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Abstract

Floquet theory plays a ubiquitous role in the analysis and control of time-periodic
systems. Its main result is that any fundamental matrix X(t, 0) of a linear system
with T -periodic coefficients will have a (generally complex) Floquet factorization
with one of the two factors being T -periodic. It is also well known that it is always
possible to obtain a real Floquet factorization for the fundamental matrix of a real
T -periodic system by treating the system as having 2T -periodic coefficients. The
important work of Yakubovich in 1970 and Yakubovich and Starzhinskii in 1975 ex-
hibited a class of real Floquet factorizations that could be found from computations
on [0, T ] alone. Here we generalize these results to obtain other such factorizations.
We delineate all factorizations of this form and show how they are related. We give
a simple extension of the Lyapunov part of the Floquet-Lyapunov theorem in order
to provide one way that the full range of real factorizations may be used based on
computations on [0, T ] only. This new information can be useful in the analysis and
control of linear time-periodic systems.
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1 Introduction: Complex Floquet Factors

The Floquet-Lyapunov theorem is a well-known and celebrated result in the
field of linear time-periodic (LTP) systems (see e.g., [1–5]). The theorem con-
sists of two main parts: the Floquet representation theorem and the Lyapunov
reducibility theorem. Although the theorem applies to any fundamental matrix
X(t, 0) of solutions of an LTP system, in what follows we specialize our discus-
sion in terms of the state transition matrix, namely the fundamental matrix
of solutions Φ(t, 0) satisfying the initial condition Φ(0, 0) = I. This Φ(t, 0) is
sometimes called the principal matrix solution.

In this section we briefly summarize the background theory that we require.
We consider the homogeneous linear differential equation

ẋ(t) = A(t)x(t), x(t0) given, (1)

where A(t) ∈ Rn×n is a continuous 4 matrix, t ∈ R, and x(t) ∈ Rn. The state
transition matrix of (1) is the solution of

Φ̇(t, t0) = A(t) ·Φ(t, t0), Φ(t0, t0) = I. (2)

The standard theory shows that Φ(t, t0) exists, is unique, has a positive de-
terminant, is continuous with a continuous derivative, and satisfies

Φ(t, t0) = Φ(t, t1) ·Φ(t1, t0). (3)

Next (see e.g., [1–3]) the LTP system of the form (1) with

A(t + T ) = A(t) ∈ Rn×n, for all t, and some fixed period T > 0, (4)

has the following form of periodicity in its transition matrix:

Φ(t + T, t0 + T ) = Φ(t, t0) for all t, t0. (5)

Without loss of generality, we take t0 = 0 in the rest of the paper. Then (3)
and (5) combine to show

Φ(t + T, 0) = Φ(t, 0) ·Φ(T, 0) for all t. (6)

It is known (see e.g., [7, Chap.II, §2.1], or use (2) and the nonsingularity of
Φ(t, t0)) that A(t) is T -periodic if and only if (6) holds.

4 This assumption is for simplicity only, see for example Hale [6, p.118], who also
points out that the theory is valid for A(t) which is periodic and Lebesgue inte-
grable if the differential equation holds almost everywhere. No changes in proofs are
required. For a more formal and general presentation see [7].
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The Floquet representation theorem provides an elegant representation of the
state-transition matrix of a LTP system in terms of continuous and smooth
factors. This requires matrix logarithms, and we refer to the theory as required.

The matrix equation eF = M ∈ Cn×n has infinitely many solutions F ∈ Cn×n

if and only if M is nonsingular, see e.g., [8, Thm.2.6h], [9, §6.4.15]. We call
any such solution F a logarithm of M, and write F = log M. We will denote
the set of all such solutions by LogM 4

= {F : eF = M}, and the subset of all
real solutions by RLogM, which can be nonempty for some M ∈ Rn×n. Since
Φ(T, 0) is nonsingular, for any log Φ(T, 0) we can take F ∈ Cn×n to be

F =
1

T
log Φ(T, 0),

so that

eTF = Φ(T, 0). (7)

We can use this F to define the nonsingular matrix function

LF (t, 0) 4= Φ(t, 0) · e−tF ∈ Cn×n. (8)

Here the subscript F denotes the particular solution TF of (7) that we have
chosen. Recalling that LF (t, 0) may be complex, we see

Φ(t, 0) = LF (t, 0) · etF, (9)

where LF (T, 0) = I = LF (0, 0) and LF (t + T, 0) = LF (t, 0). Thus (9) is a
factorization of Φ(t, 0) into a (possibly complex) T -periodic matrix LF (t, 0)
that is continuous with a continuous derivative, and a matrix exponential etF.
This is a Floquet factorization, and the Floquet representation theorem states
the existence of these factors. For that reason (9) is also called a Floquet
representation. Although the actual factors of Φ(t, 0) are LF (t, 0) and etF, it
is common to refer to LF (t, 0) and F as the factors. We will follow this usage.

For practical applications we want to know what real factorizations exist.
Previous results in this area have been mainly constructive, and have neither
shown exactly what real factorizations exist, nor delineated the relationships
between the possible real factorizations. In Section 3 we will fill in this gap by
giving general results for real Floquet factorizations of the form (9).

Finally, the Lyapunov reducibility theorem states that the time-dependent
change of variables

x(t) = LF (t, 0)z(t) (10)

transforms (1), with t0 = 0 and (4), into the linear time-invariant system,

ż(t) = Fz(t), z(0) = x(0), and so z(t) = etFx(0). (11)
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This shows the original system may be solved by finding an F in (7), and the
corresponding LF (t, 0), and solving (11).

We will use the following concepts of periodicity.

Definition 1.1 A function f(t) is periodic with period T if there exists T > 0
such that f(t + T ) = f(t) for all t, and we will say f(t) is T -periodic. In this
case it has primary period T if T is the smallest such value, and then we will
say it is primarily T -periodic.

A function f(t) is T -antiperiodic if there exists T > 0 such that f(t + T ) =
−f(t) for all t. In this case we will say it is primarily T -antiperiodic if T is
the smallest such value.

In the rest of the paper it should be kept in mind that if A(t) is primarily
T -periodic then we would like to base all our computations on the interval
[0, T ], rather than on a larger time interval.

2 Basic Real Floquet Factorizations

In general the state transition matrix of a real T -periodic matrix A(t) may
have unavoidably complex Floquet factors in (9); see for example Section 5.
We see from (8) that if F is real, the factors in (9) are real, so we would like
to know when there are real solutions to (7). Culver [10] proved the following
result (see also [9, Thm.6.4.15.c, p.475]).

Theorem 2.1 [10, Thm.1]. Let M be a real square matrix. Then there exists
a real solution F to the equation eF = M if and only if M is nonsingular
and each Jordan block of M belonging to a negative eigenvalue occurs an even
number of times.

It follows from (6) that Φ(2T, 0) = Φ(T, 0)2 always has a real logarithm,
since its only negative eigenvalues (if any) must come from purely imaginary
eigenvalues of Φ(T, 0), and these must come in complex conjugate pairs of
Jordan blocks because Φ(T, 0) is real. This leads to the most basic method of
avoiding complex quantities using Floquet factorizations

Corollary 2.2 It is always possible to obtain a real Floquet factorization of
the state transition matrix of (1) with (4) by taking a 2T -periodic factor via a
real logarithm. Take any F2T satisfying

2TF2T ∈ RLogΦ(2T, 0), so that Φ(T, 0)2 = e2TF2T . (12)
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Then LF2T
(t, 0) 4= Φ(t, 0) · e−tF2T is real and 2T -periodic (but not necessarily

T -periodic) with LF2T
(0, 0) = I. The disadvantage of this approach is that, at

least with the analysis so far, two periods must always be used: for example
LF2T

(t, 0) must be obtained for 0 ≤ t ≤ 2T in order to be used in (10)–(11).
We will show how to avoid this disadvantage in Section 3.

In practice it is important to obtain real factorizations from computations on
a single period. Yakubovich [11] and Yakubovich and Starzhinskii [7] address
this problem, and in [7, Ch.2 §2.3] prove the following result (stated almost
word for word here, but in the notation of the present paper). Notice that
they use the more general assumptions of integrable and piecewise continuous
A(t) etc., and that our theory extends to such cases too; see Hale [6, p.118].

Theorem 2.3 In the equation

ẋ(t) = A(t)x(t), (13)

let A(t) be a real matrix function, where A(t) is integrable and piecewise con-
tinuous on (0, T ), and A(t + T ) = A(t) almost everywhere. An arbitrary real
matrix X(t, 0) that is a fundamental solution of (13) may be expressed as

X(t, 0) = L(t, 0) · etF, (14)

where F is a real constant matrix, L(t, 0) is a real matrix function such that

L(t + T, 0) = L(t, 0) ·Y, (15)

and Y some real matrix such that

Y2 = I, FY = YF. (16)

In particular,
L(t + 2T, 0) = L(t, 0) for all t.

The function L(t, 0) is continuous with an integrable piecewise-continuous
derivative.

Conversely, let L(t, 0), F, and Y be arbitrary real matrices satisfying con-
ditions (15) and (16), detL(t, 0) 6= 0, and let L(t, 0) have an integrable
piecewise-continuous derivative. Then (14) is a fundamental matrix for some
equation of the form (13) with a real T -periodic matrix A(t).

We will prove a more general result later, but both proofs use an instructive
lemma [7, Ch.I, §2.7, Lemma II], for which we give a constructive proof.

Lemma 2.4 For any real nonsingular matrix X there exist real matrices F
and Y such that

eF = XY = YX, FY = YF, Y2 = I.
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Proof: Consider a real similarity transformation

S−1XS =

 J1 0

0 J2

 = J

where J2 contains all the negative real eigenvalues of X and no others (J could
be the real Jordan canonical form of X). With this partitioning define

K 4
=

 I 0

0 −I

 , Y 4
= SKS−1,

so that Y2 = I. We see JK = KJ has no negative real eigenvalues, so by
Theorem 2.1 there exists real F such that

XY = XSKS−1 = SJKS−1 = SKJS−1 = YX = eF.

Finally eS−1FS = S−1eFS = JK, so S−1FS must have the same block structure,
showing KS−1FS = S−1FSK, and so FY = YF.

The point of the approach of Yakubovich and Starzhinskii in [7] is that if
X = Φ(T, 0) does not have a real logarithm, it is straightforward to find Y
(as shown for example above) so YΦ(T, 0) does ; Φ(2T, 0) is not required.
Theorem 2.3 shows their factor L(t, 0) is a 2T -periodic Floquet factor just
as in Corollary 2.2. But their contribution is that L(t, 0) obeys (15) — a
variant of T -periodicity that we call near T -periodicity — and the factors, and
so any solutions, may thus be found from computations on a single period.
This theorem marks a significant step in the characterization of real Floquet
factorizations. It allows for a more concise representation of the real factors
and efficiency gains in their computation.

In the context of (1), it is straightforward to show that LF (t, 0) (in (8) with
(7)) is T -periodic if and only if (6) holds, which we saw is true if and only if
(4) holds. Any of these relations can be used to prove Corollary 2.2, but using
just this could lead to significant drawbacks for control applications because
it either forces the control engineer to use complex quantities or to work on a
period that is potentially longer than necessary or otherwise undesirable. We
also know [12] that a periodic feedback gain matrix K(t) can assign the whole
matrix F in (9). Assuming a feedback of the form u(t) = K(t)x(t) in the LTP
control system

ẋ(t) = A(t)x(t) + B(t)u(t), A(t + T ) = A(t), B(t + T ) = B(t)

for all t and some fixed T > 0, several proposed control schemes [13–16]
attempt to first assign the factors L(t, 0), F of the LTP closed-loop system.
It is an advantage to know and be able to assign the periodicity of L(t, 0); for
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example, it may be desirable to maintain the T -periodicity of the closed-loop
system. By means of Theorem 3.1, we will be able to avoid the abovementioned
drawback, and the control engineer will be able to work with real factors on
one period and with a known periodicity of the factors.

Moreover, the development so far here, and apparently in the literature in
general, has been essentially constructive, and has said nothing about what
other real factorizations of the form (9) exist, nor about the relationships
between them. In the next section we will complete this part of the theory by
giving necessary and sufficient conditions for such factorizations. This work
will allow us to answer the following questions (among others):

(1) Under exactly what circumstances will Corollary 2.2 or Theorem 2.3 pro-
duce T -periodic LF2T

(t, 0) or L(t, 0)? (This happens if and only if Φ(T, 0)
has a real logarithm; see Theorem 3.1.)

(2) What is the relationship between the factorizations in Corollary 2.2 and
those in Theorem 2.3? (The factorizations in Theorem 2.3 are a subset
of those in Corollary 2.2.)

(3) Are there other real 2T -periodic Floquet factorizations besides those in
Corollary 2.2? (No, and one contribution of this work is to show there
are no others. Other contributions are to show how all of these factoriza-
tions may be obtained from computations on just [0, T ], and to provide
knowledge that Corollary 2.2 does not give.)

(4) Are there other useful real 2T -periodic Floquet factorizations that can be
obtained from calculations on just [0, T ] besides those in Theorem 2.3?
(There are, making this paper useful in a practical sense, and not just of
academic interest; see also [15,16].)

As part of this exercise we will characterize all real 2T -periodic Floquet fac-
torizations, show that Corollary 2.2 gives these, and show how those from
Theorem 2.3 fit into this set.

3 General Real Floquet Factorizations

We wish to characterize all real Floquet factorizations Φ(t, 0) = L(t, 0)etF

with T -periodic or 2T -periodic L(t, 0). To do this we will ignore the constraint
(15). Then we will show that a constraint of this form leads to the subset of
real 2T -periodic factorizations given by Theorem 2.3.

Theorem 3.1 In the equation ẋ(t) = A(t)x(t) with x(0) given, let A(t) be a
real matrix function, where A(t) is continuous on (0, T ), T > 0, and A(t +
T ) = A(t) for all t. Let Φ(t, 0) be the corresponding (real, nonsingular) state
transition matrix, and write Φ 4

= Φ(T, 0). Let real Y be such that YΦ has a
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real logarithm (such a Y always exists; see for example Lemma 2.4), and take
any FY satisfying

TFY ∈ RLog(YΦ), so YΦ = eTFY ; (17)

LFY
(t, 0) 4= Φ(t, 0) · e−tFY , so LFY

(0, 0) = I. (18)

Then in the real factorization Φ(t, 0) = LFY
(t, 0) · etFY , LFY

(t, 0) has a con-
tinuous derivative and

LFY
(t + T, 0) = LFY

(t, 0) · etFY · LFY
(T, 0) · e−tFY , (19)

the equivalent of (6) for LFY
(t, 0). The choice of Y affects LFY

(t, 0) as follows:

LFY
(T, 0) = Y−1; (20)

LFY
(t, 0) is T -periodic if and only if Y = I; (21)

LFY
(t, 0) is T -antiperiodic if and only if Y = −I; (22)

LFY
(t, 0) is 2T -periodic if and only if Φ2 = (YΦ)2, (23)

where a Y satisfying Φ2 = (YΦ)2 always exists. Finally this last condition on
Y has some useful equivalences:

Φ2 = (YΦ)2⇔ Φ2 = (ΦY)2 ⇔ Φ = YΦY. (24)

Proof: The expression for Φ(t, 0) with (6) shows that

LFY
(t + T, 0) =Φ(t + T, 0) · e−(t+T )FY = Φ(t, 0) ·Φ · e−(t+T )FY

=LFY
(t, 0) · etFY · LFY

(T, 0) · eTFY · e−(t+T )FY ,

proving (19). Next LFY
(T, 0) = Φ · e−TFY = Y−1 from (17), proving (20). But

from (20), (19) is equal to LFY
(t, 0) if and only if Y = I, proving (21), and

equal to −LFY
(t, 0) if and only if Y = −I, proving (22). The equivalences in

(24) are obvious. Repeated use of (19) gives

LFY
(t + 2T, 0) = LFY

(t + T, 0) · e(t+T )FY · LFY
(T, 0) · e−(t+T )FY

= LFY
(t, 0) · etFY · LFY

(T, 0) · eTFY · LFY
(T, 0) · e−(t+T )FY ,

which is equal to LFY
(t, 0) if and only if LFY

(T, 0) ·eTFY ·LFY
(T, 0) = eTFY , or

from (20) and (17), if and only if Y−1YΦY−1 = YΦ. This with (24) proves
(23). That such a Y exists follows from Lemma 2.4 with X = Φ because
ΦY = YΦ and Y2 = I imply (YΦ)2 = ΦYYΦ = Φ2.
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This theorem shows that a real Floquet factorization exists with T -periodic
LFY

(t, 0) if and only if Φ 4
= Φ(T, 0) has a real logarithm; see (21). A real

Floquet factorization exists with T -antiperiodic LFY
(t, 0) if and only if −Φ

has a real logarithm; see (22). Whether either of these exists or not, a real
Floquet factorization necessarily exists with 2T -periodic LFY

(t, 0), and the
only conditions on Y, which we call the Yakubovich matrix, are that it is real,
that YΦ has a real logarithm, and that Φ2 = (YΦ)2. The construction of a
Yakubovich matrix Y can be based on the stem function [9, p.411] (as was
done via K in the proof of Lemma 2.4)

f(x) =

−1, x ∈ R−

1, otherwise.

We note that the choice of Y gives an a priori knowledge of the periodicity
(T -periodic, T -antiperiodic, or primarily 2T -periodic) of the factor L(t, 0),
something which could not be determined a priori from previous theory. We
also note that not all matrices FY in (17) will contain the classical stability
information of the original system; i.e., the system (1) with (4) is stable if and
only if the eigenvalues of F satisfying (7) have negative real parts. Even so,
a full generalization of the converse in the last paragraph of Theorem 2.3 is
useful for designing feedback systems [15,16], so we give this here.

Corollary 3.2 Let L(t, 0) and F be arbitrary real matrices satisfying (see
(19)),

L(t + T, 0) = L(t, 0) · etF · L(T, 0) · e−tF (25)

with detL(t, 0) 6= 0, and let L(t, 0) have a continuous derivative, then

X(t, 0) 4= L(t, 0) · etF (26)

is a fundamental matrix for some equation of the form (1) with a real T -
periodic matrix A(t).

Proof: Putting t = 0 in (25) shows L(0, 0) = I, and (26) shows X(t, 0) is
nonsingular with a continuous derivative and X(0, 0) = I. Define

A(t) 4= Ẋ(t, 0)X−1(t, 0) = [L(t, 0)F + L̇(t, 0)]L−1(t, 0).

Replacing t by t + T in this and using (25) shows, after some cancellation,
that A(t + T ) = A(t). Since Ẋ(t, 0) = A(t)X(t, 0) the result is proven.

We now show how Corollary 2.2 fits in with the general result of Theorem 3.1
by showing the equivalence of the set RLogΦ2 with the set RLog(YΦ) for Y
in (23). The use of T is unnecessary in this — it is included for consistency.
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Corollary 3.3 For any nonsingular Φ ∈ Rn×n and 0 < T ∈ R,

RLogΦ2 ≡ {2TFY : ∃ real Y with TFY ∈ RLog(YΦ) and Φ2 = (YΦ)2}.
(27)

Proof: Any element 2TFY of the set on the right side of the equivalence is real
and satisfies YΦ = eTFY , e2TFY = YΦYΦ = Φ2, showing it belongs to the
left set. Now consider any 2TF ∈ RLogΦ2, then 2TF is real and Φ2 = e2TF.
Define YF

4
= eTFΦ−1, so YFΦ = eTF is real and (YFΦ)2 = e2TF = Φ2,

showing 2TF belongs to the right set.

This shows that the set of F2T in (12) of Corollary 2.2 is identical to the set
of FY satisfying (17) with Φ2 = (YΦ)2 in Theorem 3.1. That is, Corollary 2.2
provides all possible 2T -periodic L(t, 0), just by choosing the different possible
real logarithms. However Corollary 2.2 still has a few shortcomings. First, it
does not provide the corresponding Y. We now see from (17) and (20), or the
proof of Corollary 3.3, that this is

Y = LF2T
(T, 0)−1 = eTF2T ·Φ(T, 0)−1. (28)

Another way of viewing this is that Corollary 2.2 does not give the periodicity
of L(t, 0) a priori. Hence there is no means of determining beforehand if in fact
a real T -periodic factor exists. Second, if it is possible to specify Y, then the
periodicity of L(t, 0) can in fact be assigned. This can be useful if a specific
periodicity is required, for example in the design of a stabilizing feedback
[15,16]. Finally, the use of the matrix Y fits nicely with the general approach
of analysing LTP systems by focusing on the state transition matrix after one
period Φ(T, 0), rather than after some other number of periods.

4 Near T -periodic Floquet Factorizations

The results in Theorem 2.3 here require (15), but our new results have not
insisted on this so far. The near T -periodicity of the form (15) is both elegant
and important, so we examine exactly when it occurs.

Corollary 4.1 With the conditions and notation of Theorem 3.1, if for some
real Y, YΦ has a real logarithm TFY and Φ2 = (YΦ)2 (which are the nec-
essary and sufficient conditions for LFY

(t, 0) in (18) to be 2T -periodic), then
the following are equivalent:

10



LFY
(t + T, 0) = LFY

(t, 0) ·C for all t and some constant matrix C, (29)

LFY
(t + T, 0) = LFY

(t, 0) · LFY
(T, 0) for all t, (30)

etFY · LFY
(T, 0) = LFY

(T, 0) · etFY for all t, (31)

etFY ·Y = Y · etFY for all t, (32)

FY Y = YFY . (33)

Here the following are also equivalent, and hold if the above hold:

ΦY = YΦ; Y2 = I; LFY
(T, 0) = Y. (34)

Note how (30) parallels (6). If (29) holds then we also have

C = LFY
(T, 0) = Y−1 = Y. (35)

Proof: Since YΦ = eTFY , Y is nonsingular. Clearly (30) implies (29). If (29)
holds, taking t = 0 and using (18) and (20) shows C = LFY

(T, 0) = Y−1, so
that (30) and all but the last equality in (35) must hold. We see from (19)
that (30) holds if and only if (31) holds, which is true if and only if (32) holds,
see (20). Taking derivatives of (32) with respect to t and setting t = 0 shows
it implies (33). Conversely (33) clearly implies (32).

Next if (32) holds, then taking t = T and using (17) shows ΦY = YΦ, while
Φ2 = (YΦ)2 shows the equivalence of ΦY = YΦ and Y2 = I. Finally (20)
shows the equivalence of Y2 = I and LFY

(T, 0) = Y, where if either is true
we see the last equality in (35) is true.

An important consequence of this is that, for T -periodic A(t), the near T -pe-
riodicity (19) for general 2T -periodic L(t, 0) specializes to our variant (30) of
Yakubovich and Starzhinskii’s (15) if and only if FY = YF.

Corollary 4.1 has shown that Yakubovich and Starzhinskii have characterized
exactly that set of real Floquet factorizations with 2T -periodic L(t, 0) satisfy-
ing the near T -periodicity of the form (15), which we now see is (30). This is
both elegant and useful because only calculations on [0, T ] are required. For
example, L(t, 0) in the second half of the 2T -period can be formed simply
from the first half: L(t + T, 0) = L(t, 0) · L(T, 0).

We would like to obtain similar benefits for the more general factorizations of
Theorem 3.1. But instead of (30), we only have (19) in general:

L(t + T, 0) = L(t, 0) · etF · L(T, 0) · e−tF.

In principle this gives L(t, 0) over its whole period of 2T from calculations on
only the first half, but it is not in general computationally simple. However we
can give a simple extension of the Lyapunov reducibility theorem (see (10)–
(11)) to obtain x(t) for any t. Suppose we only know L(t, 0) for t ∈ [0, T ]. For
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any integer k, the solution x(t) for t ∈ [2kT, (2k +1)T ] may be found via (10)
and (11) as before:

ż(t) = Fz(t), z(0) = x(0), x(t) = L(t, 0)z(t) = L(t, 0) · etFx(0), (36)

since L(t, 0) = L(t− 2kT, 0). For the second half of this 2T -period we see

x(t + T ) = Φ(t + T, 0)x(0) = Φ(t, 0)Φ(T, 0)x(0) = L(t, 0)etFx(T ).

This can be found efficiently by a different solution, but with the same trans-
formation:

ẇ(t) = Fw(t), w(0) = x(T ), x(t + T ) = L(t, 0)w(t), (37)

once x(T ) is known from (36). Thus for finding x(t) for any t we can still
work with calculations from only one period no matter which real 2T -periodic
Floquet factorization we choose.

We see from Corollary 4.1 that the Yakubovich and Starzhinskii factorizations
with 2T -periodic L(t, 0) in Theorem 2.3 are the subset of those defined by
Theorem 3.1 that are obtained by insisting on any of the equivalent constraints
(29) to (33), which imply (34). The question arises as to whether there are
other meaningful factorizations than those in Theorem 2.3. The answer is yes.
Section 5 gives a case where (33) does not hold. In that particular case, Φ2 =
(Y1Φ)2, ΦY1 = Y1Φ, Y2

1 = I, but F1Y1 6= Y1F1. Such new factorizations
may be as useful in practice as the Yakubovich and Starzhinskii factorizations
in Theorem 2.3, see the comment following (37).

The condition Φ2 = (YΦ)2 in Theorem 3.1 was weaker than expected, so here
we examine it more closely.

Lemma 4.2 For nonsingular Φ and Y, consider the three equations

Y2 = I, ΦY = YΦ, Φ2 = (YΦ)2. (38)

Any two of these equations imply the third, but we can have any one without
either of the other two.

Proof:

Y2 = I and ΦY = YΦ ⇒ (YΦ)2 = ΦYYΦ = Φ2,

Y2 = I and Φ2 = (YΦ)2 ⇒ YΦ2 = ΦYΦ ⇒ YΦ = ΦY,

ΦY = YΦ and Φ2 = (YΦ)2 ⇒ Φ2 = ΦY2Φ ⇒ Y2 = I.
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However, Y =

 1 0

0 −1

, Φ =

 1 0

1 1

 gives Y2 = I only. Y = 2I gives ΦY =

YΦ only. Y =

 2−1 0

0 2

, Φ =

 0 1

1 0

 gives Φ2 = (YΦ)2 only.

Now consider the matrices Φ and Y given by

Φ =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −2


, Y =



α α− 1 0 0

α + 1 α 0 0

0 0 −1 0

0 0 0 −1


.

Then Φ does not have a real logarithm, while for every α ∈ R, Y is real and
such that YΦ does have a real logarithm with Φ2 = (YΦ)2, but Y2 6= I and
ΦY 6= YΦ. Thus once again we see it is possible for only one of the conditions
(38) to hold.

5 Examples of Real Floquet Factors

Not all real Floquet factors of the state transition matrix of a real system
satisfy the hypotheses of Theorem 2.3. The following gives an example where
Y1F1 6= F1Y1. Consider the T -periodic matrix with α 6= 0 so T = 1/2:

A(t) = 2π


−1 + α cos2(2πt) 1− α sin(2πt) cos(2πt) 0

−1− α sin(2πt) cos(2πt) −1 + α sin2(2πt) 0

0 0 −1

 .

If we define the rotation matrix

R(θ) 4=

 cos θ sin θ

− sin θ cos θ

 ,

then it can be verified that the state transition matrix of this system is

Φ(t, 0) =

 R(2πt) 0

0 1

 diag {e2π (α−1)t, e−2π t, e−2πt}.

13



Note that Φ 4
= Φ(T, 0) = diag

{
−eπ(α−1),−e−π, e−π

}
does not have a real log-

arithm. One suitable choice for Y is Y = diag {−1,−1, 1}, giving a logarithm
such that

F =
1

T
log(YΦ) = diag {2π(α− 1),−2π,−2π} ,

where since etF = diag {e2π (α−1)t, e−2π t, e−2πt},

L(t, 0) 4= Φ(t, 0)e−tF =

 R(2πt) 0

0 1

 .

In this case, it is easy to check that all the aspects of Theorem 2.3 are satisfied,
notably FY = YF because both F and Y are diagonal.

If we now take Y1 = diag {−1, 1,−1}, then

F1 =
1

T
log(Y1Φ) =

1

T
log(diag

{
eπ(α−1),−e−π,−e−π

}
)

=F + F2, F2
4
=


0 0 0

0 0 2 π

0 −2 π 0

 , etF2 =

 1 0

0 R(2πt)

 ,

so L1(t, 0) 4= Φ(t, 0)e−tF1 = Φ(t, 0)e−tFe−tF2 = L(t, 0)e−tF2 . Then

L1(t, 0) =


cos(2πt) sin(2πt) cos(2πt) − sin2(2πt)

− sin(2πt) cos2(2πt) − sin(2πt) cos(2πt)

0 sin(2πt) cos(2πt)

 ,

which again has period T = 1/2. We see that L1(t, 0) and F1 satisfy (19), and
also that Y1 = Y−1

1 = L1(T, 0). However, for t not an integer multiple of T ,
unlike the Yakubovich and Starzhinskii construction leading to (15) (see also
(30) and (35)), we have

L1(t + T, 0) 6= L1(t, 0) ·Y1.

Here L1(t, 0) and F1 provide another real decomposition, with 2T -periodic
L1(t, 0), of the same state transition matrix Φ(t, 0) that, in turn, corresponds
to the real {T = 1/2}-periodic system matrix A(t). However it is clear that
Y1F1 6= F1Y1, showing that the conditions given in Theorem 2.3 are only
sufficient and not necessary.
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6 Conclusions

Floquet theory guarantees the existence of (possibly complex) factors for the
state transition matrix of a linear T -periodic system. It is common practice
to appeal to Corollary 2.2 in order to determine real Floquet factorizations. A
major disadvantage of this is that the system is treated as having 2T -periodic
coefficients; hence any more efficient factorization with a real T -periodic (or
T -antiperiodic) factor L(t, 0) will generally be lost. Yakubovich proved that
a real factorization is always possible using calculations based on only [0, T ].
This requires the construction of a non-singular matrix Y such that YΦ(T, 0)
has a real logarithm, Y2 = I, and YF = FY. In this paper we proved a
more general result requiring the construction of a non-singular matrix Y
such that YΦ(T, 0) has a real logarithm, but which then need only satisfy
Φ2(T, 0) = (Φ(T, 0)Y)2. Yakubovich’s result is a special case of this result.
Thus, there are useful factorizations besides those given by Theorem 2.3. We
have also shown there are no other real factorizations besides those given by
Corollary 2.2, and in particular that the factorizations in Theorem 2.3 form
a subset of those in Corollary 2.2. These results have direct applications to
control engineering, where it is possible to use this knowledge to construct a
continuous periodic stabilizing feedback for LTP systems using full-state or
observer-based information [15,16]. In particular, the results presented here
allow the control engineer to assign the stability of the closed-loop periodic
system (via the matrix F), to take advantage of working on the transformed
system (11) using the knowledge of the matrix L(t, 0), and to synthesize a
controller with a specific periodicity (T , 2T , 3T , etc.) by means of assigning
the Yakubovich matrix Y. We report on these findings elsewhere.
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