y Ay;| < spr(A) for bothi = 1 andi = 2.

Settinge = [cos0(x1,91), .. .,cos0(zr, yr)]T, s = [sinO(z1,y1),...,sin0(xr, yp)]T,
andc?, s to be the respective vectors of squares of the elementsaofi s, here we can
rewrite these: classical eigenvalue bounds as

d=|XHAX —YHAY e = IN(XTAX) — MY HAY)| < spr(A)s®. (4.3)
We will compare this to the conjecturet.?) and the knownZ.4):
d=MNXTAX) = MY AY)| <, spr(A)sin® (X, ). (4.4)

This does not have the weakness mentioned regardir®y (vhich gives it a distinct ad-
vantage. The expression4.§) and @.4) have similar forms, but differ in the angles and
relations that are used. Notice thét= e — |diag_of (X ?Y)|?e, whereasin? §(X,)) =
e — [02(XHY)]T. Here XY contains information about the relative positionsifand
V. In the classical case we use only the diagonakdfY to estimate the eigenvalue ap-
proximation error, whereas in the majorization approachuse the singular values of this
product. Note in comparing the two bounds that in the inatyuedlation the order of the el-
ements must be respected, whereas in the majorizatiooretae order in which the errors
are given does not play a role.

Before dealing with more theory we present an illustratixeneple. Let

10 0 10 7 0

1 1

O I A Y A A
V3 V2

where the columns ok = [z, x2] are eigenvectors ol corresponding to the eigenvalues 1
and 0O respectively. Since

yiay =[5 0
0 0
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is diagonal, the ordered Ritz values for the subsgice R(Y) are just 1/3 and 0, with
corresponding Ritz vectors given by the columgnsndy, of Y. Hencespr(4) = 1 and

{cos@(xl,yl)} _ [%] o 2= {sin2 G(xl,yl)] — [ﬂ .

cos B(x2, y2) 7 sin” 0(za, y2)

-
w

2

On the other hand we have fain? § (X', ) and the application of(3) and @.4):

- [i} = sin? 91 (X,) = ﬁ :

6

Shsh-
s o
| F—
N———

2 2 2 5
d=[NXTAX) - AY T AY)|= {g] <sP= [ﬂ d= [S} <w sin® 04 (X, V)= [8]
2
showing how ¢.3) holds, so this nonnegativklies in the dashed-line bounded area in Fig-
ure 4.1, and how £.4) holds, so thatl lies below the thin outer diagonal line. We also see
how the later theoretical relationships®), (4.8), and @.9) are satisfied.
In this example we are approximating the two largest eigems0 and 1, so3(5) must

hold. In this exampledss = 0, sou = A(v/A11S7S/Aq7). To satisfy 8.2) we need the
SVD of XY (hereX = XU,Y = YV):

a1 e el [0 Vel e= 190 ]

UHXHYV:% 1o2) [1/v3 1/v2] | VB V2| 5 0 1

The form ofC showsS = [,/5/6,0] in (3.2), givingu” = [2/3,0] since

1 - 2
A11 == UHXHAXU = UHelelTU = g |:_42 12:| N A%l = A117 U=\ (gAll) .

Sinced < win (3.5), d must lieon the thick inner diagonal line in Figure 1 In fact it is at
the bottom right corner of this convex set. It can be seendhatu is very much stronger
thand < spr(A)sin® 0(X,Y) in (3.5, and thatd < u describes by far the smallest of the
three sets containing

Al

bw)

Majorization boundine segmentd < u = [2/3}

0
""""""""""" 15 = m}

' Classical
' bound ared < d < s?,
rinside dashed box

dy
O a=u=12/3,0T  b=sin?0(X,Y) = [5/6,0]T

FIGURE4.1. Majorization and classical bounds on the eigenvalue erestord, spr(A)=1.

The next theorem and its corollaries illustrate situatiohgre the general majorization
bound is superior to the classical bound.
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THEOREM4.2. Let X = [z1,..., x| be a matrix ofk orthonormal eigenvectors of,
andY = [y1,...,yx] a matrix ofk orthonormal Ritz vectors ofl. Then withX = R(X)
and) = R(Y) and the notation presented earlier we have

J J
Zsin2 0l (x,)) < Zsin2 01 (x5, yi), 1<j<k. (4.5)
i=1 i=1

Proof. Notice thatc®> = |diag_of (XY)|?e < diag_of(YH X XHY)e. Using Schur’s
Theorem (Theorerfi.4here) we have

¢ = |diag_of (XY)|?e < diag_of YH# X XY )e
<AYEXXHY) = 0?(XHY) = cos? (X, D).

We apply @.4) to this, then useZ.1), to give

J J
<y cos?0(X,)), ZCOS2 01 (x5, ;) < Zc052 HJ(X,JJ), 1<j <k,
i=1 i=1

from which @.5) follows. O

Notice that the angles im(5) are given inincreasingorder. Thus4.5) doesnot show
that sin? (X, )) <,, s> for comparing 4.3) and @.4). It is not important here, but the
majorization literature has a special notation for dergptaiations of the form4.5), whereby
(4.5) can be rewritten as

52 <" sin? 9(X,)).

Here ‘<"’ means ‘is weakly supermajorized by’. In generak ,, y < —x <" —y, see for
example P, pp. 29-30].

Theorem4.2 has the following important consequence.

COROLLARY 4.3. The majorization boundi(4) provides a better estimate for the total
error defined as the sum of all the absolute errors (or eq@rty k times the average error)
of eigenvalue approximation than the classical bourd¥)( That is

IAXHAX) =AY TAY )|y < spr(A)] sin® 6(X, V)1 < spr(A)]|s?[1. (4.7)

It follows that if we are interested in the overall (averagelity of approximation of the
eigenvalue error, rather than a specific component, therirajmn bound provides a better
estimate than the classical one. The improvendehin this total error bound satisfies

A?/spr(A) = eT's? — eTsin? (X, ) = el cos? (X, Y) — el c?
=eTo?(XHY) —eT¢?
= [ XY - ||diag-of (X"Y) |3 = [[offdiag(X"Y)|F.  (4.8)

Note thatA? — 0 asY — X, but thatA? can stay positive even &8 — X. This is
a weakness of the classical bound similar to that mention#awfing (4.2). Thus since
sin?0(X,)) = 0 < Y = X, the majorization bound is tight 38 — X, while the classical
bound might not be.
Equation ¢.8) also leads to a nice geometrical result. See Figutdor insight.
COROLLARY 4.4. The pointspr(A4)s? of the classical bound4(3) is never contained
within the majorization bound4(4) unlesss? = 0, in which case X”Y| = I and both
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bounds are zero. So unleg§ Y| = I the majorization bound always adds information to
the classical bound. Mathematically

I XPY| 4T < s#0, s# 0= 524, sin? 0(X,)). (4.9)

Proof. The first part of 4.9) follows from the definitions = (sin 6(x;,y;)), and then
the second follows from¥(8) sincee” s> > e sin §(X, ) shows thak? <,, sin® 6(X,))
does not hold, see the definition 6f,," in (2.1). 0

From the previous corollary we see that(A)s? must lie outside the pentagon in Fig-
ure 3.2. It might be thought that we could still hawer(A)s? lying between zero and the
extended diagonal line in FiguBe2, but this is not the case. In general:

COROLLARY 4.5. Let’H denote the convex hull of the set

{Psin?0(X,)) : Pisakxk permutation matrix.

Then* lies on the boundary of the half-spaSe= {z : ez < eT'sin” (X, )}, ands? is
not in the strict interior of this half-space.

Proof. For anyz € M we havez = (3, a;P;)sin® 0(X, ) for a finite number of
permutation matrice; with >, a; = 1, all a; > 0. Thuse’z = ¢”'sin? (X, Y) and
z lies on the boundary of. ThereforeH lies on the boundary af. From @.8) e’s? =
eTsin? 0(X, V) +||offdiag( X #Y)||Z > eTsin? (X, )), sos? cannot lie in the interior of.
O

5. Comments and conclusionsFor a given approximate invariant subspace we dis-
cussed majorization bounds for the resulting Rayleiglz-itproximations to eigenvalues of
Hermitian matrices. We showed some advantages of this appimmpared with the classi-
cal bound approach. We gave a proof in Theo®80of (3.5), a slightly stronger result than
(1.4), provenin []. This suggests the possibility that knowing

U=\ (\/ AuSHS\/ All) + /\(—SHAQQS)

in (3.5 could be more useful than just knowing its bounet spr(A)sin? #(X, ), and this
is supported by Figuré.1

In Section4 the majorization result4(4) with boundspr(A)sin?#(Xx,)) was com-
pared with the classical boungbr(A4)s? in (4.3). It was shown in 4.9) thats # 0 =
524, sin” B(X, ), so that this majorization result always gives added infdfom. It was
also seen to give a stronger 1-norm bound4rY), From these, the other results here, and
[1, 7, 8], we conclude that this majorization approach is worthtHartstudy.

Care was taken to illustrate some of the ideas with simplgrdias inR?.

Acknowledgments. Comments from an erudite and very observant referee helpam u
give a nicer and shorter proof for Lemr&, and to improve the presentation in general.
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