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AN AUGMENTED STABILITY RESULT FOR THE LANCZOS
HERMITIAN MATRIX TRIDIAGONALIZATION PROCESS∗
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Abstract. It is shown that a good implementation of the Hermitian matrix tridiagonalization
process of Lanczos [J. Research Nat. Bur. Standards, 45 (1950), pp. 255–282] produces a tridiagonal
matrix that is, at each step, the exact result for the process applied to a strange augmented problem.
Since the process is not stable in the standard sense, this augmented stability result cannot be
transformed to prove standard stability. The intent is to obtain an increased understanding of
the Lanczos tridiagonalization process, and this result could later be used to analyze the many
applications of the process to large sparse matrix problems, such as the solution of the eigenproblem,
compatible linear systems, least squares, and the singular value decomposition.
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1. Introduction. Here we will use “the Lanczos process” to mean the famous
Hermitian matrix tridiagonalization process of Lanczos [15]:

(1.1) AVk = VkTk + vk+1βk+1e
T
k = Vk+1Tk+1,k, V H

k+1Vk+1 = Ik+1, Tk tridiagonal.

In theory the Lanczos process produces a sequence of orthonormal n-vectors, which
are columns of Vk = [v1, . . . , vk] ∈ Cn×k, from a given unit length (i.e., 2-norm of 1)
n-vector v1 via a sequence of matrix-vector multiplications with the given Hermitian
matrix A ∈ Cn×n. These vectors are obtained by the orthogonalization of each suc-
cessively produced vector against the two previously computed orthonormal vectors,
followed by the normalization of the resulting orthogonal vector. With finite precision
computation this algorithm produces a sequence of n-vectors which can have a severe
loss of orthogonality, but where each vector has a 2-norm that is almost 1. Here it is
shown that a good implementation of the Lanczos process produces a tridiagonal ma-
trix Tk that is exact for a strange augmented problem. Since the augmented problem
differs in a significant way from the original matrix A (but of course includes A), we
will not say that the Lanczos process is “augmented backward stable.” We have not
yet decided on a satisfactory nomenclature, so we will for the moment refer to it as
the “strange augmented stability,” or just “augmented stability,” of the process. The
intent of this analysis is to obtain an increased understanding of the Lanczos process
and its practical use for large sparse matrix problems such as the eigenproblem, so-
lution of linear systems and least squares, singular value computations, and related
problems; see, for example, [2, 7, 13, 15, 16, 26, 27, 29], and also [28, section 3] for
comments by Saunders on regularization and partial least squares.
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Lanczos originally presented his tridiagonalization process in [15] for solving the
eigenproblem, but mentioned it would be useful for solution of equations, and in [16] he
adapted it for this purpose when the matrix is symmetric positive definite. This latter
method is mathematically equivalent to Hestenes and Stiefel’s method of conjugate
gradients (CG) in [13]. The Lanczos process applied to the real symmetric matrix
eigenproblem was soon superseded by the backward stable method of Givens [6] based
on matrix factorizations (see [36, Chap. 5, sections 22–35, pp. 282–299]), while CG
fell out of favor. Later both methods were found to be advantageous for many types
of large sparse matrix problems; see, for example, [20, 31]. Today the Lanczos process
is the basis for several methods which are still considered among the best we have for
large sparse matrix problems (see, for example, [5, 17]), and for this reason alone it
is important to understand its strange numerical behavior as deeply as possible.

The initial analysis of this behavior appeared in [20, 21, 22, 23]. This was taken up
by Parlett and several of his students, who greatly improved the use and understand-
ing of the process. See, for example, [30] for helpful clarifications and explanations of
many of the important ideas and relations. Greenbaum, and independently Strakoš,
developed our understanding of the practical behavior of the Lanczos process and its
use for both the eigenproblem and CG; see, for example, [9, 10, 11, 34, 35]. Many
others also contributed to the understanding of the subtle behavior of these algo-
rithms; see, for example, Wülling [37, 38] and Zemke [39, 40] for some recent research
in the area. For a full history and description of these developments until recently,
see the text by Meurant [17]. An elegant approach to some of the important theory
and practical behavior of both the Lanczos process and CG, together with a good
historical outline, is given by Meurant and Strakoš in [18].

An augmented result on the stability of the Lanczos process was given by Green-
baum in [10]. Corollary 3.2 here gives a result of similar tenor, and we compare these
two results after Corollary 3.3. Following this work of Greenbaum, and the orthogonal
polynomial and Gauss quadrature relationships described in [10, 13] and elsewhere,
Strakoš and coworkers have developed illuminating results on the practical behaviors
of the Lanczos process and CG via an analysis based on the fundamental relationship
with the theory of orthogonal polynomials and Gauss quadrature of the Riemann–
Stieltjes integral; see the survey paper [18] for a nice description, and [19] for further
developments and an extensive literature survey.

The approach here has led to some similar results for the real symmetric eigen-
problem, but it is instead based purely on ideas from matrix theory and an extension
of the concept of backward stability for numerical algorithms introduced by Wilkin-
son, whose work motivated the work here so strongly; see, for example, [14, 36]. The
results obtained so far with this direct approach complement the understanding gained
by those earlier approaches.

In section 2 we state a theorem from [24, Theorem 2.1] on how a particular
(n+ k)× (n+ k) unitary matrix Q(k) can be derived from any n× k matrix Vk whose
columns have 2-norms of one. We will use this with basic rounding error results to
prove the strange augmented stability of the Lanczos process in section 3.

Since the Lanczos process is not backward stable in the standard sense, this
augmented stability result cannot be transformed to prove standard backward stability
of the Lanczos process. However, it has been designed to be used to obtain more
standard results for the many applications of the Lanczos process, and here we give
a few words at the end of section 3.3 regarding the eigenproblem.

The extension of Theorem 2.1 to handle biorthogonal sets of vectors in [24, Theo-
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rem 7.1] suggests that some of the results here might also be extended to some variant
of the Lanczos unsymmetric matrix tridiagonalization process in [15]; see also, for ex-
ample, [36, Chap. 6, sections 35–40, pp. 388–394].

A bit more history will add another reason why we do not attempt to provide
any more general results than proving the strange augmented stability of the Lanczos
process. Perhaps the first augmented backward stability result was that initiated by
Sheffield [33] on the augmented backward stability of the so-called modified Gram–
Schmidt algorithm (MGS); see [3, equation (3.3)]. This was used by Björck and
Paige [3, 4] to analyze and suggest improved ways of using MGS for least squares and
related problems. The same idea was used in [25] to show the backward stability of
the MGS-GMRES algorithm in [32] for the solution of linear equations. Since MGS
orthogonalizes against all previous vectors, it was possible in these cases to transform
the augmented results to standard results using, for example, [3, Lemma 3.1], which
was later improved slightly in [24, Theorem 4.1].

Barlow, Bosner, and Drmač [1] used Sheffield’s insight to prove some numerical
stability properties of their algorithm for the bidiagonalization of a matrix by or-
thogonal transformations from the left and right. Their method used Householder
transformations to produce the effect of the smaller-dimensioned orthogonal matrix,
and this forced finite termination. But it used local orthogonalization by vector sub-
traction to find the columns of the larger-dimensioned orthogonal matrix. This led to
a saving in floating point operations, often at the cost of significant loss of orthogonal-
ity in the latter’s columns. It was shown in [24] how Theorem 2.1 here could be used to
give a simpler and shorter rounding error analysis of their algorithm. Then the finite
termination property of their algorithm made it possible to obtain standard results
directly from augmented results. But because of loss of orthogonality in practice, the
Lanczos process has no finite termination property—it can go on forever. This means
that the computed tridiagonal matrix can have a greater dimension than the original
Hermitian matrix, and as we will show, the augmented result is startlingly different.
In general it is not straightforward to obtain results in standard form, and it will be
necessary to treat each of the applications of the Lanczos process individually. So
only the essential augmented stability result will be given here.

1.1. Notation. We will use “4=” for “is defined to be” and “≡” for “is equivalent
to.” We will say a complex nonsquare n × k matrix Q1 has orthonormal columns if
QH

1 Q1 = I and write Q1 ∈ Un×k, while Q1 and Q2 are orthogonal if QH
1 Q2 = 0. For

floating point arithmetic our measure of relative precision will be the unit roundoff
(see, e.g., [14]) and will be denoted by ε. In denotes the n×n unit matrix (but we will
sometimes use I), ej will be the jth column of a unit matrix I, so Bej is the jth column
of B, while e will be a vector of 1s of the required dimension. We will use σ(·) to denote
a singular value and define κ2(B) 4= σmax(B)/σmin(B). We will denote the absolute

value of a matrix B by |B|, the Frobenius norm by ‖B‖F 4=
√

trace(BHB), the vector

2-norm by ‖v‖2 4=
√
vHv, and its subordinate matrix norm by ‖B‖2 4= σmax(B).

The matrices E (whose columns are Eej , not ej), F , G, and H will denote small
terms introduced by rounding errors. For the rounding error analysis we will use
a simplistic notation such as ‖Ek‖2,F ≤ O(ε)‖A‖2 to denote bounds for the basic
error terms Ek in (3.2) and Fk in (3.5). This is in order to accommodate the various
possible bounds like those in section 3.2 that have been, and may yet be, found for
these. This precludes the more precise notation used in [14, pp. 63–68].

We will usually index matrices by subscripts as in Vk when the (k + 1)st matrix
can be obtained from the kth by adding a column, or a column and a row. Otherwise
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we will use superscripts, as in H(k). We will partition Q(k) = [Q
(k)
1 , Q

(k)
2 ].

We use SUT to mean “strictly upper triangular,” while “sut(·)” gives the matrix
in parentheses with its lower triangle set to zero; thus sut(α) = 0 for a scalar α.
Similarly SLT means “strictly lower triangular,” LT means “lower triangular,” and
“lt(·)” gives the matrix in parentheses with its SUT part set to zero.

2. Obtaining a unitary matrix from unit 2-norm n-vectors. A crucial
tool used in this paper is a theorem which was proved in [24], which we restate here
for convenience. It allows us to develop an (n+k)× (n+k) unitary matrix Q(k) from
any n × k matrix Vk with unit 2-norm columns. When Vk comes from the Lanczos
process, this allows us to obtain our strange augmented stability result from earlier
results in this area.

Theorem 2.1. For any integers n ≥ 1 and k ≥ 1, and Vk 4= [v1, . . . , vk] ∈ Cn×k

with ‖vj‖2 = 1, j = 1, . . . , k, define the strictly upper triangular matrix Sk as follows:

(2.1) Sk
4
= (Ik + Uk)−1Uk ≡ Uk(Ik + Uk)−1 ∈ Ck×k, Uk

4
= sut(V H

k Vk)

(where clearly Ik ± Sk and Ik ± Uk are always nonsingular). Then

UkSk = SkUk, Uk =(Ik−Sk)−1Sk≡Sk(Ik−Sk)−1, (Ik−Sk)−1 = Ik+Uk,(2.2)

(Ik−Sk)HV H
k Vk(Ik−Sk) = Ik−SH

k Sk,(2.3)

(Ik−Sk)V H
k Vk(Ik−Sk)H = Ik−SkS

H
k ,(2.4)

‖Sk‖2 ≤ 1; V H
k Vk = I ⇔ ‖Sk‖2 = 0; V H

k Vk singular⇔ ‖Sk‖2 = 1.(2.5)

Most importantly, Sk is the unique strictly upper triangular k × k matrix such that

(2.6) Q(k) 4
=

[
Q

(k)
1 Q

(k)
2

]
4
=

[
Sk (Ik−Sk)V H

k

Vk(Ik−Sk) In−Vk(Ik−Sk)V H
k

]
∈ U (n+k)×(n+k).

If we write
[
Ŝk sk+1

0 0

]
4
= Sk+1, then we also have Ŝk = Sk and

(2.7) sk+1 = (Ik−Sk)V H
k vk+1,

[
Sk+1

Vk+1(Ik+1−Sk+1)

]
=

 Sk sk+1

0 0
Vk(Ik−Sk) vk+1−Vksk+1

.
Here we add a simple consequence of (2.1), and a generalization of (2.5).
Corollary 2.2. With the notation in Theorem 2.1,

sj−1,j 4= eTj−1Skej = uj−1,j 4= eTj−1Ukej = vHj−1vj , j = 2, . . . , k;(2.8)

k = rank(Vk) + the number of unit singular values of Sk.(2.9)

Proof. First, (2.8) follows from the (j−1, j) element of (I+Uk)Sk = Uk; see (2.1).
Let the eigenvalue decomposition of Hermitian nonnegative definite (2.3) be

PH(I − Sk)HV H
k Vk(I − Sk)P = PH(I − SH

k Sk)P = diag(Od,Γ), PH = P−1,

Od being the d × d zero matrix, and (k − d) × (k − d) diagonal Γ having positive
diagonal elements. Then Vk(I − Sk), and so Vk, has rank k − d. But

PHSH
k SkP = I − diag(Od,Γ) = diag(Id, I − Γ),

and so Sk has exactly d unit singular values, proving (2.9).
We see from (2.9) that if k > n, then Sk has at least k − n unit singular values.
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One important result of the theorem is that ‖Sk‖2 is an excellent measure of
the loss of orthogonality in the (unit length) columns of Vk; see [25, Lemma 5.1]
and [24, Corollary 5.2]. From these, for Vk, Uk, and Sk in Theorem 2.1,

1− 2‖Uk‖2 ≤
1− ‖Sk‖2
1 + ‖Sk‖2

≤ σ2
i (Vk) ≤ 1 + 2‖Uk‖2 ≤

1 + ‖Sk‖2
1− ‖Sk‖2

,(2.10)

σmin(Vk) ≤ 1 ≤ σmax(Vk); σ−2min(Vk) and κ2(Vk) ≤ 1 + ‖Sk‖2
1− ‖Sk‖2

.(2.11)

Theorem 2.1 states that Uk and Sk, k > 1, are obtained from Uk−1 and Sk−1

by adding a column and a row, so from (2.6) and (2.7) this is true for Q
(k)
1 too.

Nevertheless we write Q
(k)
1 because it is part of Q(k) =

[
Q

(k)
1 Q

(k)
2

]
. The column and

row added to Sk−1 to give Sk are as follows. Write Rk
4
= I + Uk =

[
Rk−1 uk

0 1

]
, where

uk 4= V H
k−1vk (see (2.1)) so R−1k =

[
R−1

k−1
−R−1

k−1
uk

0 1

]
, and then we can use the subscript

indexing notation for Sk, since from (2.1)

Sk
4
= R−1k Uk =

[
R−1k−1 −R−1k−1uk

0 1

] [
Uk−1 uk

0 0

]
=

[
Sk−1 sk

0 0

]
, sk 4= R−1k−1uk.

In [24] the construction in Theorem 2.1 was called a unitary or orthonormal
augmentation of an array or sequence of unit length vectors (the “augmentation”

from Vk to Q
(k)
1 in (2.6)). It was thought to be useful in the rounding error analysis

of any algorithm that produces a sequence of orthonormal vectors, but because of
rounding errors fails to do so to a significant extent. The present paper describes a
very basic, and perhaps the most important, possible use—a rounding error analysis
of the Lanczos process.

3. Application to the Lanczos algorithm. Throughout this section we will
assume β2β3 · · ·βk+1 6= 0. This almost always happens in practice, and we would stop
at the first zero βj if it did not. For generality we will consider the complex case.

3.1. Basic rounding error results. Let the columns of Ṽk 4= [ṽ1, . . . , ṽk] be the
first k vectors obtained by using a reliable implementation (such as that in section 3.2)
of the Lanczos process with the n× n Hermitian matrix A, and define
(3.1)

Vk 4= [v1, . . . , vk] 4= ṼkD̃
−1
k , D̃k

4
= diag(‖ṽj‖2) giving ‖vj‖2 = 1, j = 1, . . . , k.

After k steps of the Lanczos algorithm with unit roundoff ε, we have (see, e.g., [22])

Tk+1,k
4
=

[
Tk

βk+1e
T
k

]
4
=


α1 β2
β2 α2 β3

· · ·
βk αk

βk+1

 ,
AVk = VkTk + vk+1βk+1e

T
k + Ek = Vk+1Tk+1,k + Ek,(3.2)

‖Ek‖2,F ≤ O(ε)‖A‖2 in [22]. We write Ek rather than E(k) since Ek = [Ek−1, Ekek].
Let Uk

4
= sut(V H

k Vk), uk+1
4
= V H

k vk+1, uij 4= vHi vj ; then from symmetry

V H
k AVk = (UH

k + I + Uk)Tk + uk+1βk+1e
T
k + V H

k Ek(3.3)

= Tk(UH
k + I + Uk) + ekβk+1u

H
k+1 + EH

k Vk.
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Equating the upper triangular parts in this last equality shows that

TkUk−[Uk, uk+1]Tk+1,k = Fk, Fk
4
= Dk + sut(V H

k Ek−EH
k Vk),(3.4)

Dk
4
= diag(−u12β2, u12β2−u23β3, . . . , uk−1,kβk−uk,k+1βk+1),

and when a good algorithm has been used we have (see, for example, section 3.2)

(3.5) ‖Fk‖2,F ≤ O(ε)‖A‖2.

We write Fk rather than F (k), and note that Fk + EH
k Vk is Hermitian, since

(3.6) Fk =

[
Fk−1

0
Fkek

]
, Fk + EH

k Vk = Dk + sut(V H
k Ek) + lt(EH

k Vk).

There are different bounds for different situations. Here we will give our results
in terms of Ek and Fk, so that anyone can include their own bounds on these.

3.2. Possible rounding error bounds. Our main results will be independent
of the particular bounds, but to give a feeling for the context, we give one example of
the bounds on Ek and Fk in (3.2) and (3.4). According to [17, p. 96] the most used
variant of the real symmetric Lanczos algorithm is that recommended in [23, section 2]
(but care should be taken to ensure real αj in the Hermitian case): For a given b 6= 0,

β := +(bHb)
1
2 , v1 := b/β, w := Av1. For j = 1, 2, . . . , k repeat the following:{

αj := vHj w, w := w − vjαj , βj+1 := +(wHw)
1
2 ,

if βj+1 = 0, then STOP, else: vj+1 := w/βj+1, w := Avj+1 − vjβj+1.

It is relevant to note that this is a two two-term Krylov process (w := Avj−vj−1βj and
w := w−vjαj) rather than the one three-term process vj+1βj+1 = Avj−vjαj−vj−1βj ,
and has some advantages similar to the shorter recurrences discussed by Gutknecht
and Strakoš in [12]. The bounds below were obtained for the computed vj , not for
their correctly normalized versions; however, the differences will be minimal.

Here is an example of bounds for the real case outlined in [17, Chap. 3]. If A has
at most m nonzero elements in any row, then with the definitions and restrictions

α 4= ‖|A|‖2/‖A‖2, ε0 4= 2(n+ 4)ε < 1/12, ε1 4= 2(7 +mα)ε, k(3ε0 + ε1) ≤ 1,

it was shown in [22] (see also [23, section 2] and [17, section 3.3]) that with the above
algorithm for j = 1, 2, . . . , k the error terms Ek and Fk satisfy

(3.7) ‖Ek‖2 ≤ ‖Ek‖F ≤ k
1
2 ε1‖A‖2, ‖Fk‖2 ≤ ‖Fk‖F ≤

√
2k(kε21 + 8ε20)‖A‖2.

Of course these are just bounds (probably quite weak ones), and actual values will
tend to be far smaller.

3.3. The nearby problem. We showed in Theorem 2.1 that if we carried
out the orthonormal augmentation of Vk, then we obtained (see (2.6) and (2.2))
sut(V H

k Vk)=Uk =Sk(I−Sk)−1 =(I−Sk)−1Sk, where Sk was SUT and

(3.8) Sk+1 =

[
Sk sk+1

0 0

]
, sk+1 = (I − Sk)V H

k vk+1 = (I − Sk)uk+1;
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see (2.7). Using the fact that eTk Sk = 0 since Sk is SUT, we see that

SkTkSk = [SkTk + sk+1βk+1e
T
k ]Sk = [Sk, sk+1]Tk+1,kSk,

so that we have for the upper triangular (3.4)

TkSk(I − Sk)−1 − [(I − Sk)−1Sk, (I − Sk)−1sk+1]Tk+1,k = Fk,

(I − Sk)Fk(I − Sk) = (I − Sk)TkSk − [Sk, sk+1]Tk+1,k(I − Sk).

This gives the following two different forms of the one useful result:

TkSk − [Sk, sk+1]Tk+1,k = TkSk − SkTk − sk+1βk+1e
T
k = (I−Sk)Fk(I−Sk),(3.9)

(I − Sk)Tk = Tk(I − Sk) + sk+1βk+1e
T
k + (I − Sk)Fk(I − Sk).(3.10)

It will be seen that these different forms help in different places. It was mentioned
in [24] that for Theorem 2.1 to be useful in a rounding error analysis, an important
ancillary result will be an expression for Sk. Here (3.9), or (3.10), is the key expression
for Sk. Note that (3.4) for Uk and (3.9) for Sk have equivalent forms on the left-hand
side. In [20] it was hoped that (3.4) would reveal all, but this paper indicates that we
also need (3.9), or the mathematically equivalent (3.10).

We will need the following simple results. Using (3.3) and (3.4),

V H
k AVk = UH

k Tk + Tk + [Uk, uk+1]Tk+1,k + V H
k Ek(3.11)

= UH
k Tk + Tk + TkUk + (V H

k Ek − Fk).

From (3.2) and the fact that eTk Sk = 0,

(3.12) AVk(I − Sk)V H
k = (VkTk + Ek)(I − Sk)V H

k + vk+1βk+1v
H
k ,

while it is obvious that

(3.13) (I − Sk)HTk(I − Sk)− Tk(I − Sk)− (I − Sk)HTk = SH
k TkSk − Tk.

Note from (2.2) that (I − Sk)−1ek = ek + Ukek = V H
k vk, so with (3.8)

(3.14) (I − Sk)V H
k vk = ek, (I − Sk)V H

k vk+1 = sk+1.

The ideal Lanczos process (1.1) corresponds to the (partial) unitary similarity
transformation of A to tridiagonal form, so that V H

k AVk = Tk up to k = n. We now
show in (3.15) that, even with severe loss of orthogonality, a correctly programmed
computational process also corresponds to an exact unitary similarity transformation
of a matrix involving A into a developing tridiagonal form with the computed Tk.

Theorem 3.1. After k finite precision steps of a Lanczos algorithm with A = AH

and v1, ‖v1‖2 = 1, leading to Vk+1 with unit-norm columns (see (3.1)), βk+1 and Tk
in section 3.1, with Sk, sk+1, and Q(k) defined in Theorem 2.1, Ek and Fk satisfying
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(3.2) and (3.4), and Ak
4
= A−vk+1βk+1v

H
k −vkβk+1v

H
k+1 = AH

k , we have

Q(k)H

([
Tk 0
0 A

]
+H(k)

)
Q(k) =

[
Tk ekβk+1v

H
k+1

vk+1βk+1e
T
k Ak

]
,(3.15)

Q(k) 4
=

[
Q

(k)
1 Q

(k)
2

]
4
=

[
Sk (I−Sk)V H

k

Vk(I−Sk) I−Vk(I−Sk)V H
k

]
, Q(k)H ={Q(k)}−1,(3.16)

H(k) 4
= Nk(Fk + EH

k Vk)NH
k +

[
0
Ek

]
NH

k +Nk

[
0 EH

k

]
= H(k)H ,(3.17)

Nk
4
=

[
Ik
−Vk

]
(Ik−Sk) =

[
Ik
0

]
−Q(k)

1 , ‖Nk‖2 ≤ 2,(3.18)

‖H(k)‖2,F ≤ 4 (‖Ek‖2,F + ‖Fk‖2,F ),(3.19)

where the 2-, or F-, norm is to be used consistently throughout this last inequality.

Proof. We see that (3.16) follows from Theorem 2.1. Then Fk+EH
k Vk is Hermitian

from (3.6), and so the expression for H(k) is Hermitian in (3.17), as it should be for
(3.15) to hold. Also the equality in (3.18) follows from (3.16), and then ‖Nk‖22 =
‖NH

k Nk‖2 = ‖2I − Sk − SH
k ‖2 ≤ 4; see (2.5). The proof of the remaining results will

follow by obtaining expressions for the subblocks of G defined below. These blocks
will be small, resulting in small ‖H(k)‖2,F , when ‖Ek‖2,F and ‖Fk‖2,F are small,

(3.20) G 4=

[
G1,1 G1,2

G2,1 G2,2

]
4
=

[
Tk 0
0 A

]
Q(k) −Q(k)

[
Tk ekβk+1v

H
k+1

vk+1βk+1e
T
k Ak

]
.

To obtain an expression for G we use (3.20) with (3.16). To make this readable in an
acceptable amount of space, we temporarily make the substitutions

T ≡ Tk, S ≡ Sk, V ≡ Vk, v ≡ vk+1, s ≡ sk+1, β ≡ βk+1, E ≡ Ek, F ≡ Fk.

Then for G1,1 in (3.20) we see from (3.16), (3.14), and (3.9) that

(3.21) G1,1 = TS − ST − (I − S)V HvβeTk = TS − ST − sβeTk = (I − S)F (I − S).

Next, from (3.20) and (3.16), with (3.10), (3.14), and (3.2),

G2,1 = AV (I − S)− V (I − S)T − vβeTk + V (I − S)V HvβeTk

= AV (I − S)− V T (I − S)− V sβeTk − V (I − S)F (I − S)− vβeTk + V sβeTk

= (AV − V T − vβeTk )(I−S)− V (I−S)F (I−S) = [E − V (I−S)F ](I−S).(3.22)

Then from (3.20) and (3.16), with (3.10), (3.14), and (3.2)

G1,2 = T (I − S)V H − SekβvH − (I − S)V HA+ (I − S)V HvβvHk + (I − S)V Hvkβv
H

= (I−S)TV H−sβvHk −(I−S)F (I−S)V H−SekβvH−(I−S)V HA+sβvHk + ekβv
H

= (I−S)(V HA−EH−ekβvH)− (I−S)F (I−S)V H + (I−S)ekβv
H−(I−S)V HA

= − (I − S)[EH + F (I − S)V H ].
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Finally, from (3.20) and (3.16), with (3.14), (3.2), and (3.10),

G2,2 = A−AV (I − S)V H − V (I − S)ekβv
H −A+ vβvHk + vkβv

H

+ V (I − S)V HA− V (I − S)V HvβvHk − V (I − S)V Hvkβv
H

= V (I − S)V HA−AV (I − S)V H − V (I − S)ekβv
H

+ vβvHk + vkβv
H − V sβvHk − vkβvH

= V (I − S)(TV H + ekβv
H + EH)− (V T + vβeTk + E)(I − S)V H

− V (I − S)ekβv
H + vβvHk − V sβvHk

= V (I − S)(TV H + EH)− (V T + E)(I − S)V H − V sβvHk
= V [(I − S)T − T (I − S)− sβeTk ]V H + V (I − S)EH − E(I − S)V H

= V (I − S)F (I − S)V H + V (I − S)EH − E(I − S)V H .

Combining these submatrix expressions and rewriting as a sum of factors gives

G =

[
(I−S)F (I−S) −(I−S)[EH + F (I−S)V H ]

[E−V (I−S)F ](I−S) V (I−S)F (I−S)V H + V (I−S)EH−E(I−S)V H

]

=

[
I
−V

]
(I−S)F (I−S)

[
I −V H

]
+

[
0
E

]
(I−S)

[
I −V H

]
−
[
I
−V

]
(I−S)

[
0 EH

]
.

But from (3.15) and (3.20) H(k) = −GQ(k)H , where from (3.16) and (3.18)

(I − S)
[
I −V H

]
=
[
I − S −(I − S)V H

]
=
[
Ik 0

]
(I −Q(k)),

(I − S)
[
I −V H

]
Q(k)H =

[
Ik 0

]
(Q(k)H − I) = −(I − S)H

[
I −V H

]
= −NH

k ,[
0 EH

]
Q(k)H =EH

[
0 I

]
+ EHV (I − S)H

[
I −V H

]
=
[
0 EH

]
+ EHV NH

k ,

H(k) =−GQ(k)H = NkFN
H
k +

[
0
E

]
NH

k +Nk

[
0 EH

]
Q(k)H(3.23)

= Nk(F + EHV )NH
k +

[
0
E

]
NH

k +Nk

[
0 EH

]
,

giving (3.17). The second to last expression for H(k), with ‖Nk‖2 ≤ 2, gives (3.19).
The very simple and strong bound (3.19) on the norm of Hermitian H(k), in

terms of Ek and Fk in (3.2) and (3.4), is particularly pleasing, and so (3.15) is a very
satisfactory result for any reliable implementation of the Hermitian Lanczos process.

We see from (3.18) that Nk is obtained from Nk−1 by adding a column and a row.
We used MATLAB to compute the eigenvalues of

[
Tk 0
0 A

]
and compare them with

those of the matrix on the right-hand side of (3.15). In all our tests on problems with
full matrices having n from 30 to 300, and k from 20 to 400, we found the absolute dif-
ference of every computed eigenvalue to be less than nk

1
2 ε‖A‖2 in magnitude, usually

significantly so. We chose this comparison since (3.19) with the bounds in section 3.2
gives a bound on ‖H(k)‖F of about 12nkε‖A‖2 for all but very small k.

It would be possible, and perhaps more natural, to rewrite (3.15) and (3.16) as

Q̃(k)H

([
A 0
0 Tk

]
+H̃(k)

)
Q̃(k) =

[
Tk ekβk+1v

H
k+1

vk+1βk+1e
T
k Ak

]
,

Q̃(k) 4
=

[
Q̃

(k)
1 Q̃

(k)
2

]
4
=

[
Vk(I−Sk) I−Vk(I−Sk)V H

k

Sk (I−Sk)V H
k

]
, Q̃(k)H ={Q̃(k)}−1.
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But the analysis is identical, and (possibly because of familiarity) we find (3.15) and
(3.16) easier to work with. Also the increasing dimensions of

[
Tk 0
0 A

]
in (3.15) might

initially seem disturbing, but they are a necessary result of the analysis.

Note that Q
(k)
1 in (3.16) is (n+k)×k, while Tk is k×k. The columns of Q

(k)
1 will

be seen to be k orthonormal Lanczos vectors for a strange matrix. The theoretical
orthogonal similarity transformation in (3.15) has the form of k rounding-error-free
steps of the Householder tridiagonalization of

[
Tk 0
0 A

]
+H(k); see, for example, [8,

section 8.3.1]. We now state it as a rounding-error-free Lanczos process of the form
of (1.1).

Corollary 3.2. After k finite precision steps of a Lanczos algorithm with A =
AH satisfying (3.2) and (3.4), and leading to Vk, vk+1, and Tk+1,k in section 3.1, with
Sk, sk+1, Q(k), and H(k) defined in Theorem 3.1 (see also (3.8)) we have, along with
(3.16),([

Tk 0
0 A

]
+H(k)

)
Q

(k)
1 =

[
Q

(k)
1 qk+1

]
Tk+1,k = Q

(k)
1 Tk + qk+1βk+1e

T
k ,(3.24) [

Q
(k)
1 qk+1

]
4
=

[
Sk sk+1

Vk(I−Sk) vk+1−Vksk+1

]
, [Q

(k)
1 |qk+1]H [Q

(k)
1 |qk+1]=Ik+1,(3.25)

where qk+1 is also equal to the (k + 1)st column of Q
(k+1)
1 with its (k + 1)st element

(a zero) removed.
Proof. This follows immediately from Q(k) times (3.15), with (3.16) and

Q
(k)
2 vk+1 =

[
(I−Sk)V H

k vk+1

vk+1−Vk(I−Sk)V H
k vk+1

]
=

[
sk+1

vk+1−Vksk+1

]
= qk+1,(3.26)

Q
(k+1)
1 ek+1 =

[
Sk+1

Vk+1(Ik+1 − Sk+1)

]
ek+1 =

 sk+1

0
vk+1−Vksk+1

 ,(3.27)

since from (3.8) sk+1 = (I − Sk)V H
k vk+1.

The whole of (3.24) shows how Tk+1,k and [Q
(k)
1 , qk+1] develop, while the first k

rows, equivalent to (3.9), show how the loss of orthogonality, Sk+1, develops.

Equation (3.24) shows that the columns of [Q
(k)
1 , qk+1] are the exact Lanczos

vectors, and Tk+1,k the exact matrix, for k steps of the Lanczos process with
[
Tk 0
0 A

]
+

H(k) and
[

0
v1

]
. So, quite unexpectedly, we do have a backward-like rounding error

result in matrix form for this version of the Lanczos algorithm. But this result has
Tk appearing on both sides of the Lanczos equation (3.24), a truly novel occurrence.

Note that Ek and Fk in (3.2) and (3.4) create all the other error terms. Ek

contributes to Fk in (3.4), but it is Fk which determines all the loss of orthogonality.
Most importantly, H(k) = 0 in (3.15) if and only if we have an ideal, error-free Lanczos
process with exact orthogonality, showing that this analysis is both complete and tight
(all necessary terms are included, and there are no unnecessary terms).

Corollary 3.3. For a finite precision Lanczos algorithm of the form referred to
in Theorem 3.1 and Corollary 3.2,

Ek = 0 & {local orthogonality ui,i+1
4
= vHi vi+1 = 0, i = 1, . . . , k,} ⇒ Fk = 0,

(3.28)

Fk = 0⇔ Uk+1 = 0⇔ Sk+1 = 0⇔ V H
k+1Vk+1 = Ik+1,

(3.29)
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Ek = 0 & Fk = 0⇔ H(k) = 0 in (3.15),

(3.30)

H(k) = 0⇔ this is an error-free Lanczos process.

(3.31)

Proof. Equation (3.28) follows from (3.4). In (3.4), Uk+1 = 0 shows that Fk = 0,
while Fk = 0 and the facts that Uk+1 is SUT and β2 · · ·βk+1 6= 0 show that Uk+1 = 0,
proving the first implication in (3.29). The remaining implications in (3.29) follow
from (2.1) and (2.2). Then for (3.30), (3.17) shows that Ek = 0 & Fk = 0⇒ H(k) = 0,
while from (3.23) H(k) = −GQ(k)H , so H(k) = 0 ⇔ G = 0. But (3.21) and (3.22)
show that G = 0⇒ Ek = 0 & Fk = 0, completing (3.30).

From these results we see that if we have an ideal Lanczos process (1.1), then
Ek = 0 and Uk+1 = 0 and so Fk = 0, and then H(k) = 0. Finally if H(k) = 0, then
Ek = 0 and Fk = 0, so Sk+1 = 0, V H

k+1Vk+1 = Ik+1, and (3.24) and (3.25) give[
Tk 0
0 A

] [
0
Vk

]
=

[
0 0
Vk vk+1

]
Tk+1,k, V H

k+1Vk+1 = Ik+1.

Thus Tk in the leftmost matrix has no effect, and the nontrivial equations correspond
to an ideal error-free Lanczos process (1.1), proving (3.31).

In [10] (see also, for example, [17, section 3.9]) it was shown that the computed
Tk is equal to that generated by an exact Lanczos process applied to a matrix of
larger dimension than A, each of whose eigenvalues is fairly close to an eigenvalue of
A. However, the matrix was not simply defined and the bounds were weak, being
O(ε

1
2 )‖A‖2 or even O(ε

1
4 )‖A‖2. In Corollary 3.2 the larger-dimensioned matrix is

clearly defined and the bounds are O(ε)‖A‖2, but usually a few of its eigenvalues
are not close to eigenvalues of A. Because Corollary 3.2 shows a strange augmented
form of stability of the Lanczos process, it follows a path initiated by Greenbaum
[9, 10]. It also creates a link to the work of Greenbaum, Strakoš, and coworkers who
developed many results on the Lanczos process and CG via an analysis based on
the fundamental relationship with the theory of orthogonal polynomials and Gauss
quadrature of the Riemann–Stieltjes integral; see, for example, [17, 18, 19] and their
many references. For example, a property of the Lanczos process is how it can create
essentially repeated eigenvalues in Tk corresponding to single eigenvalues of A, and this
property is handled quite beautifully with the Gauss quadrature approach. Here is an
alternative explanation. It was shown in [20], [23, Theorem 3.1], that any converged
eigenvalue of Tk must be within O(ε)‖A‖2 of an eigenvalue of A. With this, (3.24)
shows directly from matrix properties that any converged eigenvalue of Tk is then
almost a multiple eigenvalue of

[
Tj 0
0 A

]
+H(j) for all j ≥ k, and so in all probability

will eventually appear again for some j > k as yet another eigenvalue of Tj on the
right-hand side of (3.24).

Corollary 3.2 immediately leads to the following observation.

Corollary 3.4. After k finite precision steps of a Lanczos algorithm with A =
AH satisfying (3.2) and (3.4), and leading to Vk, vk+1, and Tk+1,k in section 3.1,

with Sk, sk+1, Q(k), and H(k) defined in Theorem 3.1, the columns of Q
(k)
1 form

an orthonormal basis for the kth Krylov subspace generated by the Hermitian matrix
[ Tk 0

0 A
] +H(k) with the initial vector [ 0

v1
].

Proof. This follows immediately from the unreduced tridiagonal form of Tk+1,k

in (3.24), and Q
(k)H
1 Q

(k)
1 = I in (3.25).
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3.4. Comments. The work in [24, section 3] suggested the possibility of a theo-
rem like Theorem 3.1, which was arrived as follows. First a theorem like Corollary 3.2
was found, but instead of H(k) there was an error term at the end. From this was
found something like the leading k × k block of (3.15), but again with the error term
not in backward form. This allowed Corollary 3.2 to be found, and eventually the
main Theorem 3.1 was derived. It was later proved as shown here.

The Golub–Kahan bidiagonalization [7] can be written as a Hermitian Lanczos
process, and so the results here can probably be easily altered to handle that case.

Using the rounding error properties of complex computations as described in [14,
section 3.6], it can be shown that (3.2) and (3.4) hold for a good implementation of
the skew-Hermitian Lanczos process with similar bounds on Ek and Fk, but with real
skew-symmetric Tk. It thus seems reasonable to think that a version of Theorem 3.1
will hold for that case too, perhaps with Hk skew-Hermitian.

It might be possible to generalize Theorem 3.1 to handle the unsymmetric Lanczos
process [15, p. 266 et seq.] (see also [36, pp. 388–394]) by using the biorthogonal
equivalent of Theorem 2.1 that was described in [24, Theorem 7.1]. These ideas could
also be considered for other orthogonalization or biorthogonalization algorithms.
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[35] Z. Strakoš, Convergence and numerical behavior of the Krylov space methods, in Proceedings

of the NATO ASI Institute Algorithms for Large Sparse Linear Algebraic Systems: The
State of the Art and Applications in Science and Engineering, G. Winter Althaus and
E. Spedicato, eds., Kluwer Academic Publishers, Dordrecht, 1998, pp. 175–197.

[36] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford University
Press, New York, 1988.
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