
SIAM J. MATRIX ANAL. APPL. © 2019 Society for Industrial and Applied Mathematics
Vol. **, No. *, pp. 0000–0000

ACCURACY OF THE LANCZOS PROCESS FOR THE
EIGENPROBLEM AND SOLUTION OF EQUATIONS∗

CHRISTOPHER C. PAIGE†

Abstract. In [SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2347–2359] it was shown that k steps
of the finite precision Lanczos process for tridiagonalizing an n × n Hermitian matrix A could be
viewed as an exact Lanczos process for a (k+ n)× (k+ n) augmented Hermitian matrix, producing
exactly orthogonal vectors. Here we use this and related results to prove the highly accurate behavior
of the finite precision Lanczos process when used for finding the eigensystem of A, or for solving
linear systems Ax = b. It turns out that the finite precision process mimics the exact process in
iterative rather than n-step ways, and makes available backward stable results. These results are
also complete, such as making available the complete eigensystem of an A with discrete eigenvalues.
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1. Introduction. Some notation used in this paper is described at the start
of section 3. Given A = AH ∈ Cn×n and a vector v1 ∈ Cn of unit-length, i.e.,
vH1 v1 = 1, one “good” implementation (see the Appendix for a more precise description
of “good”) of the Hermitian matrix tridiagonalization process of Cornelius Lanczos,
see [16], [23, (2.1)–(2.8)], and, e.g., [8, §§10.1–10.3], uses the following two 2-term
recurrences (see also [13]). Compute u1 := Av1, then for k= 1, 2, . . . (symbols u and
w in (1.1) are used only in this description and the Appendix, nowhere else)

αk := vHk uk, wk := uk − vkαk, βk+1 := +(wH
kwk)1/2,(1.1)

stop if βk+1 is small enough, else

vk+1 := wk/βk+1, uk+1 := Avk+1 − vkβk+1.

If we define Vk 4= [v1, . . . , vk] ∈ Cn×k then in theory this gives after k steps

AVk = VkTk + vk+1βk+1e
T
k = Vk+1Tk+1,k, V H

k Vk = Ik,(1.2)

where the real symmetric tridiagonal matrix Tk has diagonal elements α1, . . . , αk

and positive next-to-diagonal elements β2, . . . , βk, and, again in theory, the process
necessarily stops in ` ≤ n steps with V` and T`, while β`+1 = 0.

Lanczos originally presented his tridiagonalization process in [16] for solving the
eigenproblem of A, for if T` has eigendecomposition T`Y = YΛ, Y T = Y −1, then
A(V`Y ) = (V`Y )Λ. He also mentioned it would be useful for solving linear systems
Ax = b, and in [17] Lanczos adapted such a solution to the case of general square A,
see [17, §3], and then mostly treated the symmetric positive definite subcase. This
was equivalent to taking β1 = ‖b‖2, v1 = b/β1, and at the k-th step of the Lanczos
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process (1.2) computing the approximation xk = Vkzk where Tkzk = e1β1. In theory
this gives the solution x at the `-th step, and is mathematically equivalent to Hestenes
and Stiefel’s method of conjugate gradients (CG) in [15], and, e.g., [8, §11.3].

1.1. Finite precision. With finite precision computation the Lanczos process
produces a sequence of n-vectors vj , each with a Euclidean norm that is 1 to almost
machine precision, but with a possible severe loss of orthogonality. In fact Vk can
become very rank deficient. Because of this the process can continue indefinitely
with βk+1 never negligible, so that the resulting algorithms for finding eigenvalues or
solving equations behave quite differently from the exact cases.

To simplify the presentation we use the word “essentially” (without quotes) in
the sense illustrated by: “essentially equal to” (also “≈”) meaning “equal to within
O(ε)‖A‖2”, and “∈∼” similarly, where if ‖y‖2 = 1, then “y ∈∼ Range(P3)” means “y +
O(ε)‖A‖2 ∈ Range(P3)”. Here, together with the computer floating-point precision
ε, O(ε) may be polynomially dependent on the number of steps k, the dimension n of
A, and the maximum number of nonzeros in a row of A, see [25, §3.2]. The bound on
the accuracy of computed eigenvalues can grow as k2, but in [21, §8.7] it was stated:
“In practice well separated eigenvalues of A (this includes multiple eigenvalues too)
have been found to have an error proportional to k, and since if the maximum possible
error is proportional to k2 the expected error would be proportional to k for stochastic
errors, the above bound is probably a very good one.”

Definition 1.1. We say that a possible solution to a given problem involving Tk
or A is “backward stable” if it is the exact solution to that problem with a perturbed
matrix A+δA or Tk+E where the norm of the backward error δA or E is bounded
by O(ε)‖A‖ in the above sense, even if that solution does not arise from a numerical

computation. Examples are {X̃, Λ̃} in (13.8), x̃k in (14.4), and z̃k in (14.5).
In [24] it was shown how a special (k+n)× (k+n) unitary matrix can be defined

from any sequence of k unit-length vectors in Cn. This was used in [25] to show
that k steps of a good implementation of the finite precision Lanczos process such as
(1.1) produce a tridiagonal matrix Tk that satisfies an exact Lanczos process for a
(k + n) × (k + n) augmented matrix Ak, see Corollary 7.1, where the vectors vk are
the computed vectors normalized to have exact length 1.

Here we use the results in [24, 25, 34] to prove that the Lanczos process eventually
makes available at least one of every eigenvalue of A, or the solution of Ax = b, in
a backward stable manner, but this can take k � n steps. The terminology “makes
available” is used instead of “produces”, because the Lanczos process alone does not
produce, for example, a backward stable solution of Ax = b. Further computations
are needed, and the analyses of these could be combined with the analyses here.

A key part of the analysis here is the unitary matrix Q(k) in (4.4),

Q(k) ≡

[
Q

(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22

]
4
=

[
Sk (Ik−Sk)V H

k

Vk(Ik−Sk) In−Vk(Ik−Sk)V H
k

]
∈ U(k+n)×(k+n).(1.3)

This, along with Sk, is introduced in Theorem 4.1. In the arithmetically exact case of

the Lanczos process Sk = 0 and Q
(k)
22 = In − VkV H

k , V H
k Vk = Ik, so that if A has no

multiple eigenvalues and the process goes to completion, Q
(n)
22 = 0. The finite precision

implementation mimics this case to the extent that for A with all distinct eigenvalues,

‖Q(k)
22 ‖F ↘ 0, and if Q

(k)
22 = 0, then n of the eigenvalues of Tk are essentially the n

eigenvalues of A, while all converged eigenvalues of Tk are also essentially eigenvalues
of A, i.e., Tk can have repeats of eigenvalues of A.
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Our purpose is to apply this analysis to obtain an increased understanding of
how the Lanczos process performs for large sparse Hermitian matrix problems such
as the eigenproblem and solution of linear systems, see, for example, [16, 17, 15,
30, 4]. Because the Golub-Kahan bidiagonalization of a general possibly non-square
matrix [7] can be formulated as an Hermitian Lanczos process, the results here can be
extended to understanding the use of this bidiagonalization in solving least squares
problems, singular value computations, and related problems; see, for example, [7, 31,
32, 6, 33, 12]. This analysis can be useful for more adventurous algorithms, see for
example Carson and Demmel [2], and perhaps even for unsymmetric Lanczos and CG-
like methods, see for example [28, 37]. Similar ideas could help simplify and improve
earlier analyses such as that in [29].

The rest of the paper is organized as follows. In the next section we give a brief and
incomplete history, followed by the notation used here with some helpful background.
In section 4 we summarize the crucial theorem on obtaining the unitary matrix Q(k)

in (1.3) from k unit-length n-vectors, the columns of Vk, while section 5 applies this
to show that the Lanczos process is always on a useful path, and section 6 derives
some properties of that unitary matrix Q(k) that we need. Section 7 summarizes
the result of the rounding error analysis in [25]. This shows that the finite precision
Lanczos process behaves as a higher dimensional exact Lanczos process for a slightly
perturbed (k + n) × (k + n) matrix Ak. Section 8 introduces the Singular Value
Decomposition (SVD) of Sk in (1.3), and how it defines important subspaces related
to Vk. Sections 9–12 are devoted to convergence and rate of convergence of the
process, showing how the Lanczos process makes available backward stable eigenpairs
of A for those eigenvectors that are represented in the initial vector v1. When A has no

multiple eigenvalues so that eventually Q
(k)
22 = 0 in (1.3), sections 13 and 14 show how

the Lanczos process makes available backward stable solutions for the eigenproblem
and solution of equations. Section 15 gives an example of the Lanczos-CG process
solving Ax = b. Section 16 discusses how all these results might be extended to the full
analyses of various practical methods. Finally there are a few additional comments
and a summary in section 17, while the Appendix provides extra explanatory material.

2. A brief history. The early development of our understanding of the finite
precision tridiagonalization process of a symmetric matrix A proposed by Cornelius
Lanczos in [16] has been discussed by Parlett [36] and by Meurant [18], see also
Meurant and Strakǒs [19]. The work here was initiated with [21, 22, 23], where several
of those results were clarified and simplified by Panayotov [35], see also [27], but these
and other works seemed incomplete. A breakthrough arose with the realization in
[24] that an early idea on loss of orthogonality in modified Gram-Schmidt (MGS)
outlined by Björck and Paige in [1] could be extended to apply to any sequence
of unit-length vectors vj . This approach was applied in [25] to give an augmented
backward stability result for the Hermitian matrix Lanczos process [16]. But using
this to prove the convergence and accuracy of methods based on the Lanczos process
has not been easy, so to provide tools for this study, many relevant results were derived
by Paige and Wülling in [34]. In particular they derived the SVD of Sk in (1.3), and
that is very effective in the analysis.

One of the guiding lights in this area has been Beresford Parlett, who, with several
students and colleagues greatly improved the use and understanding of the Lanczos
process. See, for example, [36] for explanations and clarifications of many of the im-
portant ideas and relations. In particular Anne Greenbaum, once a student of Parlett,
and (initially quite independently) Zdeněk Strakoš, developed our understanding of
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the practical behavior of the Lanczos process and its use for both the eigenproblem
and CG; see, for example, [9, 10, 39, 11, 40]. To put the present study in context, an
augmented result on the stability of the Lanczos process was initiated by Greenbaum
in [10]. Following this, Strakoš and coworkers developed illuminating results on the
practical behaviors of the Lanczos process and CG via an analysis based on the funda-
mental relationship with the theory of orthogonal polynomials and Gauss quadrature
of the Riemann–Stieltjes integral; see the survey paper [19] for a nice description, and
[20] for further developments and an extensive literature survey.

The augmented matrix approach here is based solely on ideas from matrix theory
and an extension of the groundbreaking concept of backward stability for numerical
algorithms developed largely and very effectively by Wilkinson whose work in, e.g., [41,
42], strongly motivated the work leading to this paper. See the note by Hammarling
and Higham [14] for valuable history on Wilkinson and backward error analysis.

3. Additional notation and remarks. We use “4=” for “is defined to be”, and
“≡” for “is equivalent to”. Let In denote the n×n unit matrix, with j-th column ej .
We say Q1 ∈ Cn×k has orthonormal columns if QH

1 Q1 = Ik and write Q1 ∈ Un×k.

We denote the Frobenius norm by ‖B‖F , the Euclidean norm by ‖v‖2 4=
√
vHv and

the spectral norm by ‖B‖2 4= σmax(B), the maximum singular value of B. We write

Vj 4= [v1, v2, . . . , vj ] and use Range(B) to denote the range of B.
We often index matrices by dimensional subscripts as in Vk when the (k+1)-st

matrix can be obtained from the k-th by adding a column, or a column and a row.
This holds for Vk ∈ Cn×k and Sk ∈ Ck×k. Otherwise we usually use superscripts, as

in Q(k), and then subscripts denote partitioning, as in Q(k) ≡ [Q
(k)
1 |Q

(k)
2 ]. We often

omit the particular superscript ·(k) when the meaning is clear (but do not omit any
other superscripts, e.g., we do not omit ·(k+1)). The integer ` is described just after
equation (1.2), it denotes the concluding step of the exact Lanczos process.

Stating definitions and results from [23] will simplify the presentation a little.
Assume that for the computed Tk in (1.1)–(1.2), where (with Y ≡Y (k) and M≡M (k))

TkY = YM, Y TY = Ik, M 4
= diag(µ1, . . . , µk), Y 4= [y1, y2, . . . , yk].(3.1)

Remark 3.1. If Tk is the leading k × k block of a real symmetric tridiagonal
matrix Tm of the form in (1.2) and (Tk + Êk)ỹ = ỹµ̃, ỹH ỹ = 1, then for all m > k

[
Tm+Êm

][ỹ
0

]
=

[
ỹ
0

]
µ̃, Êm

4
=

[
Êk 0
0 0

]
−ek+1(βk+1e

T
k ỹ)

[
ỹ
0

]H
,

and there is an eigenvalue of Tm within ‖Êm‖2 ≤ βk+1|eTk ỹ|+‖Êk‖2 of µ̃, [42, p.87]. We
say that µ̃ (as an approximation to an eigenvalue of any Tm, m ≥ k) has “converged

to within ‖Êm‖2”. If ‖Êm‖2 ≈ 0 we say that “µ̃ has converged”, so that
{
µ̃,
[
ỹ
0

]}
is a backward stable eigenpair of Tm in the sense of Definition 1.1. It is largely the
nonzero βk+1e

T
k ỹ ≈ 0 that forces us to use many expressions involving “≈”.

Remark 3.2. Orthogonality of vk+1 can only be lost in the direction of those

Vky
(k)
j for which µ

(k)
j has converged, see [23, (3.18)]. This follows because it was shown

in [23] that (βk+1e
T
k y

(k)
j )vHk+1Vky

(k)
j ≈ 0, j=1:k, see Remark 3.1 with Êk =0.

Remark 3.3. If an eigenvalue µj of Tk from the finite precision Lanczos process on
A = AH has converged, then it is essentially an eigenvalue of A, see [23, Theorem 3.1],
and in fact a backward stable eigenpair {µr, Vkyr} for A, where µr ≈ µj , ‖Vkyr‖2 ≈ 1,
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is then available from the Lanczos process, see [23, (3.3) & Corollary 3.1].

Remark 3.4. It follows from [23, (3.18)] and Remarks 3.1–3.3 above, see also
[21, (8.32)], that orthogonality of the vj in (1.1)–(1.2) is not lost until the first eigen-

pair {µ(k)
j , y

(k)
j } of Tk, and hence the approximate eigenpair {µ(k)

j , Vky
(k)
j } of A, have

essentially converged.

Remark 3.5. It was proven in [21, §8.6.1, pp.122–126], with a summary in [23,

(3.28)], that if {µ(k)
j , y

(k)
j }, . . . , {µ

(k)
j+s, y

(k)
j+s} are s + 1 eigenpairs of Tk that are close

to each other but sufficiently separated from the rest, then

j+s∑
i=j

‖Vky(k)i ‖
2
2 ≈ s+ 1.(3.2)

Remark 3.6. If an eigenpair {µ(k)
j , y

(k)
j } of Tk has converged in the sense of

Remark 3.1 so that βk+1|eTk y
(k)
j | ≈ 0, then µ

(k)
j has essentially converged to an eigen-

value λi of A, see Remark 3.3. Also orthogonality of vk+1 is not significantly lost in

the direction Vky
(k)
j until µ

(k)
j has converged, see Remark 3.2. But such loss of orthog-

onality allows the same eigenvalue of A to be approximated again later. Therefore

we mainly consider the first time any eigenvalue µ
(k)
j of Tk converges to an eigen-

value of A, and call {µ(k)
j , y

(k)
j } a “first converged” eigenpair of Tk (with respect to

A), and {µ(k)
j , Vky

(k)
j } a “first converged” eigenpair of A. In this case we know from

Remark 3.5 that ‖Vky(k)j ‖2 ≈ 1 if µ
(k)
j is a well-separated eigenvalue of Tk.

Remark 3.7. If AZ=ZΛ+R with Λ diagonal, ZHZ≈I, then (A−E)Z=ZΛ with
E4=R(ZHZ)−1ZH, and ‖E‖2≈‖R‖2. So {Λ, Z} are backward stable for A if R≈0.

4. Obtaining a unitary matrix from unit-length n-vectors. The next the-
orem was given in full with proofs in [24]. It allows us to develop an (k+n)× (k+n)
unitary matrix Q(k) from any n× k matrix Vk with unit-length columns.

Theorem 4.1 ([24, Theorem 2.1]). For integers n ≥ 1 and k ≥ 1, and Vj 4=
[v1, . . . , vj ] ∈ Cn×j with ‖vj‖2 = 1, j = 1, . . . , k+1, define the strictly upper triangular
matrix Sk, where Uk is the strictly upper triangular part of V H

k Vk = I + Uk + UH
k ,

(4.1) Sk
4
= (Ik + Uk)−1Uk ≡ Uk(Ik + Uk)−1 ∈ Ck×k

where Ik ± Sk and Ik ± Uk are clearly always nonsingular. Then

UkSk = SkUk, Uk =(Ik−Sk)−1Sk≡Sk(Ik−Sk)−1, (Ik−Sk)−1 = Ik+Uk,(4.2)

‖Sk‖2 ≤ 1; V H
k Vk = I ⇔ ‖Sk‖2 = 0; V H

k Vk singular⇔ ‖Sk‖2 = 1.(4.3)

Most importantly, Sk is the unique strictly upper triangular k × k matrix such that

(4.4) Q(k) ≡

[
Q

(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22

]
4
=

[
Sk (Ik−Sk)V H

k

Vk(Ik−Sk) In−Vk(Ik−Sk)V H
k

]
∈ U(k+n)×(k+n).



6 CHRISTOPHER C. PAIGE

We also write Q(k) ≡
[
Q

(k)
1 Q

(k)
2

]
k n

. Define

[
sk
0

]
4
= Skek, then with (4.2) we have

Skek =(Ik−Sk)Ukek =

[
(Ik−1−Sk−1)V H

k−1vk
0

]
, sk+1 =(Ik−Sk)V H

k vk+1,(4.5)

Q
(k+1)
1 =

[
Sk+1

Vk+1(Ik+1 − Sk+1)

]
=

 Sk sk+1

0 0
Vk(Ik − Sk) vk+1 − Vksk+1

.(4.6)

Perhaps the simplest proof of Theorem 4.1 so far is that given in [26]. In [24] the
above construction was called an orthonormal augmentation of a sequence of unit-
length vectors, and Q(k) an augmented unitary matrix.

5. Applying Q(k) in Theorem 4.1 to the Lanczos process. The tridiagonal
matrix Tk arising from the finite precision version of the Lanczos process in (1.1)–(1.2)
can be viewed as the result of a unitary similarity transformation applied to a strange,
slightly perturbed, higher dimensional matrix, as we now illustrate.

Theorem 5.1 ([25, Theorem 3.1]). After k finite precision steps of a good imple-
mentation of the Lanczos algorithm with A = AH and v1 leading to the computed βk+1

and tridiagonal matrix Tk, see (1.2), let Vk+1 =[v1, v2, . . . , vk+1] be the matrix of com-
puted Lanczos vectors normalized to have unit length. Then if Q(k) ∈ U(k+n)×(k+n) is
as in (4.4) in Theorem 4.1, and Ak

4
= A− vk+1βk+1v

H
k − vkβk+1v

H
k+1 = AH

k , we have

Q(k)HAkQ
(k) = Tk 4=

[
Tk ekβk+1v

H
k+1

vk+1βk+1e
T
k Ak

]
, Ak

4
=

[
Tk 0
0 A

]
+H(k),(5.1)

Tk+1,k
4
=

[
Tk

βk+1e
T
k

]
, H(k) =H(k)H≡

[
H

(k)
11 H

(k)
12

H
(k)
21 H

(k)
22

]
, ‖H(k)‖2≤O(ε)‖A‖2.

More precise bounds for H(k) are suggested in [25, §3], with a correction suggested
by Carson and Demmel in [2, §5]. The corresponding Lanczos process in Corollary 7.1
might facilitate an understanding of Theorem 5.1.

5.1. The Lanczos process always behaves well. No matter how large k
is in Theorem 5.1, we can in theory apply at most n−1 exact unitary similarity
transformations to Tk in (5.1) to complete its tridiagonalization, giving Q̃(k)HAkQ̃

(k) =

T̃k+n, so that the eigenvalues of T̃k+n are exactly the eigenvalues of Ak, that is,
essentially all of the eigenvalues of A together with essentially all of the eigenvalues
of Tk.

Not all eigenvalues of Tk will have converged, and so not all eigenvalues of T̃k+n

will essentially be eigenvalues of A. But every converged eigenvalue of Tk is essentially
an eigenvalue of A, see Remark 3.3, and eigenvalues of the developing Tk never lose
their level of convergence, see Remark 3.1. Because this is true for all k, it shows
that the Lanczos process is always on track for the eigenproblem, the accuracy of
approximation to eigenvalues of A is only limited by the slowly growing size of the
backward error H(k). It follows from the above that the eigenvalues of Tk essentially
lie between the smallest and largest eigenvalues of A. A more precise result is given
in Theorem 17.1 in the Appendix.
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6. Some properties of Q(k) in (4.4). Our analysis of the computational Lanc-
zos process uses properties of the sub-blocks of Q(k) in (4.4)–(4.6). From (4.5)

sk+1 = (Ik − Sk)V H
k vk+1 = Q

(k)
12 vk+1, so together with (4.4) and (4.6)

Q
(k)
22 vk+1 =[In−Vk(Ik−Sk)V H

k ]vk+1 =vk+1−Vksk+1 =Q
(k+1)
21 ek+1,(6.1)

q(k+1)4
=

[
sk+1

vk+1−Vksk+1

]
=

[
Q

(k)
12

Q
(k)
22

]
vk+1 = Q

(k)
2 vk+1.(6.2)

For j = 1 : k+1 define the orthogonal projectors Pj
4
= In− vjvHj . Because Sk is

strictly upper triangular we see S1 =0, so from (4.4) we have Q
(1)
22 =P1, and we use

Q
(k)
21 = Vk(Ik − Sk), Q

(k)
12 = (Ik − Sk)V H

k , Q
(k)
22 = In −Q(k)

21 V
H
k ,

Vk+1 = [Vk, vk+1], Ik+1 − Sk+1 =

[
Ik − Sk −sk+1

0 1

]
,

to prove several things with (6.2), in particular that Q
(k)
22 =P1 · · · Pk:

Q
(k+1)
21 =Vk+1(Ik+1−Sk+1)=[Vk(Ik−Sk), vk+1−Vksk+1]=[Q

(k)
21 , Q

(k)
22 vk+1],(6.3)

Q
(k+1)
12 = (Ik+1−Sk+1)V H

k+1 =

[
(Ik−Sk)V H

k −sk+1v
H
k+1

vHk+1

]
=

[
Q

(k)
12 Pk+1

vHk+1

]
,(6.4)

Q
(k+1)
22 =In−Q(k+1)

21 V H
k+1 =In−Q(k)

21 V
H
k −Q

(k)
22 vk+1v

H
k+1 =Q

(k)
22 (In−vk+1v

H
k+1).(6.5)

The decrease in ‖Q(k)
22 ‖F is crucial. First ‖Q(k+1)

22 ‖2≤‖Q(k)
22 ‖2 because

Q
(k+1)
22 Q

(k+1)H
22 = Q

(k)
22 (In−vk+1v

H
k+1)Q

(k)H
22 = Q

(k)
22 Q

(k)H
22 −Q

(k)
22 vk+1v

H
k+1Q

(k)H
22 .(6.6)

This and (6.3) with Q
(0)
22
4
= In show how ‖Q(k)

22 ‖F decreases and ‖Q(k)
21 ‖F increases:

‖Q(k+1)
22 ‖2F = trace[Q

(k+1)
22 Q

(k+1)H
22 ] = ‖Q(k)

22 ‖2F − ‖Q
(k)
22 vk+1‖22,(6.7)

‖Q(k+1)
21 ‖2F = ‖Q(k)

21 ‖2F + ‖Q(k)
22 vk+1‖22 =

∑k
j=0‖Q

(j)
22 vj+1‖22.(6.8)

Ideally Sk+1 = 0, so in (6.1) Q
(k)
22 vk+1 = vk+1, and ‖Q(k)

22 ‖2F = n − k decreases
by 1 each step. Computationally, see Remark 3.4, until the first eigenpair converges

there is negligible loss of orthogonality, and then ‖Q(k)
22 vk+1‖2 ≈ ‖vk+1‖2 = 1 also,

but once orthogonality is lost convergence can become very slow.
To facilitate an understanding of the subsequent theory we now give an example

indicating how ‖Q(k)
22 vk+1‖2 = ‖vk+1−Vksk+1‖2 and ‖Q(k)

22 ‖F can behave in practice.
Remark 6.1. All computations are carried out in MATLAB™ using IEEE

double precision floating-point arithmetic (unit roundoff u = 2−53 ≈ 10−16). The
computed results involving the theoretical Q(k) have rounding errors, and therefore

are approximations. To limit cancellation errors we always compute Q
(k)
22 vk+1 instead

of vk+1−Vksk+1, and compute Q
(k+1)
22 via Q

(k)
22 (In−vk+1v

H
k+1), see (6.1) and (6.5). For

ease of reference we sometimes call ‖Q(k)
22 vk+1‖2 the “Q-change”, see (6.7), (6.8).

Example 6.1. The Lanczos process has difficulty with close eigenvalues, espe-
cially when there are one or more very well separated eigenvalues, so to illustrate how
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Fig. 6.1. Plots of ‖Q(k)
22 ‖F , ‖Q(k)

22 vk+1‖2, and βk+1‖Q
(k)
22 vk+1‖2 obtained from the Lanczos

process with v1 in a 6 dimensional eigensubspace of A = AT ∈ R10×10.

‖Q(k)
22 ‖2F decays even with this very poor behavior, the process was applied to a random

symmetric matrix A ∈ R10×10 with eigenvalues λi = i ∗ 0.00001, i=1:9, and λ10 = 1.
The initial vector v1 was a random combination of the eigenvectors of A corresponding
to eigenvalues λ1, λ2, λ3, λ4, λ5, λ10, to show how the others will also be found.

The results are plotted in Figure 6.1. Not until k = 12 was Vk recognized as
having rank 10. It can be seen from a standard plot, but not this semi-log plot, that

‖Q(k)
22 ‖2F follows the correct path, decreasing from 10 by 1 each step until step 5 when

the first eigenvalue of A has converged to O(ε)‖A‖, at which point the rate of decrease

of ‖Q(k)
22 ‖2F slows. Unlike the exact process that would give β7 = 0, the computational

process only gave β7 =0.000001595485258, and so did not stop.

The line at the top, the red line, represents values of ‖Q(k)
22 ‖F . The second line

from the top, the blue line, represents values of ‖Q(k)
22 vk+1‖2, the Q-change. Al-

though we know ‖Q(k)
22 vk+1‖2 ≤ ‖Q(k)

22 ‖2, it is remarkable how close ‖Q(k)
22 vk+1‖2 was

to ‖Q(k)
22 ‖2, rarely departing too far from it for more than a step at a time. This,

with (6.7), is one reason that ‖Q(k)
22 ‖F decreases so rapidly here, even after orthogo-

nality and linear independence have been lost. But this does not always happen, see
section 15. The rate of convergence is discussed in section 12.1.

At k= 19, βk+1 = 0.000000185699582 and ‖Q(k)
22 vk+1‖2 = 0.000000000258131, so

the process could be stopped with βk+1‖Q(k)
22 vk+1‖2 < 10−16, see the green, and low-

est, line, even though ‖Q(k)
22 vk+1‖2 and ‖Q(k)

22 ‖F = 0.000000008678201 are still a long
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way from zero. Nevertheless, at k= 19, to 10−15 all the eigenvalues of A have been
given accurately, where λ10 = 1 appears 5 times, each of λ1, λ2, λ3, λ4, and λ5 ap-
pear twice, but the second value of λ3 = 0.000030000000035 has not yet converged.
Remember ‖Sk‖2 ≤ 1 in (4.3). For later interest the computed version of S19 here
has 9 essentially unit singular values indicating the amount of loss of linear indepen-
dence of the columns of the ideal V19 ∈ R10×19, 6 essentially zero singular values,
with the others being 0.000000008678156, 0.000000000028064, 0.000000000001571,

and 0.000000000000007, all less than ‖Q(k)
22 ‖F = 0.000000008678201.

The red line shows how ‖Q(k)
22 ‖F decreases quite rapidly. However ‖Q(k)

22 ‖F and

‖Q(k)
22 vk+1‖2 are not zero to 15 decimal places until step k= 32, well after all eigen-

values had been found to full precision at step k = 19. At step k = 32, S32 has 10
essentially zero and 22 essentially unit singular values, to 15 decimal places. It turns

out that Q
(k)
22 = 0 implies that the SVD of Sk (see Definition 8.1) is Sk = W1P

H
1 ,

where W1, P1 ∈ Uk×(k−n), and that explains this.
This example emphasizes that while the theory here concentrates on the effect

of ‖Q(k)
22 ‖F decreasing until it stabilizes (at zero in cases like this where A has no

multiple eigenvalues) we expect the practical Lanczos process to produce accurate

results well before ‖Q(k)
22 ‖F stabilizes.

7. The “Exact” Finite Precision Lanczos process. A simple rounding error
analysis of a good finite precision implementation of (1.2) gives, see, e.g., [22],

(7.1) AVk = VkTk + vk+1βk+1e
T
k +Ek = Vk+1Tk+1,k +Ek, ‖Ek‖2,F ≤ O(ε)‖A‖2,F ,

but this has limited applicability. We base our analysis on a theorem from [25].

Corollary 7.1 ([25, Corollary 3.2]). With the assumptions and notation of
Theorem 5.1, there is an exact Lanczos process for the Hermitian matrix Ak in (5.1),([

Tk 0
0 A

]
+H(k)

)[
Sk

Vk(I−Sk)

]
=

[
Sk

Vk(I−Sk)

]
Tk +

[
sk+1

vk+1−Vksk+1

]
βk+1e

T
k ,(7.2) [

Q
(k)
1 q(k+1)

]
4
=

[
Sk sk+1

Vk(I−Sk) vk+1−Vksk+1

]
∈U(k+n)×(k+1), see (4.6), (6.2).(7.3)

This follows by multiplying (5.1) on the left by Q(k), and taking the first k columns.

Here q(k+1) is the last column of Q
(k+1)
1 with its zero (k+1)-st element removed.

We call (7.2)–(7.3) the “exact” finite precision Lanczos process because the com-
puted Tk+1,k is seen to be the exact result of k steps of an exact Lanczos process with
exact orthogonality arising from the strange Hermitian matrix Ak with its O(ε)‖A‖2
Hermitian backward error H(k), the only rounding error component. To help under-
standing, if H(k) = 0 then Sk and sk+1 will be zero, the top block-row of (7.2) will
be zero, while the bottom block-row will correspond to the ideal Lanczos process.

Even in practice the first column of Sk is zero, so the first column of Q
(k)
1 is

(0T , vT1 )T . But a nonzero rounding error term H(k) leads to some nonzero elements
in each sk+1, and so in the top of q(k+1). For the ideal Vk+1 with unit length columns
and the resulting ideal sk+1 it is even possible to have some ‖sk+1‖2 = 1, so that
vk+1 = Vksk+1, increasing the rank deficiency by one in going from Vk to Vk+1.
Nevertheless the augmented system (7.2) is still an exact Lanczos process.

The k-th step of the Lanczos process produces αk and βk+1, so it seems strange
that the full Tk is part of Ak, because Tk then seems to appear fully on both sides of
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equation (7.2). But this is just an artifact that is necessary to make Ak Hermitian.

Because eTk Sk = 0, we see from (7.3) that the k-th row of Q
(k)
1 is zero, and so the

k-th column of Tk is not used in AkQ
(k)
1 in (7.2). Thus (7.2) shows how Tk+1,k is

developed from Tk,k−1. We use Corollary 7.1 to show just what is happening in the
finite precision Lanczos process.

Remark 7.1. Because Tk is tridiagonal the columns of Q
(k)
1 form an orthonormal

basis for the Krylov subspace Kk(Ak,Q
(k)
1 e1). This means that B=(Q

(k)
1 )HAkQ

(k)
1 =Tk

gives βk+1 = minB ‖AkQ
(k)
1 − Q

(k)
1 B‖F , i.e., Tk minimizes the residual for Q

(k)
1 as an

approximate invariant subspace for the matrix Ak, see Parlett [36, §12.7,13.1].

8. The singular value decomposition (SVD) of Sk. We derive the SVD
Sk = W (k)Σ(k)P (k)H when Sk in (4.1) arises from any matrix Vk with unit-length
columns. We remind the reader that we often omit the superscript ·(k) for readability,
and write, e.g., Sk = WΣPH, but never omit other superscripts such as ·(k+1).

From (4.3) we know that σmax(Sk)≤1, and we show that unit singular values are
crucial in the analysis. Also if V H

k Vk = I then Sk = 0 in (4.1), and it helps to label
the singular vectors of Sk according to its zero, unit, and in between singular values.
Briefly, zero singular values correspond to no loss of orthogonality, unit singular values
to loss of linear independence, and intermediate singular values to loss of orthogonality
but not loss of linear independence. The rest of this section comes from [34].

Definition 8.1 (Partitioned SVD of Sk, [34, §4]). Let the k × k matrix Sk in
Theorem 4.1 have mk unit and nk zero singular values with SVD

Sk =WΣPH≡W1P
H
1 +W2Σ2P

H
2 , I−SkS

H
k =WΓ2WH≡W2Γ2

2W
H
2 +W3W

H
3 ,(8.1)

W ≡W (k)≡ [w1, . . . , wk]≡ [W1,W2,W3] ∈ Uk×k, W1 ∈ Uk×mk , W3 ∈ Uk×nk ,

P ≡P (k)≡ [p1, ., pk]≡ [P1, P2, P3]∈Uk×k, P1∈Uk×mk, P2∈Uk×`k, P3∈Uk×nk,(8.2)

Σ≡Σ(k)≡diag(σ1, . . . , σk)≡diag(Imk
,Σ2, Onk

), Σ2 ∈ R`k×`k , k=`k+mk+nk,

Γ24
=Ik−Σ2, Γ≡Γ(k)≡diag(γ1, . . . , γk)≡diag(Omk

,Γ2, Ink
), Γ2 positive definite,

where the singular values σj, 1 ≤ j ≤ k, of Sk in Σ≡Σ(k) are arranged as follows,

(8.3) 1 = σ1 = · · · = σmk
> σmk+1 ≥ · · · ≥ σmk+`k > σmk+`k+1 = · · · = σk = 0.

These singular vectors of Sk combine with (4.4) to reveal key properties of Vk:

Q
(k)
1 P=

[
SkP

Vk(Ik−Sk)P

]
=

[
W1 W2Σ2 0

Vk(P1−W1) Vk(P2−W2Σ2) VkP3

]
=

[
W1 W2Σ2 0

0 Ṽ2Γ2 Ṽ3

]
,(8.4)

Q(k)H

[
W
0

]
=

[
SH
k W

Vk(Ik−Sk)HW

]
=

[
P1 P2Σ2 0

Vk(W1−P1) Vk(W2−P2Σ2) VkW3

]
=

[
P1 P2Σ2 0

0 V̂2Γ2 V̂3

]
,

(8.5)

where [Ṽ2, Ṽ3] and [V̂2, V̂3] are defined in the following theorem. The first equality in
each of (8.4) and (8.5) follows from the structure of Q(k), and the second by applying
(8.1). But the columns in each expression are orthonormal, giving the structure in

the fourth expressions. Because Γ2 > 0, each of [Ṽ2, Ṽ3], [V̂2, V̂3] has orthonormal
columns that span Range(Vk). This structure is used to prove the following theorem.



ACCURACY OF THE FINITE PRECISION LANCZOS PROCESS 11

Theorem 8.2 (Range & null space of Vk, [34, Theorem 4.2]). With the notation

in Theorem 4.1 and Definition 8.1, define Ṽ2 4= Vk(P2−W2Σ2)Γ−12 , Ṽ3 4= VkP3, V̂2 4=
Vk(W2−P2Σ2)Γ−12 and V̂3 4= VkW3. Let the columns of V̂0 comprise an orthonormal

basis of Range(Vk)⊥. Then defining Ṽ (k)4
=[V̂0, Ṽ2, Ṽ3] and V̂ (k)4

=[V̂0, V̂2, V̂3],

Range(Vk)=Range([Ṽ2, Ṽ3])=Range([V̂2, V̂3])⊥Range(V̂0), rank(Vk)=k−mk,(8.6)

N (Vk) = Range(P1−W1), P1 −W1 ∈ Ck×mk , rank(P1−W1)=mk,(8.7)

Ṽ (k) ≡ Ṽ 4= [V̂0, Ṽ2, Ṽ3] ∈ Un×n, V̂ (k) ≡ V̂ 4= [V̂0, V̂2, V̂3] ∈ Un×n,(8.8)

Q
(k)
22 = [V̂0, Ṽ2] diag(In−(k−mk),−Σ2)[V̂0, V̂2]H = V̂0V̂

H
0 − Ṽ2Σ2V̂

H
2 ,(8.9)

where this last can be seen by substituting the SVDs (8.1) and (8.10) in Q(k), and
using the CS-Decomposition (CSD, see [5, 38], or for example [8, §2.5.4]) of Q(k).

Range(Ṽ
(k)
3 ) in (8.4) and (8.8) is crucial for the analysis: we will later show that

if an eigenvector of A lies in Range(Ṽ
(k)
3 ) then it is available at step k of the process.

Remark 8.1. In Definition 8.1 it can be seen that W1 and P1 are arbitrary up to
a right orthogonal transformation W1P

H
1 = (W1Z)(P1Z)H , Z ∈ Umk×mk , while P3

and W3 are each arbitrary up to individual right orthogonal transformations.

Theorem 8.2, with (8.4) and (8.5), gives expansions for Q
(k)
21 and Q

(k)H
12

Q
(k)
21 =Vk(I−Sk)= Ṽ2Γ2P

H
2 +Ṽ3P

H
3 , Q

(k)H
12 =Vk(I−Sk)H= V̂2Γ2W

H
2 +V̂3W

H
3 ,(8.10)

while (4.5) can be expanded using (8.5) to give a new expression for sk+1

sk+1 = W (k)W (k)H(I − Sk)V H
k vk+1 = W (k)[0, V̂

(k)
2 Γ

(k)
2 , V̂

(k)
3 ]Hvk+1

= W
(k)
2 Γ

(k)
2 V̂

(k)H
2 vk+1 +W

(k)
3 V̂

(k)H
3 vk+1, W

(k)H
1 sk+1 = 0.(8.11)

Section 9 discusses non-generic cases of the Lanczos process, while sections 10,
11, and 12 prove convergence and consider rate of convergence. Because sections 10,
11, and 12 are lengthy and difficult, some readers might want to skip from here to

section 13 on a first reading to see the important results that follow when Q
(k)
22 = 0,

i.e., that the Lanczos process makes available backward stable solutions.

9. Early termination of the exact Lanczos process. For k < ` in section 1,
the exact Lanczos process (1.1)–(1.2) gives for Q(k) and Q(k+1) in (4.4)

Q(k) ≡

[
Q

(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22

]
=

[
0 V H

k

Vk In−VkV H
k

]
,(9.1)

Q
(k+1)
22 = Q

(k)
22 − vk+1v

H
k+1, Q

(k+1)
21 = [Q

(k)
21 , vk+1] = Q

(k+1)H
12 ,

so that vk+1v
H
k+1 is taken from Q

(k)
22 while vk+1 is added to Q

(k)
21 and Q

(k)H
12 .

The vectors v1, . . . , vk, k ≤ `, of the process on A span the Krylov subspace

Kk(A, v1) 4= span{v1, Av1, ..., Ak−1v1} = Range(Vk),(9.2)

where the Lanczos process can stop with β`+1 =0, ` < n. If A has the eigensystem

AX=XΛ, XHX=In, X ≡ [x1, . . . , xn], Λ = diag(λ1, . . . , λn),(9.3)
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and vH1 xi =0 then xi ⊥ Kk(A, v1) for all k, and cannot be found by the process, giving

xHi Q
(k)
21 = 0, xHi Q

(k)
22 = xHi , xHi Q

(k)
22 vk+1 = xHi vk+1 = 0, for all k,(9.4)

so that Q
(k)
22 can never be zero. These vH1 xi =0 can occur for two distinct reasons:

Item 1. The original v1 might be such that vH1 xi =0 when λi is a singleton.
Item 2. If A has multiple eigenvalues the ideal Lanczos process will stop with ` no

greater than the number of distinct eigenvalues of A. Suppose λ1 = λ2 = λ3
with X1

4
= [x1, x2, x3]. Then X1 is arbitrary up to multiplication on the right

by a unitary matrix, and could theoretically be altered to be X̂1
4
= [x̂1, x̂2, x̂3]

where vH1 X̂1 = [ξ1, 0, 0], so that vH1 x̂i =0 for i=2, 3.

These possibilities are pertinent to our analysis. Example 6.1 tested Item 1,
and found that the eigenvectors orthogonal to v1 were quite quickly introduced by
rounding errors. However we cannot analyse this, or assume this will always happen,
so we need |vH1 xi| > 0 to prove convergence of distinct eigenvalues λi of A.

Remark 9.1. For Item 2, computed ‖Q(k)
22 ‖F tends to stabilize at a significant

nonzero value if A has multiple eigenvalues.
In the Lanczos process with v1 4= b/β1, β1 4= ‖b‖2, neither case of ` < n limits

solving Ax=b, nonsingular A=AH. Take x=V`z where AV` =V`T` and T`z=e1β1.

10. Preliminaries for convergence theory. Our proof of convergence in sec-

tion 12 for an eigenvector xi of A is based on showing that Ṽ
(k)
3 develops so that

xi ∈∼ Range(Ṽ
(k)
3 ), or equivalently, see (10.7) below, that xHi Q

(k)
22 ≈ 0.

The Lanczos process (7.2) gives, see (4.4), (6.2), and Theorem 5.1 for Hij ≡ H(k)
ij ,

(Tk +H11)Sk +H12Q21 = SkTk + sk+1βk+1e
T
k ,(10.1)

(A+H22)Q21 +H21Sk = Q21Tk +Q22vk+1βk+1e
T
k ,(10.2)

where Q
(k)
22 vk+1 is then appended to Q

(k)
21 to give Q

(k+1)
21 = [Q

(k)
21 , Q

(k)
22 vk+1], see (6.3),

while Q
(k)
22 vk+1v

H
k+1 is subtracted from Q

(k)
22 to give Q

(k+1)
22 = Q

(k)
22 Pk+1, see (6.5).

Now ‖Q(k)
22 ‖2F decreases by ‖Q(k)

22 vk+1‖22 each step, see (6.7), where with (9.3)

‖Q(k)
22 vk+1‖22 = ‖XHQ

(k)
22 vk+1‖22 =

∑n
i=1|xHi Q

(k)
22 vk+1|2,(10.3)

and we now show that |xHi Q
(k)
22 vk+1|2 is also the amount that ‖xHi Q

(k)
21 ‖22 increases

and ‖xHi Q
(k)
22 ‖22 decreases each step. Using (6.3) and (6.6),

‖xHi Q
(k+1)
21 ‖22 = ‖xHi [Q

(k)
21 , Q

(k)
22 vk+1]‖22 = ‖xHi Q

(k)
21 ‖22 + |xHi Q

(k)
22 vk+1|2,(10.4)

‖xHi Q
(k+1)
22 ‖22 = ‖xHi Q

(k)
22 ‖22 − |xHi Q

(k)
22 vk+1|2,(10.5)

so that |xHi Q
(k)
22 vk+1|2 contributes to the decrease in both ‖xHi Q

(k)
22 ‖22 and ‖Q(k)

22 ‖2F .

The proof of convergence in section 12 shows that ‖xHi Q
(k)
22 ‖2 ↘ 0 based on (10.5).

In (12.10) we derive a lower bound on |xHi Q
(k)
22 vk+1| to assess the rate of decrease.

If eventually ‖xHi Q
(k)
22 ‖22 = 0, then from (4.4), Theorem 8.2, and (8.10),

1 = ‖xHi [Q
(k)
21 , Q

(k)
22 ]‖22 = ‖xHi Q

(k)
21 ‖22 + ‖xHi Q

(k)
22 ‖22,(10.6)

xHi Q
(k)
22 =0⇔ ‖xHi Q

(k)
21 ‖22 =1⇔ xi∈Range(Ṽ

(k)
3 )⇔ Q

(k)H
21 xi∈Range(P

(k)
3 ),(10.7)
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where these results hold when “=” is replaced by “≈” throughout this paragraph.

Fortunately, the desirable subspace Range(Ṽ
(k)
3 ) never decreases.

Lemma 10.1. For Ṽ
(k)
3 in Theorem 8.2 Range(Ṽ

(k)
3 ) ⊆ Range(Ṽ

(k+1)
3 ).

Proof. From (8.8)–(8.9) we see that Range(Ṽ
(k)
3 )=N (Q

(k)H
22 ), see also [34, (6.4)].

But Q
(k+1)
22 =Q

(k)
22 (Ik−vk+1v

H
k+1) in (6.5), so that Range(Ṽ

(k)
3 ) ⊆ Range(Ṽ

(k+1)
3 ).

If xi ∈∼ Range(Ṽ
(m)
3 ) we now show that the eigenpair {λi, xi} of A is essentially

available from all k ≥ m steps of the Lanczos process. We give the proof assuming

xi ∈∼ Range(Ṽ
(m)
3 ). A proof with the more precise xi∈Range(Ṽ

(m)
3 ) follows trivially.

Theorem 10.2. For the Lanczos process (1.1) applied to A resulting in (7.2)
with Theorem 4.1 and Definition 8.1, consider the eigensystems (3.1) and (9.3). Let

Xj ∈Un×j such that AXj =XjΛj denote j columns of X where Xj
∈∼ Range(Ṽ

(m)
3 ),

see Theorem 8.2. For k ≥ m define Ỹj≡ Ỹ (k)
j
4
=Q

(k)H
21 Xj, Ṽ3≡ Ṽ (k)

3
4
=VkP

(k)
3 , then

Ỹj 4= Q
(k)H
21 Xj ≈ P (k)

3 Ṽ
(k)H
3 Xj

∈∼ Range(P
(k)
3 ), Ỹj ∈∼ Uk×j , SkỸj ≈ 0,(10.8)

Xj ≈ VkỸj ≈ Q(k)
21 Ỹj ≈ Ṽ3P

(k)H
3 Ỹj , Q

(k)H
22 Xj ≈ 0, Ỹ H

j V H
k VkỸj ≈ Ij ,(10.9)

[Tk−(Q
(k)H
21 H

(k)
22 + SH

kH
(k)
12 )Ṽ3P

H
3 ]Ỹj ≈ ỸjΛj , Ỹ H

j Ỹj ≈ Ij , βk+1e
T
k Ỹj ≈ 0,(10.10)

so for k≥m, {Λj , Ỹ
(k)
j } are j converged backward stable eigenpairs of Tk.

It follows from this that Λj and Xj ≈ VkỸ
(k)
j are essentially available from the

Lanczos process, where {Λj , VkỸ
(k)
j } are j backward stable eigenpairs of A.

Proof. From Lemma 10.1 Xj
∈∼Range(Ṽ

(m)
3 )⇒ Xj

∈∼Range(Ṽ
(k)
3 ) for all k ≥ m.

Now Ỹj 4= QH
21Xj ≈P3Ṽ

H
3 Xj from (8.10), so Ỹj ∈∼Range(P3) and SkỸj ≈ 0 from

(8.1). But then Ṽ H
3 Xj ≈ PH

3 Ỹj , and Xj ≈ Ṽ3Ṽ H
3 Xj ≈ Ṽ3PH

3 Ỹj ≈ VkP3P
H
3 Ỹj ≈ VkỸj .

Also Q21Ỹj = Vk(I−Sk)Ỹj ≈ VkỸj ≈ Xj , while QH
22Xj ≈ 0 from (8.8)–(8.9), where

VkỸj ≈ Xj ∈ Un×j and Ỹ H
j Ỹj ≈ XH

j Ṽ3Ṽ
H
3 Xj ≈ Ij completes (10.8) and (10.9). Next

applying XH
j to the left of (10.2) and replacing XH

j Q21 by Ỹ H
j gives with (10.9)

Λj Ỹ
H
j +XH

j (H22Q21 +H21Sk) ≈ Ỹ H
j Tk, Ẽ(k) 4

= (Q
(k)H
21 H

(k)
22 + SH

kH
(k)
12 ),

ỸjΛj ≈ TkỸj − Ẽ(k)Xj ≈ [Tk − Ẽ(k)Ṽ3P
H
3 ]Ỹj .(10.11)

Therefore from Remark 3.7 {Λj , Ỹj} are backward stable eigenpairs of Tk. Finally,

multiplying (7.2) on the right by Ỹj gives with (7.3), (10.8), (10.9), and (10.11),([
Tk 0
0 A

]
+H(k)

)[
0
Xj

]
≈
[

0
Xj

]
Λj +Q

(k)
1 Ẽ(k)Xj + q(k+1)βk+1e

T
k Ỹj ,

so with AXj = XjΛj , Ẽ
(k) ≈ 0, Q

(k)H
1 Q

(k)
1 = Ik, and ‖q(k+1)‖2 = 1, this shows that

βk+1e
T
k Ỹj ≈ 0, completing (10.10) and showing that {Λj , Ỹj} are converged back-

ward stable eigenpairs of Tk. Then AVj Ỹj ≈ AXj = XjΛj ≈ VkỸjΛj , which with

Ỹ H
j V H

k VkỸj ≈ Ij and Remark 3.7 proves backward stability of {Λj , VkỸ
(k)
j } for A.

If an eigenpair {µ(k)
j , y

(k)
j } of Tk has converged then in the exact case of (1.2)

AVky
(k)
j ≈ Vky

(k)
j µ(k), and {µ(k)

j , Vky
(k)
j } is a backward stable eigenpair for A. The

computational Lanczos process modelled by (7.2) parallels this very nicely:
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Corollary 10.3. With Ak in (5.1), if Ṽ
(k)
3 in Theorem 8.2 has developed so

that xj ∈∼Range(Ṽ
(k)
3 ) for some eigenvector xj of A, Axj = xjλj, then ỹ

(k)
j
4
=Q

(k)H
21 xj

satisfies Tkỹ
(k)
j ≈ ỹ

(k)
j λj with βk+1e

T
k ỹ

(k)
j ≈ 0, ‖ỹ(k)j ‖2 ≈ 1, and Skỹ

(k)
j ≈ 0. Thus

multiplying (7.2) on the right by ỹ
(k)
j gives

AkQ
(k)
1 ỹ

(k)
j ≈ Q

(k)
1 ỹ

(k)
j λj , Q

(k)
1 ỹ

(k)
j =

[
Sk

Vk(I−Sk)

]
ỹ
(k)
j ≈

[
0

Vkỹ
(k)
j

]
, ‖Q(k)

1 ỹ
(k)
j ‖2≈1.

Proof. Because xj ∈∼Range(Ṽ
(k)
3 ), all these results follow immediately from The-

orem 10.2. Note how this parallels the ideal case, with A instead of A.

11. Converged eigenpairs. The next definition arises from Theorem 10.2.

Definition 11.1. For the Lanczos process described in Corollary 7.1 the eigen-

pair {λi, xi} of A has converged (really: “been converged to”) if xi ∈∼ Range(Ṽ
(k)
3 ).

We now examine what converged eigenpairs of Tk mean for eigenpairs of A. For

converged {µ(k)
i , y

(k)
i } of Tk, multiplying (10.1) and (10.2) on the right by y

(k)
i :

Tky
(k)
i = y

(k)
i µ

(k)
i , ‖y(k)i ‖2 = 1, TkSky

(k)
i ≈ Sky

(k)
i µ

(k)
i , βk+1e

T
k y

(k)
i ≈ 0,(11.1)

AQ
(k)
21 y

(k)
i = AVk(I − Sk)y

(k)
i ≈ Vk(I − Sk)y

(k)
i µ

(k)
i = Q

(k)
21 y

(k)
i µ

(k)
i .(11.2)

Definition 11.2. A group of essentially equal eigenvalues of M =MH is “suf-
ficiently separated” if they are separated by δ from their neighbours where δ is large
enough so that if My ≈ yµ, yHy = 1, with µ essentially in this group, then we must
have y ∈∼“the invariant subspace for this group”. This requires O(ε)‖M‖/δ ≈ 0, see,
e.g., [8, §8.1.3], so this is a strong restriction on δ, but for Tk we remove it later.

In the next theorem it should not be confusing if we use the same notation Yt for
the original Yt and Yt transformed from the right by some unitary transformation.

Theorem 11.3. With (3.1) and the background and results of Corollary 7.1,

suppose that µ
(k)
1 ≈ · · · ≈ µ

(k)
t are sufficiently separated from the other eigenvalues of

Tk and are converged so that (11.1) and (11.2) hold for i = 1 : t. Then there exists

a right unitary transformation of Yt 4= [y
(k)
1 , . . . , y

(k)
t ] and a (t−1) × (t−1) upper

triangular R ≡ {ρij} ≡ [r1, . . . , rt−1] with nonnegative diagonal elements such that

SkYt ≈ Yt
[
0 R
0 0

]
, Y H

t Yt = It, Sky1 ≈ 0, Sky2 ≈ y1ρ11, 0 ≤ ρ11 ≤ 1,(11.3)

AVky1 ≈ Vky1µ(k)
1 , y1≈P (k)

3 P
(k)H
3 y1, Vky1≈ Ṽ (k)

3 P
(k)H
3 y1, ‖Vky1‖2 ≈ 1,(11.4)

where {µ(k)
1 , Vky1} is a backward stable eigenpair of A. Next with Y2:t 4= [y2, y3, . . . , yt]

AkQ
(k)
1 Yt ≈ Q(k)

1 YtMt, Mt
4
= diag(µ

(k)
1 , . . . , µ

(k)
t ), Y H

t Q
(k)H
1 Q

(k)
1 Yt =It,(11.5)

Ak ≈
[
Tk 0
0 A

]
, Q

(k)
1 Yt =

[
Sk

Vk(I−Sk)

]
Yt ≈

[
0 Yt−1R

Vky1 Vk(Y2:t−Yt−1R)

]
,(11.6)

(Vky1)HVkyi+1≈(Vky1)HVkYt−1ri, 1≈‖ri‖22+‖Vk(yi+1−Yt−1ri)‖22,(11.7)
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for i=1: t−1. In particular (11.4) with (11.7) for i=1 gives

‖Vky1‖2≈1, (Vky1)HVky2≈ρ11, 1≈ρ211+‖Vky2‖22+ρ211−2ρ211, ‖Vky2‖2≈1.(11.8)

Proof. Because Tk essentially has a t-dimensional invariant subspace correspond-

ing to µ
(k)
1 ≈ · · · ≈ µ

(k)
t , from (11.1) we must have SkYt ∈∼ Range(Yt). Therefore

for any right unitary transformation of Yt there exists B = {βij} ∈ Ct×t such that
SkYt ≈ YtB. We can take B to be upper triangular via the Schur decomposition,
giving Sky1 ≈ y1β11 so that β11 ≈ 0 because Sk has all eigenvalues 0. Next B can
be unitarily transformed from the left with t−1 rotations to strictly upper triangu-
lar form with real nonnegative next to diagonal elements ρii, giving upper triangular
R ≡ {ρij} ≡ [r1, . . . , rt−1] in (11.3). This with (11.2), Definition 8.1, and Theorem 8.2

gives (11.4), where from Remark 3.7 {µ(k)
1 , Vky1} is a backward stable eigenpair of A.

Combining (11.3) with Corollary 7.1 gives (11.5) and (11.6), while the orthonor-

mality of the columns of Q
(k)
1 Yt in (11.6) gives (11.7), and (11.8) follows.

If one or more essentially equal eigenvalues of Tk have converged, then (11.4) shows

that there is at least one backward stable eigenpair {µ(k)
1 , Vky1} of A, with Vky1 ∈∼

Range(Ṽ
(k)
3 ), the requirement for convergence of an eigenvector of A in Theorem 10.2.

But we have not found a proof of convergence based on such converged eigenpairs of
Tk. However there are fascinating results for repeated eigenvalues of Tk.

Corollary 11.4 (Repeated eigenvalues). With the background and results of

Theorem 11.3 if µ
(k)
2 ≈ · · · ≈µ

(k)
t are repeats of µ

(k)
1 , so there is only one eigenvector

of A corresponding to these t converged eigenvalues of Tk, then in (11.6)

Q
(k)
1 Yt =

[
Sk

Vk(I−Sk)

]
Yt ≈

[
0 Yt−1

Vky1 0

]
, SkYt≈YtJt, Jt4=

[
0 It−1
0 0

]
,(11.9)

Sky1≈0; Skyj≈yj−1, Vkyj ≈ Vky1, j=2: t; Y2:t 4= [y2, . . . , yt],(11.10)

y1 ∈∼Range(P
(k)
3 ), Vky1 ∈∼Range(Ṽ

(k)
3 ), ‖Vky(k)1 ‖2≈1, Y2:t ∈∼Range(P

(k)
1 ),(11.11)

and the {µ(k)
j , Vky

(k)
j } are essentially identical backward stable eigenpairs for the one

eigenpair of A.
Proof. Because there is only one eigenvector of A for these t eigenvectors of Tk,

and ‖Vky1‖2 ≈ 1, there exist scalars ζj , j=1: t−1 in (11.6) such that Q
(k)
1 yj+1 gives

Vky1ζj ≈ Vkyj+1−VkYt−1rj , j=1: t−1; Vky1(ζ1 + ρ11) ≈ Vky2.(11.12)

With (11.8) this last gives ζ1 ≈ 0, ρ11 ≈ 1, r1 ≈ e1, Vky1 ≈ Vky2. Since it is true for
i = 1, suppose that ζi ≈ 0 and ri ≈ ei in (11.12) for i=1:j−1<t−1, then in (11.6)

Vky1 ≈ Vky2 ≈ · · · ≈ Vkyj , Q
(k)
1 Yj+1 ≈

[
0 Yj−1 Yt−1rj

Vky1 0 Vk(yj+1−Yt−1rj)

]
,(11.13)

where orthonormality gives rj ≈ ejρjj and so (11.12) gives Vky1(ζj + ρjj) ≈ Vkyj+1.
But then from (11.7), (11.8), (11.13) (Vky1)HVkyj+1≈(Vky1)HVkyjρjj ≈ ρjj ≥ 0 and

ζj≈0, 1−ρ2jj≈‖Vk(yj+1−y1ρjj)‖22≈‖Vkyj+1‖22−ρ2jj , ‖Vkyj+1‖2≈1, ρjj≈1,

so that Vkyj+1 ≈ Vky1. Therefore ζj ≈ 0, rj ≈ ej , and Vkyj+1 ≈ Vky1 for j=1: t−1,
proving (11.9) and (11.10). From (11.10) ‖Skyj‖2 ≈ ‖yj−1‖2 = 1, so (11.11) follows
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from Definition 8.1 and Theorem 8.2. The backward stability follows from (11.4),
(11.13), and Remark 3.7. The results hold for t=1, except then there is no Y2:t.

Remark 11.1. When there are repeats, (11.10) shows that y1, . . . , yt essentially
form the start of a Jordan chain of principal vectors of Sk, see, e.g., [42, §39, pp.42–3].
Therefore if there is a mix of different repeats and non-repeats in a converged group

of close eigenvalues µ
(k)
1 ≈ · · · ≈ µ

(k)
t of Tk, in theory there is a unitary transformation

of Yt that will group each chain in its correct order, leading to Jordan blocks of
the form shown in (11.9), so that we do not require “sufficient separation” to split
all the converged eigenvectors into their respective blocks. Each block starts with a

yj ∈∼ Range(P
(k)
3 ) followed by its repeats, if any, in Range(P

(k)
1 ), see (11.11). It follows

that a converged eigenpair {µ(k)
j , y

(k)
j } of Tk in (7.2) has µ

(k)
j essentially an eigenvalue

of A, and it is either first converged, see Remark 3.6, with y
(k)
j
∈∼ Range(P

(k)
3 ), or it is

a repeat with y
(k)
j
∈∼ Range(P

(k)
1 ), and in each case {µ(k)

j , Vky
(k)
j } is a backward stable

eigenpair for A with ‖Vky(k)j ‖2 ≈ 1.

Definition 11.5. As soon as an eigenvalue µ
(k)
j in {µ(k)

j , y
(k)
j } of Tk has first con-

verged to an eigenvalue λi in {λi, xi} of A, we define {µ(k)
j , Vky

(k)
j } with ‖Vky(k)j ‖2≈1

as our approximation to {λi, xi}, so that this common practice is ideal.

To complete this section we show that if there are no repeats in µ1 ≈ · · · ≈ µt in
Theorem 11.3 then there is a Yt giving VkYt ∈∼ Un×t.

Corollary 11.6 (Unrelated eigenvalues). With the background and results of

Theorem 11.3 if none of µ
(k)
2 ≈· · ·≈µ

(k)
t are repeats, so there are exactly t converged

eigenvectors of A corresponding to these t eigenvalues of Tk, then in (11.6) R≈0 and

Y H
t Yt = It, Yt ∈∼ Range(P

(k)
3 ), VkYt ∈∼ Range(Ṽ

(k)
3 ), VkYt ∈∼Un×t,(11.14)

SkYt≈0, Q
(k)
1 Yt =

[
Sk

Vk(I−Sk)

]
Yt ≈

[
0 . . . 0

Vky1 . . . Vkyt

]
,(11.15)

where each {µ(k)
j , Vky

(k)
j } is a backward stable eigenpair of A.

Proof. There are no repeats, so {µ(k)
j , y

(k)
j }, j = 1 : t, are all first converged, and

from Remark 11.1 Yt ∈∼ Range(P
(k)
3 ), so Yt ≈ P (k)

3 Zt for some Zt ∈ Unk×t. This gives

VkYt ≈ VkP
(k)
3 Zt = Ṽ

(k)
3 Zt ∈ Un×t, completing (11.14). But Yt ∈∼ Range(P

(k)
3 ) ⇒

SkYt ≈ 0, see Definition 8.1, proving (11.15). Multiplying (10.2) on the right by Yt
and using (11.14)–(11.15) with Remark 3.7 proves the backward stability.

The fact that the ‖Vkyj‖2 ≈ 1 in Corollaries 11.4, 11.6, improves on Remark 3.5.

12. Convergence of the finite precision Lanczos process. Here we ex-
amine convergence and rate of convergence of the Lanczos process in the sense of
Definition 11.1. We do this for each eigenvalue λi of A with xi represented in v1.

Lemma 12.1. For the Lanczos process (1.1) applied to A with initial unit-length
vector v1 resulting in (7.2) with (4.4), consider the eigensystem (9.3). If |xHi v1|> 0

then ‖xHi Q
(k)
21 ‖2≥‖xHi Q

(1)
21 ‖2 = |xHi v1|>0 and ‖xHi Q

(k)
21 ‖22 will increase, and ‖xHi Q

(k)
22 ‖22

decrease, strictly monotonically by |xHi Q
(k)
22 vk+1|2 each step unless xHi Q

(k)
22 vk+1 =0.

Proof. Because Q
(1)
21 e1 = v1, if |xHi v1| > 0, we see that ‖xHi Q

(1)
21 ‖2 = |xHi v1|> 0.

Then (10.4)–(10.5) show that ‖xHi Q
(k)
21 ‖22 will increase and ‖xHi Q

(k)
22 ‖22 decrease by

|xHi Q
(k)
22 vk+1|2 each step unless xHi Q

(k)
22 vk+1 =0.
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We want to prove that ‖xHi Q
(k)
22 ‖22 ↘ 0 for each relevant eigenvector xi of A, so

from Lemma 12.1 we need to understand what xHi Q
(k)
22 vk+1 = 0 implies. If AXi =

Xiλi, maximizing ‖Ṽ (k)H
3 xi‖2 ≤ 1, the length of the projection of xi on Range(Ṽ

(k)
3 )

over xi ∈ Range(Xi), ‖xi‖2 = 1, maximizes ‖xHi Q
(k)
21 ‖22 and minimizes ‖xHi Q

(k)
22 ‖22.

Theorem 12.2. Assume the conditions in Lemma 12.1, where for each essentially
multiple eigenvalue λi of A with AXi ≈ Xiλi we take a single eigenvector xi ∈
Range(Xi), x

H
i xi =1, that maximizes ‖Ṽ (k)H

3 xi‖2 ≤ 1. If |xHi v1|>0 then

xHi Q
(k)
22 vk+1 ≈ 0 ⇒ Tk(Q

(k)H
21 xi) ≈ (Q

(k)H
21 xi)λi; ‖Q(k)H

21 xi‖2≥|xHi v1|>0.(12.1)

This shows that λi is essentially an eigenvalue of Tk, but does not prove that it is a

converged eigenvalue of Tk. If xHi Q
(j)
22 vj+1 ≈ 0 for j=k, k +1 then

Tk(Q
(k)H
21 xi) ≈ (Q

(k)H
21 xi)λi, βk+1e

T
k (Q

(k)H
21 xi) ≈ 0,(12.2)

Q
(k)H
21 xi ∈∼ Range(P

(k)
3 ), ‖Q(k)H

21 xi‖2 ≈ 1, xi ∈∼ Range(Ṽ
(k)
3 ), xHi Q

(k)
22 ≈ 0,(12.3)

so that {λi, Q(k)H
21 xi} is a converged backward stable eigenpair of Tk. Then xi has been

converged to, and λi and xi are essentially available from the Lanczos process.

Proof. Lemma 12.1 and multiplying (10.2) on the left by xHi gives (12.1), since

λix
H
i Q

(k)
21 + xHi (H22Q

(k)
21 +H21Sk) = xHi Q

(k)
21 Tk + xHi Q

(k)
22 vk+1βk+1e

T
k .(12.4)

Now suppose that xHi Q
(j)
22 vj+1≈0 for j = k, k + 1. Then from (6.3) and (12.4)

xHi Q
(k+1)
21 = [xHi Q

(k)
21 , x

H
i Q

(k)
22 vk+1] ≈ [xHi Q

(k)
21 , 0],

[λix
H
i Q

(k+1)
21 + xHi (H

(k+1)
22 Q

(k+1)
21 +H

(k+1)
21 Sk+1)]ek+1 ≈ xHi Q

(k+1)
21 Tk+1ek+1

≈ xHi (H
(k+1)
22 Q

(k+1)
21 +H

(k+1)
21 Sk+1)ek+1 ≈ xHi Q

(k)
21 ekβk+1 ≈ 0,

which with (12.1) proves (12.2). Now QH
21xi = (P2Γ2Ṽ

H
2 + P3Ṽ

H
3 )xi ⊥ Range(P1)

from (8.2) and (8.10), so from Remark 11.1 the converged eigenvector QH
21xi of Tk in

(12.2) cannot be a repeat and must be first converged satisfying QH
21xi ∈∼ Range(P

(k)
3 )

as desired in (12.3), see also (11.4). Therefore we have from (8.10) with (12.1)

Q
(k)H
21 xi ≈ P (k)

3 Ṽ
(k)H
3 xi, Q

(k)
21 Q

(k)H
21 xi ≈ Ṽ (k)

3 Ṽ
(k)H
3 xi, ‖Ṽ (k)H

3 xi‖2>0.(12.5)

Multiplying (10.2) on the right by Q
(k)H
21 xi and using (12.2) and (12.5) gives

AṼ
(k)
3 Ṽ

(k)H
3 xi ≈ Ṽ (k)

3 Ṽ
(k)H
3 xiλi, ‖Ṽ (k)

3 Ṽ
(k)H
3 xi‖2>0.(12.6)

Suppose there are t≥1 eigenvalues of A essentially equal to λi that are sufficiently
separated from the rest, see Definition 11.2, so that AXi≈Xiλi, Xi ∈Un×t. It then

follows from (12.6) that ∃ z∈Ct such that Xiz ≈ Ṽ (k)
3 Ṽ

(k)H
3 xi ∈ Range(Ṽ

(k)
3 ). But by

definition xi, ‖xi‖2 = 1, maximizes ‖Ṽ (k)H
3 xi‖2 ≤ 1 over xi ∈ Range(Xi). Therefore

xi ∈∼ Range(Ṽ
(k)
3 ), so that (12.3) follows from (8.8)–(8.9). Since xi ∈∼ Range(Ṽ

(k)
3 ) it

follows from Theorem 10.2 that xi has been converged to, and λi and xi are essentially
available from the Lanczos process.
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This is what we want, because we need only prove that at least one eigenvector
xi∈Range(Xi) with |xHi v1|>0 will converge, see Item 2 in section 9.

The next theorem proves that the Lanczos process obtains first convergences.

Theorem 12.3. Assume the conditions, and the choice of eigenvector for any
essentially multiple eigenvalue, in Theorem 12.2. Then the computational Lanczos
process modelled in (7.2)–(7.3) eventually makes available backward stable approxi-
mations to every such eigenpair {λi, xi} of A for which |xHi v1|>0. If A has distinct

eigenvalues and |xHi v1| > 0, i = 1 : n, then ‖Q(k)
22 ‖2F decreases monotonically until

Q
(k)
22 ≈ 0, when all the eigenvalues of A will have been satisfactorily approximated by

n eigenvalues of Tk, ensuring Ṽ
(k)
3 ∈ Un×n and with the notation in Definition 8.1

and Theorem 8.2, V̂
(k)
0 , Ṽ

(k)
2 , V̂

(k)
2 , P

(k)
2 , and W

(k)
2 are nonexistent, while

Ṽ
(k)
3 ∈ Un×n, Q

(k)
22 = 0, P (k) = [P

(k)
1 , P

(k)
3 ], Q

(k)
21 = Ṽ

(k)
3 P

(k)H
3 .(12.7)

Proof. Theorem 12.2 shows that for any such eigenvector xi of A with |xHi v1|>
0, two consecutive steps with xHi Q

(k)
22 vk+1 ≈ 0 imply that xHi Q

(k)
22 ≈ 0, see (12.3).

Therefore from Lemma 12.1 we see that ‖xHi Q
(k)
22 ‖2 must decrease at least every

second step until it is essentially zero, giving xi ∈∼ Range(Ṽ
(k)
3 ), see (12.3). Then

from Theorem 10.2 backward stable approximations to λi and xi are available.

If A has n distinct eigenvalues each with |xHi v1| > 0, then it necessarily follows

that ‖XHQ
(k)
22 ‖F = ‖Q(k)

22 ‖F decreases until every eigenvector xi of A has been found

and satisfies xi ∈∼ Range(Ṽ
(k)
3 ). But this implies that X ∈∼ Range(Ṽ

(k)
3 ) in (9.3), so

that Ṽ
(k)
3 ∈ Un×n. This with Theorem 8.2 and Definition 8.1 shows that nk = n,

V̂
(k)
0 , Ṽ

(k)
2 , V̂

(k)
2 , P

(k)
2 , and W

(k)
2 do not exist, so that Q

(k)
22 = 0 and P (k) = [P

(k)
1 , P

(k)
3 ].

Then (8.10) completes (12.7).

12.1. Rate of convergence. We assume βk+1 > 0 and use two measures of

eigenvalue separation. Define δ
(k)
i,j for i=1:n and ε

(k)
j,i for j=1:k via (3.1) and (9.3):

δ
(k)
i,j
4
= |λi−µ

(k)
j | 4= min

m=1:k
|λi−µ(k)

m |, ε
(k)
j,i
4
= |λi−µ

(k)
j |4= min

m=1:n
|λm−µ(k)

j |.(12.8)

To depict how {λi, xi} is converged to, multiply (12.4) on the right by Y in (3.1):

xHi Q21Y (λiIk−M) =
[
xHi Q22vk+1βk+1e

T
k −xHi (H21Sk+H22Q21)

]
Y, i=1:n.(12.9)

Either δ
(k)
i,j = 0 here, or (λiIk−M) is nonsingular, in which case

xHi Q21Y =
[
xHi Q22vk+1βk+1e

T
k −xHi (H21Sk+H22Q21)

]
Y (λiIk−M)−1,

‖xHi Q21Y ‖2 ≤
∥∥[xHi Q22vk+1βk+1e

T
k −xHi (H21Sk+H22Q21)

]
Y
∥∥
2
/δ

(k)
i,j .

Either way we get a lower bound on the residual |xHi Q
(k)
22 vk+1|βk+1 in (12.4)

|xHi Q
(k)
22 vk+1|βk+1 ≥ ‖xHi Q

(k)
21 ‖2δ

(k)
i,j − ‖x

H
i (H

(k)
21 Sk +H

(k)
22 Q

(k)
21 )‖2.(12.10)
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Similarly, multiplying (10.2) on the right by y
(k)
j in Tky

(k)
j = y

(k)
j µ

(k)
j gives (12.11).

Then multiplying this on the left by XH gives a useful lower bound. For j=1:k,

(A+H22)Q21y
(k)
j +H21Sky

(k)
j = Q21y

(k)
j µ

(k)
j +Q22vk+1βk+1e

T
k y

(k)
j ,(12.11)

(Λ−µ(k)
j In)XHQ21y

(k)
j =XH

[
Q22vk+1βk+1e

T
k y

(k)
j −(H21Sk+H22Q21)y

(k)
j

]
,

‖Q(k)
22 vk+1‖2βk+1|eTk y

(k)
j | ≥ ‖Q

(k)
21 y

(k)
j ‖2ε

(k)
j,i − ‖(H

(k)
21 Sk+H

(k)
22 Q

(k)
21 )y

(k)
j ‖2.(12.12)

We saw in Theorem 10.2 that if Ṽ
(k)
3 has developed so that xi ∈∼ Range(Ṽ

(k)
3 ),

then xi has been accurately approximated by the Lanczos process, where from (8.8)–

(8.10) ‖xHi Q
(k)
21 ‖2 ≈ 1 and xHi Q

(k)
22 ≈ 0. So although initially ‖xHi Q

(k)
21 ‖2 ≥ |xHi v1| in

(12.10) could be small, it will essentially equal one by the time xi ∈∼ Range(Ṽ
(k)
3 ).

Until the first eigenpair converges we will have Sk ≈ 0, and since from (4.4)

‖Sky
(k)
j ‖22 + ‖Q(k)

21 y
(k)
j ‖22 = 1, this gives ‖Q(k)

21 y
(k)
j ‖22 ≈ 1 in (12.12). Note with (8.10)

that Q
(k)
21 y

(k)
j = (Ṽ2Γ2P

H
2 + Ṽ3P

H
3 )y

(k)
j , where all first converged y

(k)
j
∈∼ Range(P

(k)
3 ),

see Remark 11.1, giving ‖Q(k)
21 y

(k)
j ‖2 ≈ 1 for these in (12.12), while y

(k)
j
∈∼ Range(P

(k)
1 )

for all repeats, giving ‖Q(k)
21 y

(k)
j ‖2 ≈ 0 for such repeats.

Initially ‖Q(k)
22 ‖2F decreases and ‖Q(k)

21 ‖2F increases by about 1 per step until the
first eigenpair of A converges, see Remark 3.4, but after that (12.10) and (12.12) can

give insight on such changes. Until then, Q
(k)H
21 Q

(k)
21 ≈ V H

k Vk ≈ Ik.

After that, we need bounds on how ‖xHi Q
(k)
22 ‖2 ↘ 0. First, (12.10) shows that

|xHi Q
(k)
22 vk+1| ≥ (‖xHi Q

(k)
21 ‖2δ

(k)
i,j − ‖x

H
i (H

(k)
21 Sk +H

(k)
22 Q

(k)
21 )‖2)/βk+1,

where 0 < βk+1 ≤ ‖A‖2. Thus because 0 < |xHi v1| ≤ ‖xHi Q
(k)
21 ‖2 ↗ 1, see Lemma 12.1

and (10.4), if there are no µ
(k)
j close to λi, see (12.8), |xHi Q

(k)
22 vk+1| will be significant,

and cause a significant decrease in ‖xHi Q
(k)
22 ‖2, see (10.5).

Alternatively, it can be seen from (12.4) that |xHi Q
(k)
22 vk+1|βk+1 is essentially the

norm of the residual when taking {λi, QH
21xi} as an approximate eigenpair of Tk, and

so the larger this residual, the larger the decrease |xHi Q
(k)
22 vk+1|2 in ‖xHi Q

(k)
22 ‖22 will

tend to be. So usually convergence will be good, however not always, as we now argue.
Remark 12.1. The bound (12.10) gives a possible explanation for the slowness

seen in Example 6.1. When λi is one of a group of very close eigenvalues of A,

δ
(k)
i,j can be small, not because of the closeness of the µ

(k)
j of Tk that will eventually

converge to λi, but because of the closeness of λi to other eigenvalues of Tk that have

already converged to close neighbours of λi. Small δ
(k)
i,j might allow |xHi Q

(k)
22 vk+1| to

be unusually small, slowing the convergence to λi. This dependence on closeness of
eigenvalues would make it difficult, or impossible, to predict the rate of convergence
in general, so the best we can do here is to prove the convergence as in Theorem 12.3,
and indicate the possible rates of convergence as in (12.10) and (12.12).

Another approach is to notice from (12.11) that Q
(k)
22 vk+1βk+1e

T
k y

(k)
j is essentially

the residual when taking {µ(k)
j , Q

(k)
21 y

(k)
j } as an approximate eigenpair of A. This is

bounded in (12.12), where if µ
(k)
j has first converged to some eigenvalue of A, then

Q
(k)
21 y

(k)
j ≈Vky

(k)
j and ‖Q(k)

21 y
(k)
j ‖2≈1, see Corollary 10.3. We see from (12.12) that if

µ
(k)
j is not close to any eigenvalue of A, then the decrease ‖Q(k)

22 vk+1‖22 in ‖Q(k)
22 ‖2F ,
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see (6.7), will be significant. But as in Remark 12.1 the rate of decrease could be slow

if µ
(k)
j was converging to an eigenvalue in a group of close eigenvalues of A.

13. Accuracy of the Lanczos process for the eigenproblem when Q
(k)
22 =0.

Theorem 12.3 showed that when A has distinct eigenvalues and |xHi v1| > 0, i= 1 :n,

then ‖Q(k)
22 ‖2F decreases until Q

(k)
22 = 0. Here we give some new results and repeat some

of those in sections 10 to 12, because Q
(k)
22 = 0 quickly leads to very clean results.

In Theorem 12.3 Ṽ
(k)
3 ∈ Un×n⇒ Q

(k)
22 = 0, Q

(k)
21 = Ṽ

(k)
3 P

(k)H
3 , P (k) = [P

(k)
1 , P

(k)
3 ].

From Remark 8.1 and (8.10) we can choose P
(k)
3 = P̃

(k)
3 so that for this Ṽ

(k)
3 ∈ Un×n,

Ṽ
(k)
3 = VkP̃

(k)
3 = In, Q

(k)
21 ≡ Vk(I − Sk) = Ṽ

(k)
3 P̃

(k)H
3 = P̃

(k)H
3 .(13.1)

It then follows from (8.1) and (8.11) that Sk = W
(k)
1 P

(k)H
1 , sk+1 = W

(k)
3 V̂

(k)H
3 vk+1,

while from (6.2) vk+1−Vksk+1 = Q
(k)
22 vk+1 = 0, so (7.2)–(7.3) give at step k([

Tk 0
0 A

]
+

[
H11 H12

H21 H22

])[
W1P

H
1

P̃H
3

]
=

[
W1P

H
1

P̃H
3

]
Tk +

[
W3V̂

H
3 vk+1

0

]
βk+1e

T
k .(13.2)

From the bottom row we use P = [P1, P̃3] ∈ Uk×k to derive the following results:

(A+H22)P̃H
3 = P̃H

3 Tk−H21W1P
H
1 , P̃H

3 TkP1 =H21W1,

TkP̃3 = P̃3(A+H22) + P1W
H
1 H12, (A+H22) = (P̃H

3 TkP̃3),

(Tk − P1W
H
1 H12P̃

H
3 )P̃3 = P̃3(A+H22),(13.3)

PHTkP =

[
PH
1 TkP1 WH

1 H12

H21W1 P̃H
3 TkP̃3

]
=

[
PH
1 TkP1 W

H
1 H12

H21W1 A+H22

]
≈
[
PH
1 TkP1 0

0 A+H22

]
,(13.4)

TkP1 = PPHTkP1 = P1(PH
1 TkP1) + P̃3H21W1,

(Tk − P̃3H21W1P
H
1 )P1 = P1(PH

1 TkP1).(13.5)

Because H21W1 ≈ 0 in (13.4), the eigenvalues of Tk can be split into two groups,

the n that are essentially the eigenvalues of P̃H
3 TkP̃3 = A+H22, and the k − n that

are essentially the eigenvalues of PH
1 TkP1. The eigenvalues of P̃H

3 TkP̃3 are exactly all
of the eigenvalues of A+H22, but also essentially n of the eigenvalues of Tk.

With (13.1), (6.3) with Q
(k)
22 = 0 gives

P̃
(k+1)H
3 = Q

(k+1)
21 =

[
Q

(k)
21 0

]
=
[
P̃

(k)H
3 0

]
,(13.6)

so for j>k the matrix of eigenvectors P̃
(j)
3 in (13.3) is not meaningfully changed from

P̃
(k)
3 , while the eigenvalues of P̃

(j)H
3 TjP̃

(j)
3 = A+H

(j)
22 are essentially the same.

It seems that the roles of A and Tk have been reversed in (13.3), but on completion
of the exact case we have AV` = V`T` for some ` ≤ n, where this can also be written
T`Z` = Z`A with Z`

4
= V H

` , so that this “completed” finite precision case (13.3) in
some sense parallels the exact completed case.

The next development might seem strange because we are showing what is avail-
able from the Lanczos process, not how to compute it. Consider the eigensystem
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of (A+H22): (A+H22)X̃ = X̃Λ̃ where Λ̃ 4= diag(λ̃1, . . . , λ̃n) and X̃ ∈ Un×n. Define

Ỹ 4= P̃3X̃ ∈ Uk×n; then from (13.3) with T̃k 4= Tk−P1W
H
1 H12P̃

H
3 and VkP̃3 = In,

T̃kỸ = T̃kP̃3X̃ = P̃3(A+H22)X̃ = P̃3X̃Λ̃ = Ỹ Λ̃,(13.7)

(A+H22)X̃ = X̃Λ̃, VkỸ = VkP̃3X̃ = X̃, (A+H22)VkỸ = VkỸ Λ̃.(13.8)

Therefore, for the computed Tk once Q
(k)
22 = 0, n backward stable eigenpairs Λ̃ and Ỹ

of Tk lead to a backward stable eigendecomposition of A. This has a parallel format
to the computational solution, where Ỹ and Λ̃ would be computed from Tk, and then
VkỸ formed to give the eigenvector matrix X̃.

So whenQ
(k)
22 = 0, a complete backward stable eigendecomposition ofA is available

from the computational Lanczos process.

In (13.3) and (13.5) we essentially have two eigensubspaces of Tk, Range(P
(k)
1 )

and Range(P̃
(k)
3 ) where P (k) = [P

(k)
1 , P̃

(k)
3 ] ∈ Uk×k. The n first converged eigenvectors

of Tk essentially lie in Range(P̃
(k)
3 ), see Remark 11.1, while all the others including

the converged repeats essentially lie in Range(P
(k)
1 ).

All converged eigenvalues of Tk are essentially eigenvalues of A, see Remark 3.3.
It follows that the eigenvalues of PH

1 TkP1 that have converged, see (13.4) and (13.5),

must essentially be repeats of those of P̃H
3 TkP̃3, i.e., superfluous, but not misleading.

14. Accuracy of the Lanczos process for solving systems of equations.
For solving linear systems Ax= b with Hermitian positive definite A, in theory the
method of Conjugate Gradients (CG) [15] is equivalent to taking v1β1 = b, vH1 v1 = 1,
and computing approximations xk =Vkzk, where Tkzk =e1β1 with Tk and Vk+1 coming
from the Lanczos process AVk = VkTk + vk+1βk+1e

T
k . This gives the residual

rk 4= b−Axk = b−AVkzk = b−VkTkzk−vk+1βk+1e
T
k zk =−vk+1βk+1e

T
k zk,(14.1)

and in theory this is zero no later than the n-th step. In practice we would stop if,
e.g., ‖rk‖2 = βk+1|eTk zk| ≤ O(ε)(‖A‖2‖xk‖2 + ‖b‖2), or earlier.

The above version is all we need here, but note that instead of solving Tkzk =
e1β1 explicitly, the computational method defines yk 4= LT

k zk, thereby allowing it to
sequentially factorize Tk, carry out two forward solves, and form xk in the sequence

Tk = LkL
T
k , LkC

H
k = V H

k , Lkyk = e1β1, xk = Ckyk (= VkT
−1
k e1β1),(14.2)

where Lk is lower bidiagonal. We call this the “Lanczos-CG” method. For it to be
certain of working in practice we require Tk to be positive definite. Theorem 17.1 in the
Appendix shows that for a good finite precision implementation of the Lanczos process
such as (1.1) the eigenvalues of Tk essentially lie between the extreme eigenvalues of
A, so that Tk will be positive definite if A is sufficiently positive definite.

Assuming Q
(k)
22 = 0, we give an analysis of the Lanczos process for use in solving

Ax = b, AH = A, whether A is positive definite or not. From (13.1), (13.2), and (4.2)

P̃3v1 =(I−Sk)HV H
k v1 =(I−Sk)H(I+Uk+UH

k )e1 =(I−Sk)H(I+UH
k )e1 =e1.(14.3)

At step k let x̃k be the solution of

(A+H22)x̃k = b = v1β1.(14.4)
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Multiply (13.3) on the right by x̃k, define z̃k 4= P̃3x̃k, and use P̃3v1 = e1 from (14.3)

and Ṽ3 = VkP̃3 = In from (13.1), to give

(Tk − P1W
H
1 H12P̃

H
3 )z̃k = e1β1, z̃k 4= P̃3x̃k, x̃k = VkP̃3x̃k = Vkz̃k.(14.5)

In the exact Lanczos-CG case (14.1) we took xk = Vkzk, where Tkzk = e1β1.
Here we also have x̃k = Vkz̃k, where z̃k in (14.5) is a backward stable solution to
Tkzk = e1β1. Thus from (14.4) x̃k = Vkz̃k is seen to be a backward stable solution to
Ax = b where z̃k is a backward stable solution to Tkzk = e1β1, and this is as good as
can be expected with finite precision.

It is important to realize that this proof assuming Q
(k)
22 = 0 did not require A to

be positive definite, or even nonsingular. All it required was a solution to (14.4). In
fact if A + H22 is singular and x̃k is the minimum norm solution to (14.4), then z̃k
would essentially be the minimum norm solution to (14.5). Therefore the Lanczos
process makes available backward stable solutions to all compatible systems Ax = b
with AH = A in this case.

Unlike the proofs for eigenvalues in section 12, the proof here for solving Ax = b

assumed Q
(k)
22 = 0, and so ignored the case of possible multiple eigenvalues. But if a

multiple eigenvalue λi has an eigensubspace spanned be the columns ofXi, X
H
i Xi = I,

the Lanczos process need only converge to XiX
H
i b for this subspace, and this is

presumably what happens for each multiple eigenvalue in Theorem 12.2, so this would
presumably lead to a proof for convergence where there are multiple eigenvalues.

15. Lanczos-CG for Ax = b. Example 15.1 shows how slow ‖Q(k)
22 ‖2F can be in

decreasing to zero, even though convergence to the solution is fast, see Figure 15.1.
Example 15.1. The matrix A = gallery(′wathen′, 20, 20); in Matlab is 1281 ×

Fig. 15.1. Plots of ‖x− xk‖A, ‖b−Axk‖2, and ‖Q(k)
22 ‖F , A = AT ∈ R1281×1281.

1281 symmetric positive definite with random elements. It has no multiple eigenvalues,
but several are equal to the 5th figure. We took random x elements in [−1, 1] and
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b 4= A ∗ x. Matlab’s condest(A) computed a lower bound for the 1-norm condition
number of A of about 1200, with ‖x‖2 = 20.4013, and ‖b‖2 = 1768.6. Lanczos-CG
solving Ax = b gave ‖x−xk‖A = 1.54∗10−13 and the residual ‖b−Axk‖2 = 1.40∗10−12

in 279 steps, and stayed there, while ‖Q(k)
22 ‖2F decreased from 1281 to 1037 in 279 steps,

where the ideal value would be 1281 − 279 = 1002. The value of ‖Q(k)
22 ‖F decreased

extremely slowly, only reaching 10−10 at step 7123. Of course this is only an indication

of the theoretical ‖Q(k)
22 ‖F value, because the computed ‖vj‖2 are not precisely 1, and

because of the rounding errors in computing ‖Q(k)
22 ‖2. This very slow, then late but

relatively quick decrease is not at all well understood, and is one of several properties
requiring more research. Even so, a satisfying solution xk was found quite quickly.

With full reorthogonalization the Lanczos-CG solution stopped improving at k =
261 with ‖x − xk‖A = 1.64 ∗ 10−13 and the residual ‖b − Axk‖2 = 1.39 ∗ 10−12, and

these stayed there, while ‖Q(k)
22 ‖2F decreased from 1281 to the correct 1020 at k = 261.

Thus Lanczos-CG obtained just as accurate a solution as with full reorthogonalization

in only 18 more steps, even though ‖Q(k)
22 ‖2F would not be zero in the ideal process until

k = 1281, and not essentially zero until much later in the computational process.

16. Practical computations based on the Lanczos process. In practice
we would like to provide some preprocessing of the problem such as preconditioning
of A, or choice of v1, in order to obtain the desired solution in a reasonable number
of steps. But as long as Corollary 7.1 still holds, everything in this paper will apply.

The analysis shows that the finite precision Lanczos process does make available
solutions that are backward stable. It is then up to the remaining computations in
any method to obtain these. For example different solution of equations methods
solve something like Tkzk = e1β1 and compute something like xk = Vkzk in different
ways, see for example (14.2). Previously the Lanczos process was considered to be the
weak part of such methods, and the remaining computations were considered to be
faultless in comparison. Now we see that the analyses of the remaining computations
should be included to show each overall method is backward stable.

For the eigenproblem of A that seems straightforward. We can find the eigenvalues
of Tk in a backward stable manner, and can tell which eigenvectors have converged.

So as in Definition 11.5 we would take the k for which µ
(k)
j has first converged, then

‖Vky(k)j ‖2 ≈ 1 and {µ(k)
j , Vky

(k)
j } is a backward stable eigenpair for A.

The analysis for solution of equations is less obvious. The analysis (14.3)–(14.5)
did not require A or Tk to be positive definite, it only required a solution of (14.4),
showing that the Lanczos process can be used to solve any compatible system of
equations with AH = A, so that is not a difficulty. If A is not positive definite then
Tk could be singular for some k, and other methods than (14.2) are needed, such as
SYMMLQ [30] or MINRES-QLP [4]. The analyses of these could be combined with
the analysis of the Lanczos process to certify the overall methods. We would also like
to show that CG as implemented in [15] is backward stable.

Because of the close relationships between Golub-Kahan bidiagonalization (GKB)
[7] for general non-square matrices and Lanczos tridiagonalization for Hermitian ma-
trices, a variant of the analysis can presumably be used to prove that methods based
on the GKB are equally successful. Problems with skew symmetric matrices can be
handled via both the Lanczos process and GKB, see [12], and can also be analyzed.

17. Comments and summary. The papers [24, 25, 34] come in a sequence,
each built on the earlier ones, and all leading to this one, which uses those results
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to prove the reliability and convergence of the Lanczos process for the eigenproblem
and solution of equations. We have shown in Theorem 12.3 that the finite precision
Lanczos process on a Hermitian matrix A essentially makes available a backward
stable eigenpair of A for every eigenvalue λi of A with |xHi v1|>0, and in sections 13
and 14 that when A has discrete eigenvalues having |xHi v1|>0, i= 1 :n, the process
behaves very like the exact process in that eventually Tk makes available a complete
set of eigenpairs of A, or the solution of Ax = b, in a backward stable manner. But
because of the possibility of deriving many repeats of eigenvalues of A, the finite
precision Lanczos process can take many more than the ideal number of steps. Many
have suspected this for many years, so it is pleasing to see that it is true.

It would be nice to give a more simple derivation of the results in section 11, and to
obtain a greater understanding of how slow the convergence can be, see Remark 12.1.
When the relevant analyses have been done it might be useful to show what properties
of the exact processes hold for the finite precision processes. For example it follows
from [15], see [12, (12.1)–(12.3)], that in theory, i.e., with exact arithmetic,

‖x−xLSQR
k ‖2≤‖x−xLSMR

k ‖2, ‖rLSQR
k ‖2≤‖rLSMR

k ‖2, ‖ATrLSMR
k ‖2≤‖ATrLSQR

k ‖2

for solutions xk and residuals rk 4= b−Axk of minx ‖b−Ax‖2 where A has full column
rank, using LSQR [31] and LSMR [6]. Do these still hold with finite precision? What
optimality properties of such methods still hold?

Of course a most useful topic will be to turn the knowledge gained here into
practical computational advantage, perhaps by transforming the original problem
and/or by developing improved computational algorithms.

17.1. Summary of the finite precision convergence. This is a brief sum-
mary of some of the more important theoretical and experimental observations.

1. There may be several eigenvalues of Tk for any one eigenvalue of A, but every
converged eigenvalue of Tk is essentially an eigenvalue of A, and eigenvalues of
the developing Tk never lose their level of convergence. The Lanczos process
is always on track for the eigenproblem, the accuracy of approximation is
only limited by the slowly growing size of the backward error H(k) in (5.1).

2. ‖Q(k)
22 ‖2F will decrease by approximately 1 each step until the first eigenpair

{λi, xi} of A has been found, at which point orthogonality can be lost.

3. Once orthogonality has been lost ‖Q(k)
22 ‖2F will usually start to decrease at

a slower rate, but will continue decreasing until all eigenpairs {λi, xi} of A
corresponding to distinct eigenvalues whose eigenvectors are not orthogonal
to v1, have been found. Rounding errors will usually extend this to xi ⊥ v1.

4. If |xHi v1| > 0 then ‖xHi Q
(k)
22 ‖2F ↘ 0 until xHi Q

(k)
22 ≈ 0, at which point back-

ward stable approximations to λi and xi are available, see Theorem 12.3.

But once orthogonality is lost, the rate that ‖xHi Q
(k)
22 ‖2F ↘ 0 is problem de-

pendent. The decrease can be very slow if λi is one of several very close
eigenvalues, and finding a general lower bound on the rate of decrease would
be a daunting task, if at all possible. One key point is that when it gets there,
the Lanczos process never converges to wrong answers, see section 5.1.

5. If A has no multiple eigenvalues then ‖Q(k)
22 ‖2F ↘ 0, possibly very slowly.

6. If A has r repeated eigenvalues then for k ≥ some j, Q
(k)
22 seems to stagnate

at Q
(j)
22 ≈ Ṽ

(j)
2 Σ

(j)
2 V̂

(j)H
2 with Σ

(j)
2 ∈ Rr×r. Then while Range(Ṽ

(j)
3 ) is the

eigensubspace for the distinct eigenvalues of A, Range(Ṽ
(j)
2 ) ⊥ Range(Ṽ

(j)
3 )

appeared to be the eigensubspace for the repeated eigenvalues of A.
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7. Lanczos-CG can converge in � or � n steps for Ax = b, see section 15.

Appendix. This clarifies some ideas. First, what is a “good” implementation?
The general step for k>1 of algorithm (1.1) is mathematically equivalent to

wk :=Avk−vkαk−vk−1γk, αk :=vHkAvk, γk :=βk,(17.1)

βk+1 := +(wH
k wk)1/2, vk+1 := wk/βk+1.

However to obtain orthogonality, we could instead have taken γk 4= vHk−1Avk. It was
shown in [21, §7.3 & §9.3] that this alternate choice is numerically unreliable. On the
other hand, implementations that are essentially equivalent to (17.1) with its choice of
coefficients were shown in [21, 22, 23] to have good properties, and we refer to these as
“good” implementations. In particular, in the real case the two 2-term recurrences in
(1.1) give the best error bounds, see [22, section 2], and apparently best performance.
But in the complex case (17.1) might be preferable, for if u, w, B, and C are real
with (B + iC)H = (B + iC), i 4=

√
−1, then

BT = B, CT = −C, uTCu = 0, (u+ iw)H(u+ iw) = uTu+ wTw,

(u+ iw)H(B + iC)(u+ iw) = uTBu+ wTBw + 2wTCu,

so that it is straightforward to compute αk and βk+1 to be real in (17.1).
For the complex case the best way to compute real αk in (1.1) is not so clear, but

some numerical tests in [3] indicated that we can take the real part of the computed
αk, and this can be superior to using (17.1).

Next, section 5.1 mentioned that Tk is positive definite if A is sufficiently so.

Theorem 17.1. For Hermitian H(k) in Theorem 5.1 the maximum λmax(Tk)
and minimum λmin(Tk) are bounded as follows:

λmin(A)−
∑k

i=1‖H(i)‖2≤ λmin(Tk)≤ λmax(Tk)≤ λmax(A)+
∑k

i=1‖H(i)‖2.(17.2)

Proof. In Corollary 7.1 let Q̃
(k)
1 be Q

(k)
1 less its zero k-th row, and let H̃(k) be

H(k) without its k-th row and column, then from (7.2)–(7.3)

Q̃
(k)H
1 Q̃

(k)
1 = Ik, Tk = Q

(k)H
1 AkQ

(k)
1 = Q̃

(k)H
1 [diag(Tk−1, A) + H̃(k)]Q̃

(k)
1 ,(17.3)

where this is also true for k = 1 if we define T0 to be nonexistent. Now expand Q̃
(k)
1

to a full unitary matrix Q̃(k) = [Q̃
(k)
1 , Q̃

(k)
2 ] ∈ U(k+n−1)×(k+n−1). Because Tk is the

leading principal k× k submatrix of Q̃(k)H [diag(Tk−1, A) + H̃(k)]Q̃(k), it follows from
the separation theorem, see for example [42, Ch.2 §47, p.103], that

W[Tk] ⊆W[diag(Tk−1, A) + H̃(k)], k=1, 2, 3, . . . ,

where W[M ] 4= {x
HMx : ‖x‖2 = 1} is the numerical range of M , see e.g., [8, (7.1.4)].

Then from the eigenvalues of the sum of two matrices, see e.g., [42, Ch.2 §44, p.101],

λmax(Tk) ≤ max{λmax(Tk−1), λmax(A)}+ λmax(H̃(k)),

λmax(T1) ≤ λmax(A) + λmax(H̃(1)) ≤ λmax(A) + ‖H̃(1)‖2.

This shows that max{λmax(T1), λmax(A)} ≤ λmax(A) + ‖H̃(1)‖2, so

λmax(T2) ≤ max{λmax(T1), λmax(A)}+ ‖H̃(2)‖2 ≤ λmax(A) + ‖H̃(1)‖2 + ‖H̃(2)‖2,

etc. This with ‖H̃(i)‖2 ≤ ‖H(i)‖2 leads to the upper bound on λmax(Tk) in (17.2).

The lower bound on λmin(Tk) follows similarly using λmin(H̃(i)) ≥ −‖H̃(i)‖2.
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[39] Z. Strakoš, On the real convergence rate of the conjugate gradient method, Linear Algebra
Appl., 154–156 (1991), pp. 535–549. https://doi.org/10.1016/0024-3795(91)90393-B
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