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Abstract

The Global Positioning System (GPS) is a satellite based navigation system. Since safety is
the main concern for aircraft navigation, various means of monitoring the integrity (certainty of
position) have been developed. This is an important area of research in the GPS community. In
the following, it will be shown how some numerical linear algebra techniques can be applied
to this interesting application. A typical model is presented. A uniform approach to derive the
statistics for fault detection and isolation by orthogonal transformations is given. It is shown
that the diagonal elements !2

ii of the orthogonal projection matrix onto the residual space are
fundamental to the theory and understanding of integrity. !ii can, for example, have a drastic
e1ect on integrity when they are small. The sensitivity of related problems in this area are
discussed. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Global Positioning System (GPS) is an all-weather, worldwide, continuous cov-
erage, satellite-based navigation system. GPS satellites transmit signals that allow one
to determine, with great accuracy, the location of GPS receivers (see, for example,
Hofmann-Wellenhof et al., 1997; Parkinson et al., 1996 and Strang and Borre, 1997).
As safety is the main concern for aircraft, one must <nd ways of ensuring that aircraft
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can safely utilize the GPS system. Even though satellite anomalies are rare, when they
do occur, it is very likely that several hundred aircraft will be a1ected simultaneously.
Therefore, means of integrity monitoring have to be developed. Navigation system in-
tegrity refers to the ability of a system to provide a timely warning to users when the
system should not be used for navigation. Currently, the main approach is the receiver
autonomous method, referred to simply as receiver autonomous integrity monitoring
(RAIM). RAIM has two functions: one is to detect failures in the input data, and if
possible, isolate the failed data; the other is to estimate the maximum error radial that
the navigation solution may produce, see Brenner (1990), Chin et al. (1992–93), Kelly
(1998), Lee et al. (1996), Parkinson and Axelrad (1988), and Sturza (1988–89) and
others.
In this paper, we show how numerical linear algebra techniques can be applied to

this important RAIM area. Speci<cally, we will use orthogonalization techniques to
give a very uniform approach to deriving the statistics for fault detection and isolation
that are used throughout the literature, and show how certain scalars !ii related to a
projection matrix are fundamental to the area, and how they a1ect the integrity when
they are small. Also, we discuss the sensitivity of related problems in this area.
This paper is organized as follows. In Section 2 we describe the basic properties of

the general linear model with possible faults that we will use, and also we introduce
some background in GPS integrity. In Section 3 we consider deleting an observation
from the linear model, leading to a reduced model, and the e1ect of this on the residual
and parity vectors. We will discuss the error covariance matrix of the reduced model
and show that the scalars !ii have damaging e1ects when they are small. In Section 4
key statistics for fault detection and isolation are derived in a uniform way. In Section
5 we will discuss the sensitivity of the statistics. Finally, we give a brief summary in
Section 6.
We work with reals only, and use i; j; m and n to denote integers, other lower

case Roman letters to denote vectors, lower case Greek letters to denote scalars, and
upper case Roman to denote matrices. Superscript T will denote transpose, and A†

is the Moore–Penrose generalized inverse of A. R(A) denotes the range of A. The
m × m unit matrix will be denoted by Im or by I , and its ith column by ei, while
e ≡ (1; 1; : : : ; 1)T. Throughout we use the norm ‖x‖= ‖x‖2 ≡

√
xTx for vectors, and if

a matrix A has singular values �1¿ · · ·¿ �n¿ 0, we write ‖A‖= ‖A‖2 = �1. We say
A is ill-conditioned if �1=�n is very large. We will use E{·} to denote the expected
value, and cov{·} to denote the covariance, that is cov{x}=E{(x−E{x})(x−E{x})T}.
The notation u ∼ N( Ju; U ) will mean u is a normally distributed random vector with
mean Ju and covariance U .

2. The linear model and some background

We will assume that at a given time we have a general linear model with positive
de<nite noise covariance matrix

yG = GGz + vG; vG ∼ N(0; �2LLT); (1)
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where L is lower triangular with positive diagonal. De<ning y ≡ L−1yG; G ≡ L−1GG;
v ≡ L−1vG gives the standard linear model

y = Gz + v; v ∼ N(0; �2I): (2)

The model will vary with time. In GPS, time is discretized into points, called epochs,
and the time period between two consecutive epochs depends on the sampling rate at
which a GPS receiver collects and stores the measurements.
In GPS, two main sets of measurements are used: one set is called “code” measure-

ments (or “pseudorange” measurements), and the other “carrier phase” measurements,
see for example Hofmann-Wellenhof et al. (1997). We often have

z ≡
[
x

a

]
;

where x denotes the position to be estimated (from some known position), and a
is either some element, such as a receiver clock bias in the code-based problem, or
some vector, as is the case for the carrier phase based problem (see for example
Hofmann-Wellenhof et al., 1997, Section 9.4; Chang et al., 2000). In our general model
we will assume GG, and so G, is m × n where there can be a fault (failure, outlier)
in any one of the <rst ms6m observations, but not in the last m − ms observations.
In the code-based problem we will usually have m = ms (so we will not distinguish
between m and ms), but in the carrier phase-based problem we usually have m¿ms.
For example, the <rst ms elements of yG could be measurements from the ms satel-
lites, while the remaining elements of yG could be estimates from other computations.
In order for the deletion of the ith equation, 16 i6ms, to fully eliminate any fault
in the ith measurement (i.e. from the ith satellite in the GPS case), we will require
that

LLT =

[
D2 0

0 H (22)

]
; so L=

[
D 0

0 L(22)

]
; D (positive) diagonal: (3)

If the noise components of the satellite signals are uncorrelated, then the equations can
usually be developed so that the covariance has this form. Then any fault in the ith
measurement, 16 i6ms, of our general model becomes a fault in the ith measure-
ment alone of the standard model. Because we will now focus on the standard linear
model (2) with a possible fault, the exposition will lose nothing by assuming ms = m
for simplicity.
Our linear model with possible faults is then

y = Gz + v+ b; v ∼ N(0; �2I); (4)

where G is an m× n matrix, m¿ n, noise v is normally distributed, and b satis<es

b=

{
ei� for some � 
=0 if there is a fault in measurement i; 16 i6m;

0 if there is no fault:
(5)
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This assumes there is at most one fault. In all aspects of integrity we assume reliability
is such that we need only ever deal with the possibility of a fault in one input. We
cannot know a priori which input, or if there is a fault at all, but this assumption
makes the problem tractable. Also, it is extremely unlikely that more than one GPS
satellite has a fault at any given time.
When G is rank de<cient we do not have a unique estimate. Otherwise, let full

column rank G have the QR factorization, with orthogonal Q and upper triangular R

G = [Q1; Q2]

[
R

0

]
= Q

[
R

0

]
; m× n Q1; m× (m− n) Q2: (6)

Q2 is arbitrary up to an orthogonal right multiplicative factor U , as in Q2U . The least
squares (LS) estimator of z in (4) is

ẑ ≡ G†y = R−1QT
1y = z + R−1QT

1 (v+ b);

E{ẑ − z}= R−1QT
1 b; cov{ẑ − z}= �2(RTR)−1 = �2(GTG)−1; (7)

which is also the best linear unbiased estimator (BLUE) for (4) when b = 0. When
b=0, the error covariance matrix cov{ẑ−z} de<nes an ellipsoid with center 0 in which
ẑ − z lies with a certain probability. For general discussion, we will use the ellipsoid
whose semi-axis lengths are the singular values of �R−1. Note ‖�2(GTG)−1‖2 is the
square of the largest semi-axis length.
We will be interested in adding and deleting rows of G (for example when we add

or delete satellite measurements). Let n × m GT ≡ [g; JG
T
], and �1(·)¿ · · ·¿ �n(·)

and �1(·)¿ · · ·¿ �n(·) denote real eigenvalues and singular values, respectively, then
GTG = JG

T JG + ggT, so from standard eigenvalue perturbation results (Golub and Van
Loan, 1996, Section 8.1.1) we know that for i = 1; : : : ; n

�i( JG
T JG) = �2i ( JG)6 �i(GTG) = �2i (G)6 �i( JG

T JG) + ‖g‖22 = �2i ( JG) + ‖g‖22;

�2‖( JGT JG)−1‖2 = �2

�2n( JG)
¿ �2‖(GTG)−1‖2 = �2

�2n(G)
;

and no semi-axis can be made larger by adding a row to G, or smaller by deleting
a row. We will show in Section 3.4 how deleting some rows can lead to very large
semi-axes.
Whether (GTG)−1 is small or large, if (4) was an accurate model and we knew

b= 0, then this error covariance matrix would allow us to give an ellipsoid in which
we knew (ẑ − z)=� must lie with probability 0.999. If

z ≡
[
x

a

]
;

where x denotes the position to be estimated, and

ẑ ≡
[
x̂

â

]
;
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we could obtain “radials” from this—the horizontal radial describing a distance from
x̂ within which the horizontal component of x must lie with probability at least 0.999.
Thus, horizontal radials describe circular disks in the horizontal plane. Similarly, we
could obtain a 99.9% vertical radial, essentially describing a vertical disk. Clearly the
horizontal and vertical radials usually have di1erent values. But in GPS we cannot
know a priori that b= 0, and integrity algorithms are needed to give us the same sort
of security in the presence of a possible nonzero but unknown b of the form (5). The
actual radials must include this possibility.
We will not show how to obtain radials here, but will brieTy refer to the resulting

region in which we are sure the aircraft lies (with a probability of at least 0.999,
even in the presence of a nonzero b) as the “envelope”. Instead of obtaining radi-
als we will focus on some more fundamental scalars !ii ∈ [0; 1]. These are easy to
compute and understand, and it can be shown that small !ii lead to large radials
(the radials depend directly on the !−1

ii ). But the theoretical importance of the !ii
is broader than this, and their fundamental and pervasive nature needs to be more
widely recognized in the GPS integrity area, although we realize that they have been
mentioned in the estimation literature (Cook and Weisberg, 1982, Section 2.1). For
example, they can be used to compute the test statistics, and the sensitivities of these
statistics depend greatly on them. Also they provide a direct understanding as to why
the envelope will be large (the position will be very uncertain) when an !ii is small.
They appear as key components in the numerical linear algebra theory and computa-
tions we develop, and they help us to understand the e1ects of modeling and rounding
errors.
“Geometry” in the GPS literature refers to the relative positions of the satellites

and receivers. There are two major ways in which geometry can adversely a1ect
GPS calculations, and we discuss the <rst here. The second will be discussed later.
The geometry is poor for estimating z in (4) if (ẑ − z)=� has large covariance,
see Kelly (1998), so that ẑ can be a poor estimator of z even when b = 0. In
this example, large (GTG)−1 corresponds to some of the columns of G not de<n-
ing R(G) well. Since the satellites are well separated, having measurements from
more satellites (more rows of G) would usually signi<cantly reduce the error co-
variance for the present case. Note that the matrix G essentially summarizes this
geometry.
When m¿n the parity vector for the model (4) is de<ned to be (since QT

2G = 0)

p ≡ QT
2y = QT

2 (v+ b); E{p}= QT
2 b; cov{p}= �2Im−n: (8)

This is arbitrary up to orthogonal U in UTp, where this is the same U as in the
comment following (6), but ‖UTp‖2 = ‖p‖2 is not arbitrary. With the least squares
estimator (7), the LS residual r is not in any way arbitrary:

r ≡ y − Gẑ = Q2QT
2y = Q2p= Q2QT

2 (v+ b);

E{r}= Q2QT
2 b; cov{r}= �2Q2QT

2 : (9)



128 X.-W. Chang, C.C. Paige / Computational Statistics & Data Analysis 41 (2002) 123–142

Here we de<ne the !ii (r and !ii are unaltered by U , and "i is the ith element of r)

!2
ii ≡ eTi Q2QT

2 ei; 1¿!ii¿ 0;
m∑
i=1

!2
ii = trace(Q2QT

2 ) = m− n¿ 0;

!ii = 0 ⇔ eTi Q2 = 0 ⇒ {"i ≡ eTi r = 0 and E{"i}= 0 and cov{"i}= 0}:
(10)

The quantities in (8)–(10) are used to detect and isolate faults in the input data. In
particular Brenner (1990) makes careful use of Q2 in (6). R(QT

2 ) is sometimes re-
ferred to as the parity space, since this is the space in which the parity vector p=QT

2y
in (8) must lie. Note that R(Q2) could be called the residual space, since the resid-
ual is always in this space, see (9), and Q2QT

2 is the orthogonal projector onto this
space.
The case of !ii = 0 is in theory possible, because it is trivial to construct examples

of general G for which eTi Q2 = 0. Note from (10) there can be at most n such i. The
possibility that !ii ≡ ‖QT

2 ei‖2 = 0 is interesting because if we also have a fault in the
ith measurement, so b = ei�, then QT

2 b = 0, and no trace of b will appear in p or
r in (8) or (9), so the fault could not be correctly detected by using just these two
vectors.
Similarly, small !ii will mean a fault of this form is unlikely to be detected with

a simple test. This is an example of our second, and the more diUcult form of bad
geometry: geometry that obscures possible faults. We discuss some basic aspects of
this below, and show in Section 3 that a small !ii leads to a large error covariance
matrix when the ith observation is deleted. It can be shown that small !ii also lead
to large radials. This is logical—if you can hardly detect something that could be
causing a large error, then your error bounds must be that much larger to take this into
account. Thus, small !ii and large radials are two (closely related) indicators of the
same problem. Here, we concentrate on the !ii. From the above discussion, we see the
scalars !ii could be called the “fault observability scalars”, since !ii determines how
easily a fault ei� can be detected. Before going more deeply into the mathematics, we
will describe some obvious e1ects these !ii have.
The QR factorization (6) divides the space of observations into R(Q1) and R(Q2).

Let y = y1 + y2, y1 ≡ Q1QT
1y∈R(Q1), y2 ≡ Q2QT

2y∈R(Q2), then the LS estimator
satis<es the compatible system Gẑ=y1, with LS residual r ≡ y−Gẑ=y2. Suppose this
corresponds to no fault, and now we add a fault b. Let b=b1+b2, b1 ≡ Q1QT

1 b∈R(Q1),
b2 ≡ Q2QT

2 b∈R(Q2). The part b1 of b only alters the LS estimator ẑ to the solution
of the compatible system G(ẑ+ #ẑ) = y1 + b1, so G#ẑ= b1, while b2 only changes the
residual to y2 + b2.
First, let us consider the (very unlikely) extremes. If b∈R(Q2) it does not alter ẑ,

but all of it changes the residual. On the other hand, if b∈R(Q1) (so b⊥R(Q2)), b
only alters ẑ and cannot be seen in the residual! Remember that 0 
= b = ei�⊥R(Q2)
means !ii= ‖QT

2 ei‖=0, so !ii=0 means we cannot detect a fault b= ei�, and all the
e1ect of any such fault would appear in the estimator ẑ. Since we cannot know if there
is such a fault, and if there is, how large it is, we cannot include this ith observation
and still have integrity.
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Thus, if !ii = 0 the ith observation must be discarded, which we will show in
Section 3.2 has serious consequences. Since !ii = 0 ⇒ "i = 0, see (10), this presents
the apparent contradiction of discarding an observation for which the LS estimate gives
zero residual. But it is the geometry (the form of Q2, and so of G) that led to "i = 0
necessarily—independently of the observation, so this is not contradictory. If $ is a
good upper bound on the relative accuracy of G and !ii6 $, then we will show in
Section 3.3 that the true !ii could be zero, and again the ith observation should be
dropped.
The other extreme for !ii corresponds to !2

ii ≡ eTi Q2QT
2 ei=1. But I=Q1QT

1 +Q2QT
2 ,

so this is equivalent to eTi Q1QT
1 ei=0, that is the ith row of Q1 is zero. Since G=Q1R

this is equivalent to the ith row of G being zero; also it means the ith observation
makes no contribution to ẑ, see (7). This means if !ii = 1 there is no need to drop
the ith observation even if it is clearly faulty. However, there is no cost in dropping it
since the QR factorization will be unchanged, and since in GPS a fault in one epoch
suggests that that particular input is unreliable, it should be dropped there. Of course,
a model with a zero row in G would be a strange one. Between these two easily
handled extremes—!ii=0 where any fault could not be detected but could cause great
harm, and !ii = 1 where a fault would almost certainly be detected but would cause
no harm—lie almost all cases: 0¡!ii ¡ 1.

3. Reduced models

If we eliminate one or more observations (rows) from our linear model (4), we will
refer to the resulting model as a reduced model. In Section 4 we will show how these
reduced models lead to important statistics, but we <rst develop the basic theory here.
The elements !ii in (10) play a key role in the study of integrity. In this section we

will also show that when one is very small, the geometry does not support integrity,
while if one is fairly small, we cannot delete the corresponding measurement and still
have an acceptable envelope.
We will <rst describe a good method for updating the QR factorization when a row

is removed (sometimes called “downdating”) and all of Q is available, whether !ii is
small or not. This is useful in GPS, but it will also allow us to understand the drastic
consequences of deleting the ith row of G when !ii=0, and why integrity cannot then
be supported. Then we will look at the e1ect of possible errors in the model on this
decision. Finally, we will show the bad e1ect small !ii has on the error covariance of
the reduced model with ith observation removed.

3.1. An algorithm for deleting an observation

Suppose we have Q = [Q1; Q2] and R in the QR factorization G =Q1R of m× n G
with rank n. Without loss of generality we wish to <nd the QR factorization of G less
its <rst row gT say. We can do this by introducing products of the form Im = JijJ Tij
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between Q and[
R

0

]
;

where Jij is a rotation in the {i; j}-plane (see, for example, Golub and Van Loan, 1996,
Section 12.5.3). We choose a sequence designed to zero the mth, then (m−1)st, down
to the second element of the <rst row of Q. For illustration let m = 4 and n = 2. In
the <rst step we choose J3;4 so that QJ3;4 is zero in position (1; 4):

G =

[
gT

JG

]
= Q

[
R

0

]
= [q1 q2 q3 q4]J3;4J T3;4




× ×
0 ×
0 0

0 0




=f


 )3 0
q1 q2

q̃3 q̃4






"11 "12

0 "22

0 0

0 0


 :

Since m¿ n+2, this <rst rotation did not alter R. We assume we choose rotations so
each )j¿ 0 here. Note, in general, the rotations Jm−1;m; Jm−2;m−1; : : : ; Jn+1; n+2 lead to
)n+1 = ‖eT1Q2‖2 = !11. We continue with J2;3 and <nally J1;2 in our small example:

G =

[
gT

JG

]
=


 )2 0 0
q1
q̃2 Jq3 Jq4






"11 "12

0 "̃22

0 J"32

0 0


=

[
)1 0 0 0
q̃1 Jq2 Jq3 Jq4

]



"̃11 "̃12

J"21 J"22

0 J"32

0 0


 :

But the <rst row of QJ3;4J2;3J1;2 has length unity, so )1=1. Also this row is orthogonal
to every other row, so q̃1=0. Finally, Jq2, Jq3, Jq4 are orthonormal, so the QR factorization
of JG is

JG = [ Jq2 Jq3 Jq4]




J"21 J"22

0 J"32

0 0


= JQ

[
JR

0

]
:

If !11 
=0 here, it can be seen from the sequence of rotations that JR is n × n and
nonsingular, so JG has rank n.
It is obvious how this applies to general m and n, and how it can be continued to

delete further rows. It is computationally fast for signi<cant m and n, costing O(mn)
Toating point operations, and is numerically reliable. But an additional advantage is
that it shows what happens when an !11 = 0.
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3.2. The e6ect of a zero !ii

If !11 = 0 then the <rst row of Q2 is zero, so the Ji; j above are only applied to Q1,
and J Ti; j are applied only to R, giving after these transformations

G =

[
gT

JG

]
= [Q1 Q2 ]

[
R
0

]
=
[
1 0 0
0 JQ1

JQ2

]
gT

JR
0


=

[
gT

JQ1
JR

]
: (11)

This means that when the <rst row is deleted, JR above has only n− 1 nonzero rows.
In our example this corresponds to the element J"32 being zero. Since JR has rank n−1,
JG must necessarily have rank n − 1. But this means any estimator found using JG is
not uniquely determined! It corresponds to the covariance of the estimate not being
de<ned, see (7).
We write the <nding above as a theorem.

Theorem 3.1. Let the m×n matrix G have full column rank. Let Q2 have orthonormal
columns and R(Q2) =R⊥(G). Denote the remaining matrix of G by JG after the ith
row is deleted. Then !ii ≡ ‖QT

2 ei‖2 = 0 if and only if rank( JG) = n− 1.

This exercise has several interesting lessons. First, if in some problem !ii = 0 oc-
curred, it would mean that using the ith observation would lead to a loss of integrity—
see our earlier discussions. But deleting the ith observation would lead to a loss of
uniqueness in the estimate, and so to a loss of integrity. Thus !ii = 0 means the ge-
ometry cannot support integrity. In GPS code-based tracking where each observation
corresponds to a satellite, this means deleting the ith observation would lead to the
remaining m− 1 satellites giving a geometry where the (m− 1)× n JG had rank n− 1.
This would be highly unlikely unless m= n already.
Here we would like to make some remarks on Theorem 3.1. In fact Theorem 3.1

can also be derived from a result of Stewart (1979), which is concerned with the
Cholesky downdating problem: given a nonsingular n × n upper triangular matrix R
and an n-vector g, <nd the Cholesky factor JR of RTR − ggT, i.e., JR

T JR = RTR − ggT.
By the algebraic operation

RTR− ggT = RT(I − R−TggTR−1)R: (12)

Stewart showed that RTR − ggT is positive de<nite if and only if ‖R−Tg‖¡ 1. From
his proof, we can observe that RTR− ggT is singular if and only if ‖R−Tg‖= 1. If as
before R denotes the R-factor of the QR factorization of our matrix G, gT the ith row
of G, and JG the remaining matrix of G after gT is deleted, then

JG
T JG = GTG − ggT = RTR− ggT:

Since g= GTei and G = Q1R,

‖R−Tg‖2 = ‖R−TGTei‖2 = ‖QT
1 ei‖2 = 1− ‖QT

2 ei‖2 = 1− !2
ii : (13)
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Thus by the above result of Stewart, JG is singular (so rank( JG)= n− 1) if and only if
!ii = 0.
From (12) it was also shown in Stewart (1979) that for the smallest singular value

of JR we have the following upper bound:

�min( JR)6 ‖R‖
√
1− ‖R−Tg‖2: (14)

Thus Stewart observed that if ‖R−Tg‖ is near unity, i.e., !ii is near zero in our case,
�min( JR), which is equal to �min( JG) in our case, will be small. Later in Section 3.4
we use our approach to derive a better bound on �min( JG) and discuss the e1ects of a
small !ii on the error covariance of the reduced model.

3.3. The case of a very small !ii

A more likely case is that of very small !ii. We have remarkably accurate linear
models in GPS, but they are not perfect. Let XG denote the di1erence between the
ideal Ĝ=G+XG and the G we are computing with. Suppose the best relative bound
we have on such deviations is $ (we assume $¡ 1), so that we know

‖XG‖26 $‖G‖2: (15)

(The theory is almost identical if we use the Frobenius norm). We can assume (15)
also includes the e1ect of <nite precision computation when we use numerically stable
algorithms. Thus, even if G is known exactly, our answers will only be true for some
G+XG where $ in (15) is O(+), + being the Toating point precision of the computer.
We will show the following.

Theorem 3.2. Let (15) describe the accuracy of our linear model. Whenever we have
a G with

!ii6 $; for some i = 1; : : : ; m; (16)

we can :nd Ĝ = G +XG with !̂ii = 0 and XG satisfying (15).

Proof. Without loss of generality we can consider i = 1. Since Q2 is arbitrary up to
orthogonal U in Q2U we can choose U1 so that eT1Q2U1=!11eT1 . Now apply orthogonal
J in G = Q1JJ TR ≡ Q̃1J

TR so eT1 Q̃1 = -11eTn ¿ 0. It follows from this that

G = [Q̃1|Q2U1]
[
J TR
0

]
=
[
0 : : : 0 -11 !11 0 : : : 0
Jq1 : : : Jqn−1 q̃n q̃n+1 Jqn+2 : : : Jqm

]
C

cT

0


 ; (17)

where[
C

cT

]
≡ J TR
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and since the <rst row of Q has length unity; -211+!
2
11=1. With the notation in Section

3.1; taking

J = Jn−1; nJn−2; n−1 · · · J1;2 [e2; e3; : : : ; en; e1]

leaves C upper trapezoidal. Note that -11 and !11 form the core of a useful m × m
rotation matrix Jn;n+1 = diag(In−1; J̃ ; Im−n−1) where

J̃ ≡
[
-11 −!11

!11 -11

]
;

[
-11 !11

q̃n q̃n+1

]
J̃ =

[
1 0

0 Jq

]
; J̃

T

[
cT

0

]
=

[
-11cT

−!11cT

]
:

Applying Jn;n+1J Tn;n+1 between the two factors of G in (17) gives

[
gT

JG

]
=G =

[
0 : : : 0 1 0 0 : : : 0
Jq1 : : : Jqn−1 0 Jq Jqn+2 : : : Jqm

]



C

-11cT

−!11cT

0




≡ [ Q̂1 Q̂2 ]




C

-11cT

−!11cT

0


 : (18)

This shows us that gT = -11cT and

Ĝ = G +XG ≡ G +

[
0

Jq

]
!11cT = [ Q̂1 Q̂2 ]




C

-11cT

0


 ≡ [ Q̂1 Q̂2 ]

[
Ĉ
0

]
; (19)

‖XG‖2 = !11‖c‖2 = !11‖g‖2√
1− !2

11

6!11‖R‖2 = !11‖G‖2; (20)

see (17); so XG satis<es (15) when (16) holds; and Q̂2 has zero <rst row. Matrix Ĉ
is n × n nonsingular; and by applying an orthogonal matrix to its left to bring it to
upper triangular; and the transpose of the same orthogonal matrix to the right of Q̂1;
gives us the QR factorization of Ĝ with Q̂2 unchanged; so !̂11 = 0.

If (16) is satis<ed, then the above theorem tells us that the G we are computing
with could have come from an ideal Ĝ which did not support integrity, and again we
have to assume our present geometry cannot support integrity.
We have seen that under the choice of XG in (19) Ĝ = G + XG has !̂11 = 0.

An interesting theoretical problem is to <nd XG which has the minimum 2-norm (or
Frobenius norm) among all XG which make !̂11 = 0. We have the following result.

Theorem 3.3. Let G ∈Rm×n have full column rank. Let gT be the ith row of G and
let JG be the remaining matrix of G after gT is deleted. If �min(G)¿�min( JG); then

min
!̂ii=0; rank(Ĝ)=n

‖Ĝ − G‖2 = �min( JG)6
!ii‖g‖2√
1− !2

ii

:
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Proof. Without loss of generality; we assume i = 1. Let

XG ≡
[
XgT

X JG

]
so Ĝ = G +XG =

[
gT + XgT

JG +X JG

]
:

From Theorem 3.1; if Ĝ has rank n; then ŵ11 = 0 if and only if JG + X JG has rank
n− 1. From the singular value theory (see; for example; Theorem 2.5.3 in Golub and
Van Loan; 1996); the following X JG0 has the minimum 2-norm (or Frobenius norm)
among all matrices X JG which make the rank of JG +X JG equal to n− 1:

X JG0 =− J�n Jun JvTn ;

where J�n is the smallest singular value of JG; �min( JG); and Jun and Jvn are the corre-
sponding left and right singular vectors. Take

XG0 =

[
0

− J�n Jun JvTn

]
:

Since ‖XG0‖2=�min( JG)¡�min(G); Ĝ must have rank n. Thus; XG0 has the minimum
2-norm (or Frobenius norm) making !̂11 = 0 corresponding to Ĝ0 = G +XG0. Since
(20) holds for the special XG in (19); we must have that

‖XG0‖26 !11‖g‖2√
1− !2

11

;

which will also be shown directly in the next section.

3.4. The error covariance of the reduced model

We now show that if !ii is small, then deleting the ith observation results in the
reduced model having a large error covariance. This lesson also comes from (18). We
see that gT = -11cT, and Q̂1en = e1, and deleting the <rst row of G gives orthogonal
[ JQ1| JQ2] in

JG = [ Jq1 : : : Jqn−1 Jq Jqn+2 : : : Jqm ]




C

−!11cT

0


 ≡ [ JQ1

JQ2 ]
[ JC
0

]
: (21)

Here JC is n× n nonsingular when !11¿ 0. For later use, (17) shows

Q2U1 =

[
!11 0

q̃n+1
JQ2

]
: (22)

Now look at the smallest singular value �min(·):

�min( JG) = �min( JC) = min
(uT ;1)�=0

∣∣∣∣∣
∣∣∣∣∣[CT;−c!11]

[
u

1

]∣∣∣∣∣
∣∣∣∣∣
2

/∣∣∣∣∣
∣∣∣∣∣
[
u

1

]∣∣∣∣∣
∣∣∣∣∣
2

6 ‖c!11‖2 = !11‖g‖2√
1− !2

11

(23)
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(by setting u= 0). Since ‖g‖= ‖RTR−Tg‖6 ‖R‖ · ‖R−Tg‖ and !11 =
√
1− ‖R−Tg‖2

(see (13)), we see that the bound (23) is tighter than the bound (14), and sometimes
signi<cantly so. It follows from (23) that for the condition number 22( JG) for solution
of equations

2( JG) ≡ �max( JG)
�min( JG)

¿

√
1− !2

11

!11

‖ JG‖2
‖g‖2 ;

while for the error covariance �2( JG
T JG)−1 of the LS estimator Jz for this reduced model

‖cov{ Jz − z}‖2 = �2‖( JGT JG)−1‖2 = �2

�2min( JG)
¿
�2(1− !2

11)
!2

11‖g‖22
; (24)

where the largest semi-axis of the ellipsoid de<ned by the covariance matrix is the
square root of ‖cov{ Jz − z}‖2, that is �=�min( JG). So when the ith observation and
row of G is deleted, small !ii leads to large error covariance and radials for the
reduced model. Small enough !ii will result in good integrity algorithms rejecting
this reduced model as being unable to support integrity. Clearly small !ii has severe
negative consequences.
To maintain integrity we may have to consider deleting observations. But if the

resulting reduced model has too bad error covariance, it will not be usable. Suppose
for it to be acceptable requires of the largest semi-axis of the ellipsoid de<ned by the
covariance matrix

Largest semi-axis6 "max:

Then from (24) we see we cannot achieve this, and so cannot use the model obtained
by deleting the ith observation from (4), if

�
√
1− !2

ii

!ii‖GTei‖2 ¿"max: (25)

This emphasizes that small !ii both hides a possible fault and gives a poor (large)
error covariance when the ith observation is removed.

4. A uniform derivation of test statistics

Here, we use an orthogonalization technique to give a very uniform derivation of
key statistics often used for fault detection and isolation, see for example Kelly (1998).
In order to test for and sometimes maintain integrity, we will have to delete possibly

faulty observations from our linear model (4). We want to understand how the parity
vector p and residual r behave in this case. The relevant equations are from (8) to
(10)

p ≡ QT
2y; r = Q2p; !ii = ‖eTi Q2‖2: (26)

Since we are not dealing with z in (4) here, we need only consider a less restrictive
version of the QR factorization, one we call the pseudo-QR factorization, which for
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any G satis<es

G = [Q1 Q2 ]
[
R
0

]
; [Q1 Q2 ] orthogonal; R full row rank (27)

the di1erence being that R need not be upper triangular (or upper trapezoidal if G
does not have full column rank). Here, as always ‘orthogonal’ means square with
orthonormal columns, and the matrices are conformably partitioned. Clearly, the QR
factorization can be found from the pseudo-QR factorization by carrying out the QR
factorization of R. The pseudo-QR factorization is not unique, but every pseudo-QR
factorization of G will give the same ‖p‖2, r and !ii in (26).

Without loss of generality we can consider deleting the <rst observation. When we
delete this, we need the pseudo-QR factorization JG = JQ1

JR where in (4)

JG = JQ1
JR; G =

[
gT

JG

]
; y =

[
3
Jy

]
: (28)

Let p1 and r1 be the parity vector and residual for the reduced model Jy= JGz+ Jv+ Jb,
Jv ∼ N(0; �2I), see (4) and (5). Assume m× n G has full column rank. Let U1 and V1

be orthogonal matrices so that if (27) is the standard QR factorization of G,

G = [Q1V1 Q2U1 ]
[
V T
1 R
0

]
≡
[

0 -11 !11 0
Q̃1 q̃n q̃n+1 Q̃2

]
C

cT

0


 ;

-11¿ 0; !11¿ 0: (29)

This is clearly a pseudo-QR factorization. Since [Q1V1|Q2U1] has unit length columns
and rows

-211 + !2
11 = 1; -211 + ‖q̃n‖22 = 1: (30)

There are two cases we must treat here, the <rst being so unlikely it is usually ignored,
but it is necessary for rigor.
Case 1. !11 = 0. (We can take U1 = I in (29)). We see this implies -11 = 1 and

q̃n = 0, so (29) becomes[
gT

JG

]
= G =

[
cT

Q̃1C

]
; JG = JQ1

JR ≡ Q̃1C;

giving the desired pseudo-QR factorization of JG. Note in this special case JQ1 has one
less column than Q1, while JQ2 ≡ [q̃n+1; Q̃2] has the same number of columns as Q2.
In this case, see (26) and (28),

Q2 =

[
0

JQ2

]
; p1 ≡ JQ

T
2 Jy = [ 0; JQ

T
2 ]
[
3
Jy

]
= QT

2y = p;

r1 = JQ2p1 = JQ2p; r = Q2p=

[
0

JQ2

]
p=

[
0

r1

]
: (31)
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We see when !ii = 0, ‖p‖2 = ‖r‖2 is not altered by deleting the ith observation. In
simple terms this is because when !ii = 0, QT

2 ei = 0, see (26), so the ith element of
y does not contribute to the parity vector p = QT

2y or the residual r = Q2QT
2y, and

when the ith observation is removed, the parity vector is unchanged, and the zero ith
element of r is removed, leaving what are now the elements of the new LS residual.
Of course p is arbitrary up to orthogonal U in UT p, so we should really say ‖p‖2
is unchanged, rather than p.
Case 2. !11¿ 0. Consider the 2× 2 rotation J̃ , de<ned using the scalars in (29)

J̃ ≡
[
-11 −!11

!11 -11

]
; J̃

T

[
cT

0

]
=

[
-11cT

−!11cT

]
;

[
-11 !11

q̃n q̃n+1

]
J̃ =

[
1 0

0 Jq

]
;

where the zero (2,1) submatrix of the rightmost matrix follows since each column has
unit length. Let Jn;n+1 ≡ diag(In−1; J̃ ; Im−n−1), and apply Jn;n+1J Tn;n+1 between the two
factors of G in (29) to give

[
gT

JG

]
≡ G =

[
0 1 0 0
Q̃1 0 Jq Q̃2

]



C

-11cT

−!11cT
0


=




-11cT

[Q̃1; Jq | Q̃2]




C

−!11cT

0





 ; (32)

JG = [ JQ1
JQ2 ]
[ JR
0

]
; JQ1 ≡ [ Q̃1; Jq ]; JQ2 ≡ Q̃2; JR ≡

[
C

−!11cT

]
; (33)

giving the pseudo-QR factorization of JG. Here JR=diag(In−1;−!11)V T
1 R, see (29), and

so has full row rank.
With our choice of U1 giving Q2U1 in (29), de<ne

w1 ≡
[
!11

q̃n+1

]
= Q2U1e1; #1 ≡ yTw1 = yTQ2U1e1; p̃ ≡ UT

1 p= UT
1 Q

T
2y; (34)

so that p̃ = UT
1 Q

T
2y is an allowable transformation of the full model parity vector

p= QT
2y, then from (29) and (33)

p̃T = pTU1 = yTQ2U1 = yT
[
!11 0
q̃n+1

JQ2

]
=
[
#1 Jy T JQ2

]
= [ #1 pT

1 ];

‖p‖22 = ‖p̃‖22 = ‖p1‖22 + #21;

#1 = !113+ q̃Tn+1 Jy; |#1|6!11|3|+
√
1− !2

11 ‖ Jy‖2; (35)

(see (28) for the de<nition of 3 and Jy) since from (29) 1 = !2
11 + ‖q̃n+1‖22. Clearly,

‖p‖2 = ‖r‖2 cannot increase when an observation is deleted. Note that if we delete all
but n observations, and the remaining JG is nonsingular, then the residual is zero and
the parity vector nonexistent, so both of these can decrease to zero.
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This completes the two cases for the change in ‖p‖2 = ‖r‖2 when an observation is
deleted. Now we consider the problem of determining which measurement to delete.
Since a faulty observation would probably lead to a large residual, one obvious criterion
is to delete the measurement that leads to the greatest decrease in ‖p‖2 = ‖r‖2. Let
pi and ri be the parity vector and LS residual for the model (4) with ith observation
deleted. If !ii=0 we saw deleting the ith observation left ‖p‖2 unchanged—the worst
possible result (since we seek the maximum decrease), so the criterion would generally
not choose this, but as we will see below, it is still useful to know what e1ect it would
have. When !ii ¿ 0 we can choose orthogonal Ui similar to the way U1 was chosen
in (29), to give eTi Q2Ui = !iieT1 , and de<ne #i similar to the way #1 was de<ned in
(34), giving

Q2Ui =




× ×
!ii 0

× ×


 ≡


 ×
wi 0

×


 ; #i ≡ yTQ2Uie1 = yTwi; (36)

p̃T = pTUi = yTQ2Ui = yT


 ×
wi 0

×


=

[
#i pT

i

]
; ‖pi‖22 = ‖p‖22 − #2i (37)

so deleting the ith observation leads to a decrease in ‖p‖22 of #2i , and i giving the
greatest decrease in ‖p‖2 = ‖r‖2 is that for which |#i| is greatest for those !ii ¿ 0.
Clearly the maximum |#i| gives the greatest decrease in ‖r‖2 and ‖p‖2.
It follows, in general, that

"i ≡ eTi r = eTi Q2QT
2y = eTi Q2UiUT

i Q
T
2y = !iieT1U

T
i Q

T
2y = !ii#i: (38)

Thus when !ii 
=0, the #i could be obtained directly from #i="i=!ii without computing
the Ui.
We summarize the above as a theorem.

Theorem 4.1. Let p be the parity vector as in (8); "i be the ith element of the LS
residual r in (9); and let pi and ri be the parity vector and LS residual for the model
(4) with ith observation deleted. If !ii ≡ ‖QT

2 ei‖2 = 0 in (10); then

‖p‖2 − ‖pi‖= ‖r‖2 − ‖ri‖2 = 0:

If !ii ¿ 0 and Ui is chosen so that eTi Q2Ui=!iieT1 ; then with #i ≡ eT1U
T
i Q

T
2y; #i="i=!ii

and

|#i|=
√
‖r‖22 − ‖ri‖22 =

√
‖p‖22 − ‖pi‖22 = |"i|=!ii6!ii|3|+

√
1− !2

ii‖ Jy‖2;
(39)

where Jy is y with its ith element 3 removed.

There is a lack of uniqueness in the de<nition of #i in (36). #i is uniquely de<ned
while !ii ¿ 0, but when !ii=0, Ui can be any orthogonal matrix, and we can take Ui
in (37) to give any value of #i in −‖p‖26 #i6 ‖p‖2. Similarly in (38) !ii = 0 ⇒
"i = 0 and #i is not de<ned. To remove this lack of uniqueness we could de:ne #2i
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to be the decrease in ‖p‖22 when the ith observation is removed, and then (31) shows
!ii = 0 ⇒ #i = 0.

Here we need to point out that #i=yTQ2Uie1 is the statistic used in Brenner (1990)
for fault detection, #2i =‖r‖22−‖ri‖22 is the statistic presented in Parkinson and Axelrad
(1988) for fault isolation, and #i = "i=!ii is the statistic proposed in Sturza (1988–89)
for fault isolation. The equivalence of the three quantities has been realized by Kelly
(1998). But our proof here is a uniform approach and is simpler, and the case that
!ii = 0 is not discussed in these papers.
Note if there is no fault, i.e., b = 0, then from (9) and (10) we see #i = "i=!ii

has a normal distribution N(0; �2). Since we do not know which satellite may have a
fault, we have to check all individual observations for a potential fault. There are a
total of m statistics #i, i = 1; : : : ; m. In Kelly (1998), it is suggested to use maxi |#i|
for fault detection and isolation. The value of maxi |#i| has to be compared with a
threshold, which can be derived by using a given false detection probability. If the
former is larger than the latter, we will say that a fault has occurred and identify the
corresponding satellite which makes |#i| maximum as faulty.

5. Sensitivity of the test statistics

In the last section, the quantity #i is used for fault detection or isolation. In addition
to that, the following quantity is also often used in the literature as a statistic for fault
detection (see, for example, Sturza, 1988–89):

#= rTr: (40)

We see from (8) and (9) that #=pTp, and if there is no fault with any satellite, then
with (4) p ∼ N(0; �2Im−n), so #=�2 will have a 52 distribution.
Since usually the given data G and y in the model (4) are not known exactly, we

would like to know how small relative errors in the data contribute to errors in the
statistics. Since the absolute values of the statistics are compared to the corresponding
thresholds when we do fault detection or isolation tests, we are only interested in the
absolute errors in the statistics caused by errors in the data.
In our analysis we assume !ii 
=0. Suppose the m × n matrix G(t) is a continuous

di1erentiable function of t with full column rank for |t|6 7 and G(0)=G, and suppose
y(t) is also a continuously di1erentiable function of t and y(0)=y. Then we can de<ne
the QR factorization of G(t) and the test statistics #(t) and #i(t), where we assume 7
is small enough such that !ii(t) 
=0 for |t|6 7. For any matrix (vector or scalar) A,
denote Ȧ ≡ (daij(t)=dt|t=0). Since G(t) = Q1(t)R(t) for |t|6 7, we have

Ġ = Q̇1R+ Q1Ṙ:

Then it follows that

Q̇1 = ĠR−1 − Q1ṘR−1: (41)

From G(t)TG(t) = R(t)TR(t), it follows that

Ġ
T
G + GTĠ = Ṙ

T
R+ RTṘ:
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Therefore

R−TĠ
T
Q1 + QT

1 ĠR
−1 = R−TṘ

T
+ ṘR−1: (42)

Then from (41), (42) and I − Q1QT
1 = Q2QT

2 we obtain for later use

Q̇1Q
T
1 + Q1Q̇

T
1 = ĠR−1QT

1 − Q1ṘR−1QT
1 + Q1R−TĠ

T − Q1R−TṘ
T
QT

1

=Q2Q2ĠR−1QT
1 + Q1R−TĠ

T
Q2QT

2 : (43)

First we discuss the sensitivity of #. Note that

r(t)Tr(t) = y(t)TQ2(t)Q2(t)Ty(t) = y(t)T(I − Q1(t)Q1(t)T)y(t):

So we have with (43)

#̇= ẏ TQ2QT
2y + yTQ2QT

2 ẏ − yT(Q̇1Q
T
1 + Q1Q̇

T
1 )y

= ẏ TQ2QT
2y + yTQ2QT

2 ẏ − yT(Q2QT
2 ĠR

−1QT
1 + Q1R−TĠ

T
Q2QT

2 )y:

It follows since ‖y‖2 = ‖r‖2 + ‖QT
1y‖2, see (9) with (7), that

|#̇|6 2‖QT
2y‖2‖QT

2 ẏ‖2 + 2‖R−1‖2‖QT
1y‖2‖QT

2y‖2‖QT
2 Ġ‖2

= 2‖y‖2‖r‖2 ‖Q
T
2 ẏ‖2

‖y‖2 + 2‖r‖2
√
‖y‖22 − ‖r‖22 22(G)

‖QT
2 Ġ‖2

‖G‖2 : (44)

We see that if ẏ∈R(G) and R(Ġ) ⊆ R(G), then #̇ = 0. The crucial factor in the
bound above is ‖r‖2

√
‖y‖22 − ‖r‖22 22(G). If this is large, then small relative errors in

G may result in big errors in #.
Now we do a sensitivity analysis of the statistic #i. From #i(t) = eTi r(t)=!ii(t) we

have

#̇i =
eTi ṙ
!ii

− eTi r !̇ii
!2
ii
: (45)

Since r = Q2QT
2y = (I − Q1QT

1 )y, it follows that

ṙ = Q2QT
2 ẏ − (Q̇1Q

T
1 + Q1Q̇

T
1 )y: (46)

Since !2
ii = eTi Q2QT

2 ei = eTi (I − Q1QT
1 )ei, it follows that

!̇ii =−e
T
i (Q̇1Q

T
1 + Q1Q̇

T
1 )ei

2!ii
: (47)

Then from (45) to (47) and using (43), we obtain

#̇i =
eTi Q2QT

2 ẏ − eTi (Q2QT
2 ĠR

−1QT
1 + Q1R−TĠ

T
Q2QT

2 )y
!ii

+
eTi Q2QT

2ye
T
i (Q2QT

2 ĠR
−1QT

1 + Q1R−TĠ
T
Q2QT

2 )ei
2!3

ii
: (48)
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Notice that ‖QT
2 ei‖2 = !ii and ‖QT

1 ei‖2 =
√
1− !2

ii, so we have

|#̇i|6 ‖QT
2 ẏ‖2 + ‖R−1‖2‖QT

1y‖2‖QT
2 Ġ‖2 +

√
1− !2

ii

!ii
‖R−1‖‖QT

2y‖2‖QT
2 Ġ‖2

+ 2

√
1− !2

ii

2!ii
‖R−1‖‖QT

2y‖2‖QT
2 Ġ‖2

= ‖y‖2 ‖Q
T
2 ẏ‖2

‖y‖2 +

(√
‖y‖22 − ‖r‖22 +

2
√

1− !2
ii

!ii
‖r‖2

)
22(G)

‖QT
2 Ġ‖2

‖G‖2 :

Like #; #i=0 if ẏ∈R(G) and R(Ġ) ⊆ R(G). The crucial factor in the bound above is
(
√
1− !2

ii=!ii)‖r‖222(G). Note if !ii is small, then small relative errors in G may lead
to large errors in #i. Again we see that a small !ii has a damaging e1ect. However, a
small !ii does not seem to make the statistic # in (40) more sensitive, see (44).

6. Summary

Some basic GPS integrity theory has been presented. We focused largely on the
“fault observability” scalars !ii, and discussed the damaging e1ect of a small or zero
!ii on GPS integrity. An orthogonal transformation approach was used to derive three
typical equivalent statistics for fault detection and isolation, and a sensitivity analysis
of the test statistics was given. Once again !ii were seen to be of great theoretical and
practical importance. Further computations would be required to compute the radials,
but it can be shown that these also depend directly on !−1

ii , and it is important to
understand the fundamental nature of these !ii in the integrity theory of GPS.
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