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COVARIANCE MATRIX REPRESENTATION
IN LINEAR FILTERING

Christopher C. Paigef

Abstract. The two usual mathematical approaches to estimating the state vector in dynamic
linear models are Kalman filtering and information filtering. If there is no information on part
of the initial state vector then the Kalman filtering model can not be used directly, while if
part is known exactly then the information filtering model does not hold. If one part of the
initial state vector is known accurately and there is no knowledge on some other part, then
neither of these two approaches apply in theory. Altering the models to handle these cases
can lead to numerically unreliable results. This is because poor information results in very
large covariance matrices in Kalman filtering, while very good information leads to very large
matrices in information filtering, and these can cause numerical difficulties. Thus even when
these extreme cases do not hold, the two approaches while being correct mathematically may
not be ideal numerically.

Here we suggest a general representation in which both the covariance and information
matrices are implicitly defined. This gives a unified theoretical approach to the problem and fills
in the gaps where Kalman and information filtering do not apply. It also allows the development
of numerically reliable algorithms in all cases, and these may be desirable when accuracy is
required in difficult cases. An example is given to show how to develop such algorithms.

1. Imtroduction. The filtering problem for discrete linear dynamic systems assumes we have a time
equation relating the state z at time k + 1 to the state at time k, and a measurement equation relating the

output y to the state, both at time k. The time equation is

Tpy1 = Ag xi + Br wg, k=1,2,..., (11)
S~ N’
nXxXn nxXm
where the noise wy, satisfies
S(wk) = 0, S(ijg) = (Sijk. (12)

Here ;5 = 1 if j = k, but is zero otherwise. We will write (1.2) more briefly as

W (O,Qk), (13)
where unless otherwise stated we will assume such sequences as wq, wa,. . ., have uncorrelated vectors w;.
The measurement equation is
Yo = Ck zx+ vk, ve — (0, Ry), (1.4)
.’
pXn

and unless otherwise stated we will assume such vectors as u; and v; are uncorrelated. The matrices

Apg, By, C are assumed known, and the aim is to use the known y; in order to estimate xz;. The approach
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used is to find the best linear unbiased estimate where best means the minimum variance estimate, see [2].

Let xg); be the minimum variance estimate of x given

Y1, Y (1.5)

We are also interested in the covariance of the error of the estimates, and write
fkljzmk‘lj_mka (16)

Pypj = E{[#r1; — £ (@) [Erpy — € (Erp)]" - (1.7)

Usually we are interested in unbiased estimators and so
&(x);) = 0. (1.8)

There are two main approaches in the literature for obtaining the solution to this estimation problem,
the key difference being the treatment of the covariance matrix. The first approach, called covariance filtering,
effectively obtains the covariance matrix Py from Py;_; by incorporating the measurement step (1.4), and
then obtains Pj 1|, from Py using the time step (1.1). The other approach obtains Pk_lli from Pk_|11—1 using
(1.4), and Pk_+11,k from Pk_lli using (1.1). This second approach is often called information filtering because of
the relation of the covariance inverse to the Fisher information matriz see [12, pp.240-241]. This reference
points out that inverse covariance filtering is a more precise terminology, and this will be used here.

These two approaches are fundamentally mathematically different in that there are problems which one
can handle but the other cannot. For example if P;jq = O (we use O for zero matrices, 0 for zero vectors),
corresponding to z; being known exactly, then the inverse of Pyjq does not exist and inverse covariance
filtering is not defined, but covariance matrix filtering is. See [2, p.140] for the reverse case.

For any given theoretical approach to obtaining estimates, there are many different ways of computing
these estimates. In this area there are two broad classes of computational approaches. The first is to compute
the actual covariance matrix, or its inverse, directly from the previous one. This is generally referred to as
filtering. The second approach uses the fact that a covariance matrix, or its inverse, is symmetric nonnegative

definite, and so can be factorized, as for example in
Prg—1 = SkSE. (1.9)

The so called square root filtering approach computes the factor such as Sg, or its inverse, directly from
previous factor, or inverse. Note that the positive square root of a symmetric nonnegative definite matrix is
also symmetric nonnegative definite, and as Sy in (1.9) is usually triangular, the terminology factor filtering
is preferable, and will be used here. Factor filtering is preferable to updating full covariance matrices because
it i1s numerically more accurate and the product Sk SZ can never be indefinite or unsymmetric, while rounding
errors could cause an updated P to be so, see for example [3].
The original filter in dynamic systems was introduced by Kalman [9] and is a covariance filter. This
assumes x1 comes from a distribution
x1 ~ (21)0, P1)o) (1.10)

where this mean and covariance are known. The Kalman formulae are then as follows, see for example [2,
p.39].

Measurement update:

Py = Prjr—1 — Prpp—1CL [Ri + Ci PO ] O Py 1. (1.11)
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Here
Ky = Pyg—1CF [Ri + Cr Py 1G] (1.12)

1s also used 1n

ik = Zrjh—1 + Ke[ye — Crppr_1]. (1.13)

The matrix Ag Ky is called the gain matriz in [2, p.140].
Time update:

Titi)k = Arr|k (1.14)
Pry1je = A Pe A} + BrQr By . (1.15)

There are many realistic models where this approach can break down. One case is where nothing is
known about z;, or part of z;, resulting in Py being nonexistent and the approach being inapplicable.
Another occurs when the inverse in (1.11) does not exist, however see the comments on the use of the
psuedo-inverse in [2, pp.25, 40 & 322]. Difficulty also occurs if Qg in (1.2) or Ry in (1.4) does not exist.
These difficulties can sometimes be circumvented by use of the inverse covariance filter of Fraser [7]. For the
case where all inverses exist the formulae for covariance inverses can be obtained from the Kalman formulae
(1.11) and (1.15) by use of the symmetric form of the matriz inversion lemma given by Duncan [5]. See [13,

p-190] for some history on this well known result.
(H+GMG"Y '=H'-H'GGT"H'G+ M ) 'GTH  H=H" M =M". (1.16)

It follows from this and (1.11) that
Pgy = Pis_y + Ci B Cr. (1.17)

for the inverse covariance measurement update, while applying (1.16) to (1.15) gives

P, = My — My By, (B My By + Q') ™' B My, (1.18)
My = AT P ALY, (1.19)

for the inverse covariance time update. The corresponding expressions for the estimates are derived for
example in [2, p. 140].

It is clear that the inverse covariance formulae cannot be used directly if Pyjg or Ry or Qg or Ay or
the term (...) in (1.18) is singular. Even if none of these is singular, there can still be serious numerical
problems if any are ill-conditioned with respect to solution of equations, see for example [8]. A similar
comment holds for the original Kalman covariance filter. Such numerical difficulties can be allayed to some
extent if the factored versions of these filters are used, see Dyer and McReynolds [6], Kaminski Bryson and
Schmidt [10], Carlson [4], Bierman [3], and Maybeck [12]. Nevertheless not all possibilities are covered by
these approaches, for example x; could have some elements unknown and others known exactly. Nor do any
of these approaches necessarily lead to numerically stable algorithms for certain classes of problems.

Here we advocate a more liberal approach to the representation of covariance matrices, arguing that
the use of covariance matrices only, or inverse covariance matrices only, is unnecessarily restrictive. In section
2 we show how an obvious filter which uses both covariance and inverse covariance matrices is both simple to
derive and state, and is quite fast to compute. This suggests a more flexible approach to covariance matrix
representation, so in Section 3 we suggest a more general representation of the covariance structure of a

random vector, and indicate a very powerful overall approach to solving any such problem.
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2. An Efficient Mixed Filter. A very simple set of filter equations arises if we allow both covariance and
Inverse covariance matrices in the one formulation. We can use the inverse covariance matrix measurement
update,

Pgp = Poa_y + Ci By 'Cr, (2.1)

which is (1.17), and the covariance matrix time update
Prjijk = Ak PorAi + BeQrBE, (2.2)

which is (1.15). There is no problem in going from the triangular factor of a nonsingular matrix to the factor
of its inverse, and since the factored versions are also numerically preferable we will derive these afresh, since

this gives an introduction to ideas used later. We will use the notation
P =UlUk, Puxor=5S0, Ry'=(RNTRY, Qw =L@, (2.3)
where fstands for factor, if for inverse factor, and here
Ug, Sk, Rg, Qf; are upper triangular. (2.4)
Suppose we have x|g and Sy nonsingular, where it is known that z; comes from a distribution with
] —~ (331|0,5151T).

We then have,see [1]
I1|0:.CL‘1—|—51U1, (251 /‘\(O,I), (25)

which with the first measurement equation (1.4) and
o = Rifvp ~ (0, 1) (2.6)
gives

[?1] ~(0,7). (2.7)

U1

)= [ =+ 5]
[Rifyl o RZfCl I1+ ’l~)1 ’

We now carry out the transformation

Ch 51_11?1|0] [U1 | bl]
T : : = 2.8
! [Rifcl | RV O [ rm]’ (28)

where T is orthogonal and U; is upper triangular and necessarily nonsingular. This transforms (2.7) to

[bi] - [%] e [ui] where [“i] =h [}fi] ~ 0. 1). (2.9)

The required estimate x1); of 1 is then the solution of

Uizyp = b1, Up monsingular, (2.10)

and then
Urzqpp = by = Uher + a1,y —~ (0,1), (2.11)
Ui(zip —21) =1, zip =21 + U7 Mg, (2.12)

ULPpUi =1, Pp=U7'07", PR =UTUL (2.13)
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Note that (2.12) has similar form to (2.6). When we combine (2.12) with the time update (1.1) and (1.2)
and
we = —Qx, ik ~ (0,7), (2.14)
We obtain
CE2:=’E2|1—A1U1_1@1—B1Q{17)17 Ty = Armq, (2.15)

where 11, w1 have zero mean, unit covariance, and are uncorrelated with each other. It follows that
Py = $555 = (U7, Bi@)) (AU, BiQ])”, (2.16)
and so we compute Ss from the orthogonal factorization
(AU BIQDYT = (0, S). (2.17)

With ~ ~
AT | UL | T
el2-[e] o
we have from (2.15) and (2.17)
Za|1 :,1‘2—|—52U2, Uy ™ (O,I) (218)

This has the identical form to (2.5), and so the computation can be continued for the next step. The
computation is made up of the orthogonal transformations (2.8) and (2.17), with the state estimates given
by (2.10) and (2.15). The equation (2.1) follows immediately from (2.8), while (2.2) follows from (2.17).
Note that since we are dealing with the factors Si and Uy there is no difficulty in switching from covariance
matrices to inverse covariance matrices and back. The result is a filter that is easy to derive and understand,
and is computationally efficient. However, like the filters in Section 1 it will not handle all cases, for example
if Py|q is singular, and will not necessarily give good numerical results when some matrices are ill-conditioned

for solution of equations.

3. General Covariance Structure. In section 2 we made use of different ways of representing the

covariance structure of vectors. In (2.5) we used
CL‘1:I‘1|0—51U1, Ulf‘\(O,I), (31)

corresponding to the traditional representation

1 (331|07515,1T). (32)
In (2.6) we used
R v, =5 ~ (0, 1), (3.3)
which corresponds to
v ~(0,Ry), Ry = (R)"RY (3.4)
when the inverse exists. In (2.11) we used
UléL‘l:bl—ﬂl, ﬂl/ﬂ(o,f), U1I1|1:b1, (35)

which when U; has an inverse corresponds to the more usual

Ty =2 — uy, where u} = Ul_lﬂl ~ (0, Ul_lUl_T), (3.6)
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while in (2.14) we used
wy = —Ql @y, Wk~ (0,1) (3.7)

mstead of
we ~ (0, Q@) (3.8)

Every odd numbered equation above expresses a vector of interest in terms of a zero mean unit
covariance vector, as this is the natural representation using covariance matrix factors, and leads to good
computational algorithms. We see that (3.3) is essentially (3.5) with the vector of interest having zero mean,
with a similar comment for (3.7) viz a viz (3.1).

Thus we have used two distinctly different representations of the covariance structure of a random
vector x, that is

=2+ Su, u~(0,7), (3.9)

as in (3.1), and
Ur=b+u, u~(0,1), (3.10)

as in (3.5). When S = U~! these are equivalent, but (3.9) allows linear combinations of the elements of z
to be constant (known a priori) by having an S which does not have full row rank, while (3.10) allows the
possibility when U has less than full column rank of having no information at all on the part of z in N (U),
the null space of U.

The two representations are mathematically quite distinct except when S and U are square and non-
singular, but even then they will probably lead to numerically different results. For example when U has
norm 1 but is ill-conditioned with respect to solution of equations, then S = U~' will have a very large

norm. The obvious generalization is to replace both (3.9) and (3.10) by
Ur=0b+ Su, u~(0,1), (3.11)

where ideally the norms of S and U are of reasonable size. This has the form of (3.9) if U = I, and the form
of (3.10) if S = I, but it also covers cases which neither (3.9) nor (3.10) can handle. For example taking

1 1 0 10 0
U=11 -1 0|, S=1]0 0 0
0 0 0 0 0 0

in (3.11) we can have the sum of the first two elements of z being random, their difference constant, with
no information on the third element.
It is important to have such freedom in representing all available knowledge of the initial vector z; in

filtering, and thus to have one expression
by = Uy + Siig, 4y —~ (0,1), (3.12)

which can be used to include the initial conditions in covariance filtering, inverse covariance filtering, and
any feasible combination of both. However the noise vectors wy and vg in (1.1) and (1.4) also have different
representations in covariance filtering, which uses the representation in (3.7) or (3.8), and inverse covariance
filtering, which uses (3.3). To provide a general representation covering any feasible combination of these
cases, and the possibility of correlation between v and wg we could write

R v R" h B .
NZ QLHwIZ]:_ NZ‘ Qk][wl;] [f“]A(OJ) (3.13)
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instead of (1.3) and (1.4), where [ and r stand for left and right. Of course this would introduce far more
flexibility than is usually needed, but it is included here for generality. Also different representations of
(3.13) will lead to different algorithms with different efficiencies.

This rather general discrete linear dynamic model could then be expressed in one large structured

model as
A - 5 :

Y1 (o I 1] 0]

0 R, vy Ry iy

0 Nt w; NP Qf o

dl == A1 Bl E1 X9 + 0] 12)1 (314)
Y2 Cz I (2] 0] f’z

0 R . Ry :

with all the 4y, 9;, w; having zero means, unit covariances, and being uncorrelated. With obvious notation
this can be written

y=Fx+Lu, u~(0,1). (3.15)

Note that (3.14) includes known inputs d; to the system equations, which can be in descriptor form
and have E; # I, where these E; could be singular. Such a model can simply be altered to include any other
correlations that are present.

The important point of (3.15) is not that 7' and L need ever be stored as full matrices, but that (3.14)
shows the full structure of the problem. This facilitates the derivation of efficient algorithms for solving the
problem. In fact since no products of matrices appear in (3.14) it has as its subblocks the original data, and
a numerically stable algorithm for finding the optimal estimate for z in (3.15) will be numerically stable for
the original problem. But numerically stable methods for computing optimal estimates for 2 in (3.15) have
already been given in [11], [14] and [15], and these approaches can be used here, only now care must be taken
to design algorithms which take advantage of the structure to ensure efficiency. This approach was used in
[18] for the special case of inverse covariance filtering where By = I in (1.1). Smoothed estimates were then
seen to be available with minimal extra computation, and the covariance factors of these smoothed estimates
could be obtained quite easily.

In general the formulation (3.14) and (3.15) gives great ease in understanding the problem and in
formulating effective and numerically stable algorithms, as well as encompassing the covariance matrix
filtering problem and the inverse covariance matrix filtering problem, and being more general than both.

Note that (3.15) has exactly the same form as (3.12), which is a natural and desirable consistency. Tt
is shown in [11] that the minimum variance estimate for # in (3.15) is the solution of the generalized linear
least squares problem o

TOIMmIZe Ty subject to y= Fz+ Lu, (3.16)

T, u
and it is shown how to solve this in a numerically stable way. Note since (3.12) has the form of (3.15), the
initial estimate z1)o for z; is the solution of
mlnln;llze ﬂ?ﬂl subject to ];1 = Ull‘l + glﬂla (317)
Ty, Uy
but if Ul has full row rank this satisfies
Ull‘1|0:b1. (318)



8 C. C. PAIGE

It turns out that numerically stable solutions to the filtering problem for (3.14) and (3.15) lead to expressions
of the form (3.12) for each z, and so the above comments apply.

Tt is also shown in [17] how the geometric structure of such problems as (3.15) and (3.16) is revealed
by the generalized singular value decomposition (GSVD) of F' and L, see [19]. Although GSVD algorithms
would rarely be used on large F and L in (3.15), they may well give useful information on the individual

state vector in for example (3.12).

4. A General Covariance Matrix Factor Filter. The model (3.15) with structure (3.14) is far more
general than would usually be needed, and a numerically stable and efficient algorithm for this would be
inefficient for most practical uses. As a result we will only give algorithms for some of the more likely
specializations of (3.14). By following these ideas practitioners will be able to design stable and efficient
algorithms for their own specialization of (3.14).

Here we give an algorithm for the model with the fully general initial condition (3.12), but with only
covariance matrix factors of the noises v; and wg supplied. This will correspond to RL =1, Nli =0, ka =1
in (3.14), and these unit matrices could then be eliminated. It is more straightforward to set up the model
without them initially, but working from (3.14) illustrates an important aspect of the numerical stability of
the approach used.

To eliminate the third (block) row of (3.14) when R} = I we transform the nonzero matrices in the

second and third rows as follows

O I1[w | ¢ I | o]l _[o | O I | R:
I —1f{o | o1 | Rl |w | G o] -R

(4.1)
Since N! = O the unit matrix in the right hand side of (4.1) has only zero matrices above and below it in
the transformed (3.14), and the new second row in (3.14) will not affect the solution of (3.16) and can be
dropped, along with the column of F' in which this [ lies.

To eliminate the original fourth row of (3.14) when N! = O, @} = I we transform the nonzero

matrices in the original fourth and fifth rows as follows

(4.2)

[—31 IHO | o I O | N Q’{]

d | Av O E, | —BiN] —-Bi1Q}
I O||d | A+ By E1x | O O I

o | o o | N Q1

With an identical argument to that for (4.1), the column and row containing the unit matrix on the right of
(4.2) can be dropped.
The same method can be used to eliminate all the other Ré- =1, N7l = 0, Qé = I, resulting in the

transformed version of (3.14)

i : Ele 1 i
Y1 Gy Ry vy
d1 A1 E1 1 Nl Q{ w1
Yo CQ 9 Ré Vo
dy | = As  Fs : + Ny Qg w2

. . Tk X .

. . . Th41 .o .

Yk Ck R£ Vg
_dk_ L Ak Ek_ L Nk £_ LW |

or

y=Fz+ Lu, u~(0,]) (4.3)
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where for simplicity we have made the notational changes
% — v, W —wi, —Ri—Rl —BN >N, -BQI—-@qQ . (4.4)

Initially it appears that forming and using B;@Q} and B; N] could contribute to numerical instability

in the algorithm, but in the derivation here this is seen to be part of the transformation (4.2). Now

2 5]12 5]-[5 2]
I. O||Il. B O In|’

and so the transformation matriz is well conditioned if || B]| is not too large, no matter what the conditioning
of B. But it was shown in [16] that numerically stable solution of (3.16) only requires of such left trans-
formations that they be well conditioned, and so || B;|| ~ 1 is sufficient to ensure (4.2) does not contribute
numerical instability.

Having made the transformation (4.2) we then apparently drop the row containing the numerically
uncorrupted information on N{ and 7, and this may raise some doubts. However we have not really
dropped it, it is just not needed in solving (3.16), but when this has been solved this row is now available
for computing the original w; in (3.14), if it is needed. So it appears that when the norms of the B; are
reasonable, this elimination step is numerically quite safe.

To find best estimates for the state in (4.3) we solve (3.16) in a sequential manner. The transformation

in the first measurement step has the form

- Ul Sl 0] 0] * O gl 0]
[g (I)] ¢, O R! [é g] = |0, % « [(I) }?] =|0h &R R (4.6)
A O Ny ! Ay O Ny ! Ay N Ny

where U; has full row rank and §1 has full column rank. Tl can be an orthogonal matrix, or the product of
stabilized elimination matrices for greater efficiency. P; must be orthogonal, and can be applied along with
T to maintain triangular form throughout. To illustrate this suppose U; and Sy are 3 x 3 lower triangular,
Cyis 2 x 3, and R{ is 2 x 2 lower triangular. We illustrate the first elimination (1) in T1, the first rotation
(2) in Py, and the final form of the matrices.

X X X
X X X X X X
- A X X ® x x x 1 X X X X
Up 51 O x x x 1 1 1 x X X X X X X
¢, O RI|= . - (4.7)
X X X 2 x X X X X X X X X X
A O N )
X X X 2 x X X X X X X X X X
X X X 2 x X X X X X X X X X
Lx X X 2 x x/J Lx X X X X X X x|/

The elements 1 are introduced by the first elimination, and the elements 2 by the first rotation. Note how the
N; block has a different dimension from the N; block. For n x n Aj, ﬁl and Sl, pPXp R{, and p x n C7 and
N{ the total cost of this measurement step using stabilized eliminations from the left and 4 multiplication

rotations from the right is about
Tn’p + 5np?/2 multiplications, (4.8)

or if Ny = O, about
3n%p + 5np?/2 multiplications. (4.9)
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We also apply T} to y, and f’lT in theory to the noise to give
by 1 AT | U1 U1

T =\ P =|_|~(0,1T1 4.10

1[3/1] [bl]’ ' [vl] [“1] ©.D), ( )

so the transformed model 1s

"o T i
by | | U4 ! Ri Ry Uy
_ el N of o . (4.11)

A FEy :
We can now compute the unique v; in

Si1 =71, Si full column rank, (4.12)

and eliminate it. If there i1s no solution then the model is inconsistent, so we will assume we have a correct

model. Then we define

by = by — Rit1, dy=dy — Nyoy, (4.13)
to give for our model - - -
by Uy Ty Ry T
dl = A1 E1 9 + N1 Q{ w1 . (414)

The estimates for the first step follow from the first two rows of this, see the comments on (3.17) and

(3.18). Since U; has full row rank, z1); must satisfy
by = Urzip (4.15)
while if 71 has full row rank x5, satisfies
di = Ajzq + Erzap . (4.16)
Note that we now have the updated version of (3.12)
by = Uiz + Rywy, g ~ (0,1), (4.17)
which includes the first measurement. With (4.15) the covariance matrix representation for the error is then

Up(z1)1 — 21) = Riag, g~ (0,1). (4.18)

In the time step we eliminate A; and N; in (4.14)

7 o O | F:fl OV[I O _ U U | * x| [IT O _ U Uz | S Si2
! A1 E1 | N1 Q{ O P1 B Ug | * * O P1 o U2 | SQ
T B—l = b}ll pr U1 = | U; full row rank (4.19)
dy by |’ Ul Uy |’ ’ ’

Continuing our earlier illustration we can take

Ui, Uy, S; and S5 lower triangular (4.20)
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by again using an elimination from the left followed by a rotation from the right, and so on. The first two
such pairs are illustrated below for 3 x 3 Ui, A1, F1, R1, N1, and 3 x 2 Q{

X X

X X X X

X x x 1 3 x x x 1 3 (4.21)
X X ® X X X ® X

X X ® X X X X ® X X

X X X X X X X X X X X

Note since m = 2 < n = 3 the next “rotation” from the right must move the last and second last columns
forward by one, placing the third last at the end. As a result S; will be 3 x 2. We see we eliminate A; and
N; a column at a time.

We have illustrated the situation for lower triangular £7. Usually £ = I, but if this is not so an initial
transformation could be used to ensure F; is lower triangular, and this would certainly be worthwhile in the
constant coefficient case.

For n x n matrices Uy, A1, E1, R1, N1, and an n X m matrix Q{, with Fy lower triangular, this time

step takes about

9 .
~(n® + n?m—nm?) + §m3 multiplications 4.22
2

2
using stable eliminations from the left and 4 multiplication rotations from the right. When n = m this is
6n3 multiplications. The 9n3/2 term in (4.22) makes it very expensive, but the model (4.3) does include
very general initial information and correlation between v, and wy, as well as handling descriptor systems.

After this time step the transformed model is

bijt Uy Ui S1 Sia Uy
by Us z1 Sy Uy
Y2 = Cg x| + RJZC U9 . (423)
ds Ay By : No Qf ws

Since U; has full row rank we can delete the first row and column and solve the remaining problem, which
we see has exactly the same form as the original problem (4.3), and so we can continue the process. The
“initial condition” for x5 is now

by = Usy + Syits, 1y — (0, 1), (4.24)

which is an alternate representation to that in (4.14). In the usual case F in (4.19) has full row rank, and

we saw U; has full row rank, therefore U5 has full row rank and then Ty satisfies
Uszapy = b (4.25)

Since the present general formulation allows general square F the resulting Us may not have full row
rank, in which case the generalized linear least squares problem, see (3.17), for 2|; in (4.24) could be solved,
or the computation could be continued without computing z3;, as it is not actually needed in later steps.

It is possible in such a general formulation as this that the estimates are not defined uniquely in for
example (4.15) and (4.25). In such cases particular solutions can be chosen, for example minimum 2-norm
solutions. Alternatively these solutions are not needed to produce later estimates, and need not be computed
if that is acceptable in the physical problem. The point is that if the system and measurement equations are
supplying sufficient information then after a certain number of steps the estimates will be uniquely defined,

and can then be computed.
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By considering these transformations applied to the complete model (4.3) it is also possible to derive

numerically reliable algorithms for computing smoothed estimates zy|;,...,z;_1);, but this paper is already

too long to deal with this.
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