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Summary This paper gives componentwise perturbation analyses
for Q and R in the QR factorization A = QR, QTQ = I, R upper
triangular, for a given real m x n matrix A of rank n. Such specific
analyses are important for example when the columns of A are badly
scaled. First order perturbation bounds are given for both @ and R.
The analyses more accurately reflect the sensitivity of the problem
than previous such results. The condition number for R is bounded
for a fixed n when the standard column pivoting strategy is used.
This strategy also tends to improve the condition of @), so usually
the computed @@ and R will both have higher accuracy when we use
the standard column pivoting strategy. Practical condition estimators
are derived. The assumptions on the form of the perturbation AA are
explained and extended. Weaker rigorous bounds are also given.
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1 Introduction

The QR factorization is an important tool in matrix computations
(see for example [6, Chap. 5]): given an m X n real matrix A with
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full column rank, there exists a unique m X n real matrix @ with
orthonormal columns, and a unique nonsingular upper triangular n x
n real matrix R with positive diagonal entries such that

A=QR.

The matrix @) is referred to as the orthogonal factor, and R the
triangular factor.

Let AA be an m X n real matrix such that A + AA still has full
column rank, then A + AA has the unique QR factorization

A+ AA=(Q+ AQ)(R+ AR),

where (Q+ AQ)T(Q+ AQ) = I and R+ AR is upper triangular with
positive diagonal elements. The goal of the perturbation analysis for
the QR factorization is to determine bounds on ||AQ| (or |AQ|) and
I|AR|| (or |AR|) in terms of (a bound on) ||AA|| (or |AA|), where for
a matrix C' = (¢;;5), |C| is defined by (|c;;)-

The perturbation analysis for the QR factorization has been con-
sidered by several authors. Given (a bound on) ||AA||, the first results
were presented by Stewart [12]. Analyses based on bounds on ||AA]|
are sometimes called normwise or norm-based perturbation analyses.
Stewart’s results were modified and improved by Sun [14]. Similar re-
sults to those of Sun [14] were obtained by Stewart [13] by a different
approach. Later Sun [16] gave new strict perturbation bounds for @
alone. More recently Chang et al. [4] gave new first-order perturba-
tion analyses using the so called refined matrix equation and matrix-
vector equation approaches. Analyses based on bounds on |AA| have
been called componentwise analyses. Given a bound on |AA|, Sun
[15] presented strict but somewhat complicated bounds on |AQ| and
|AR|. In [18], Zha considered the following class of perturbations:

[AA|<cClAl,  CeR™™, 0<e;<1, (L)

and presented first-order perturbation bounds on ||AQ| and ||AR]|.
An important motivation for considering such a class of perturba-
tions is that the equivalent backward rounding error from a rounding
error analysis of the standard QR factorization fits in this class, see
Higham [7, Chap. 18] and the last paragraph of Section 2 here.

The main purpose of this paper is to establish new first-order
perturbation analyses under the condition (1.1). The perturbation
bounds that are derived here are significantly sharper than the equiv-
alent results in Zha [18, Theorem 2.1]. Simple rigorous perturbation
bounds are also presented. Thus the present paper will, among other
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things, increase our understanding of the errors we can expect in
computing ) and R in A = QR.

In Section 2 we discuss the generality of the class of perturba-
tions (1.1), how this class may be extended, and how the equivalent
backward rounding error for the Householder QR factorization be-
longs to this class. In Section 3 we define our notation. In Section 4
we obtain expressions for (0) and R(0) in the QR factorization
A+ tG = Q(t)R(t). These basic sensitivity expressions will be used
to obtain our new perturbation bounds in Sections 7 and 8, but in
Section 5 they are used to derive simple 2- and F-norm versions of
Zha’s results [18, Theorem 2.1] on the sensitivity of R and Q. Sec-
tion 6 derives basic rigorous bounds that will help us understand
some of the more refined first-order bounds. In Section 7 we give a
refined perturbation analysis for (), showing why the standard col-
umn pivoting strategy for A can be beneficial for certain aspects of
the sensitivity of (). In Section 8 we analyze the perturbation in R by
the matrix—vector equation approach, then we combine this with the
matrix equation approach to get useful estimates. The ideas behind
these two approaches were discussed in the norm-based perturbation
analysis for the QR factorization [4]. Here these approaches show
that the sensitivity of R can be significantly improved by pivoting.
We give numerical results and suggest practical condition estimators
in Section 9. We summarize our findings and point out possible future
work in Section 10.

2 The class of perturbations, and rounding effects

We now discuss the generality of the assumption (1.1). Taking C =T
in (1.1) gives bounds on each element |Aa;;| of the form

|AA] < el4],

which covers the case of small relative errors in the elements. Now
suppose that we only have the column information

[4ajlly <ellajll, 7=1,...,n.

This implies |Aa;j| < || Aaj||1 < eel|a;| withe =[1,1,...,1]T, which
implies (1.1) with C = ee’. Similarly (1.1) with C = ee! implies
|Aaj|li < emlaj1- Since for any v € R™,

Iolloo < [lolli < m2|[v]l2 < mM?|o]l < m®?|v]lo,
etc., we see that (1.1) essentially handles any information of the form

|Aajlly < €llagllps j=1-.com p=1200.  (21)
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Thus (1.1) is an elegant way of handling most bounds on the elements
or the columns of A. However to cover cases where some columns
of AA have different relative bounds than others, as might happen
when the columns of A are obtained by experimental observation at
different times or with different instruments, we can extend (1.1) to

|AA| < eCJA|D; C € R™™, 0<c¢j; <1; D=diag(1,...,0,) > 0.
(2.2)
This then includes the extension of (2.1)

|Aajll, < e6illagllys §=1,...,n. (2.3
For the QR factorization A = QR, (2.2) leads to
|AA| < eC|Q|-|R|D (for clarity “-” indicates multiplication),

and where Zha [18] considered || |R|-|R™}|||,, which is independent
of column scaling, we can define the (extended) condition number

condy(R, D) = | |[R-D-R I, p=1200.  (24)

This condition number is also independent of column scaling, and
can be arbitrarily smaller than ||[RD||,||R~!||,. For brevity we give
the analysis without D and assume (1.1) only, but all the results can
trivially be extended to changes in A of the form (2.2).

The equivalent backward error for a numerically stable QR factor-
ization is important for this exposition. For an m xn matrix A of rank
n let A = QR be the exact, and A = Q. R, the computed QR factor-
ization of A obtained via Householder transformations. Higham [7,
Theorem 18.4]) showed

A+ AA=QR,., |AA<eCIAl, €= Ymnt, (2.5)

where @T@ = I, ymn is a moderate constant depending on m and
n, u is the unit roundoff, C > 0 and ||C||r = 1. The bound on AA
has the form (1.1), so the perturbation analyses here will allow us
to obtain good bounds on the errors Q — @ and R, — R. Also the
computed Q. satisfies Q. = Q + A, where |A| < vy, ,uCo|Q| with
Cy >0, ||Csllr = 1. Since Q. — Q = A+ (Q — Q) we have

1Qc = Qllr < n'Pympu +1Q — Q- (2.6)

For the whole of this paper we assume perturbations satisfying (1.1).
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3 Notation

In this paper, for any matrix X € R™*", we denote by (X);. the ith
row of X, and by (X). ; the jth column of X.
For any nonsingular matrix X we define
ko (X) =X 21X M2, conda(X) = [[[X[1X 7 [l2- (3.2)

Notice || [ X ~!|-|X]||| is the standard Bauer-Skeel condition number,
but the present variant seems more intuitive for column scaling.

For an m x n matrix Q such that QTQ = I we can find Q such
that [Q, Q] is square and orthogonal, then define

m = 1QT-C-1Qlle, m = [1QT1-C-1Ql e, 3 =1CIQ]llr- (3.2)

Since || |Q" [l» = Q| - = n'/*, 111Q"| ||z = (m—n)"/?, and in (1.1)
IC]|= < m, if we use the fact that ||AB||» < ||A||r||B||» we obtain

1/2 1/2

m <mn, n2 < ((m—n)n)"*m, n3 <mn’".

To simplify the presentation, for any n x n matrix X, we define
the upper and lower triangular matrices
3T Tiz ¢ Tin
xy=| O 272 o low(X) =up(XT)T, (33
wp(X)=| | 27 T low(X) =up(XT)T,  (3.3)
0 0 -izn,

so that X = low(X) + up(X). For any n X n (n > 1) matrix X and
positive definite D = diag(di,...,d), we can show (for a proof, see
Lemma 5.1 in [4]; it is straightforward by considering elements)

1/2

lup(X)+D " up(XT) D » < poll X[, oo = [1+1<r;1<ajx<n(5j/5z~)2] :
- (3.4)

In particular with D =1,

1
lup(X + XT) 10 < V21 X]|r5 [lup(X)]» < 7

It is also easy to see that for any n x n (n > 1) matrix X
IX —up(X + X)l» = low(X) — [low(X)]" || < V2| X]|r. (3.6)
When n = 1, we have the following equalities:
[up(X)+ D~ up(XT) D|[r =|lup(X +XT)||» = 2|[up(X)||» = X]|r,
|X —up(X + XT)||» = 0.

In this paper we assume that the matrix A has more than one column,
i.e., n > 1. The case n = 1 is trivial and straightforward bounds can
be derived by using these last equalities.

I1X |- if X = XT.
(3.5)
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4 Rate of change of Q and R

Here we derive the basic results on how @ and R change as A changes.
The following theorem summarizes several results that we use later.

Theorem 4.1 Let A € R™*™ be of full column rank n with the QR
factorization A = QR, and let AA be a real m X n matriz satisfying

AA=¢G; e>0, |G|<C|A|, CER™™ 0<c; <1. (4.1)
Let At denote the Moore-Penrose inverse of A. If
ell|AT-C-|Al ]2 < 1, (4.2)
then A + tG has the unique QR factorization
A) = A+tG=QMR(), QTMQW) =1, [t <e  (43)

where
RTR(0) + RT(0)R = RTQ"G + GTQR, (4.4)
R(0) =up[Q"GR ' + (Q"GR TR, (4.5)
Q(0) =GR - Qup[Q"GR™* + (Q"GR™1)T]. (4.6)
In particular, A+ AA has the unique QR factorization
A+ AA = (Q+ AQ)(R + AR), (4.7
where AR and AQ satisfy
AR = eR(0) + O(€?), (4.8)
AQ = €Q(0) + O(¢?). (4.9)

Proof Since || X|2 < [||X]|l2, if (4.2) holds, then for all |¢| < ¢,
[tATGl2 < €]l |AT|-C-|A]]|2 < 1.
Also from
QT(A+1tG) = R+tQTG = RI+tR'QTG) = R(I + tA'G)

we see that QT (A + tG) is nonsingular. Hence for all [t| < ¢, A +tG
has full column rank and the unique QR factorization (4.3). Taking
t = e shows that (4.7) is unique, and then R(0) = R, R(¢) = R+ AR,
Q(0) = Q and Q(e) = Q + AQ.

It is easy to verify that Q(¢) and R(t) are twice continuously dif-
ferentiable for |¢| < € from a standard algorithm for the QR factoriza-
tion. If we differentiate R(t)T R(t) = A(t)T A(t) with respect to ¢ and
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set t = 0, and use A = QR, we obtain (4.4). This we will see is a lin-

ear equation uniquely defining the elements of upper triangular R( )

in terms of the elements of Q7 G. From upper triangular R(0)R™" in

RO)R '+ (RO)RHT =QTGR' + (QTGR™ YT,
we see with (3.3) that (4.5) holds. Differentiating (4.3) at ¢ = 0 gives

G =QR(0) + QO)R
which with (4.5) gives (4.6). Finally the Taylor expansions for R(t)
and Q(t) about t = 0 give (4.8) and (4.9) at t =e. O

The perturbation AA in (4.1) satisfies (1.1), and we will always
assume (4.2) holds, so the results of this theorem will apply for the
rest of this paper.

5 Zha’s first-order bounds

We can use the notation of (3.1) and (3.2) to derive the combined
2-norm and F-norm results which are analogous to Zha’s [18] first-
order consistent monotone norm results, but are a little simpler in
form and derivation. We then give examples to show how these can
be too pessimistic. From (4.5), we have by using (3.5) and (4.1) that

IRO) - < [up[@"GR™" + (Q"GR™")]||¢[| Rl
< V2|QTGR'[x IR < V2| |Q|-C-|AI-|[R7| |+ || Rl
< V2[[|QT|-C-|QI-|R|-|[R | [|<[|Rll2 < V27 conda(R)| Rll2-
Similarly, from (4.6), (3.6), (4.1), if [@Q, Q] is square and orthogonal,
1RO)[IF = 1RTQO)17 + 1QT Q)17
= |Q'GR™ —uwp[Q"GR™ +(Q'GR™)"]|2+|Q"GR|
<2[|QTGRTZ + IQTGRTZ < 2||GR™|Z,
1Q(O)]I» < V2| C|QI|RI:|[R™"|||r < V2n3conds(R).
Thus with (4.8) and (4.9) we get the following bounds:
|AR|

< mp(A)e+ O(€), (5.1)
I1R]2
1AQ|Ir < n3p(A)e + O(e?), (5.2)
¢(A) = V2 condy(R). (5.3)
Apart from the multipliers 7; and 73 (see also (6.6), (6.5)), p(A)
can be thought of as (an upper bound on) the condition number for
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both @ and R (for small enough AA) when we use the combination
of 2 and F norms. The constant v/2 involved in the definition of p(A)
may be removed, but we keep it here since it is useful for compar-
ison with the modified results to be given in Section 8. Notice that
©(A) is invariant under any column scaling of A. This is a signif-
icant improvement on the normwise perturbation results published
before [4] when the perturbation AA satisfies (1.1), but sometimes
these perturbation bounds do not reflect the true sensitivity of the
QR factorization very well, as we see from the following example.

Ezample 5.1 Consider the following two matrices (the first one is
quoted from [18], the new one gives even worse results).

1 1
_ 1 1-10"10
A= |0 10 10] ; Ap = [1 1_}_10—10] : (5.4)
1 1

Computing the QR factorization of A; and Ay in MATLAB with
unit roundoff u & 1.11 x 107! (all our computations were performed
in MATLAB 5.2 on a Pentium-II running LINUX), we obtained the
following computed factors, shown here to 5 figures (to make the diag-
onal elements of R;. and Ry, positive, some signs have been altered).

0 1.0000e+00
7.0711e-01 1.2539e-06

1.4142 1.4142e+00
’ Rlc = ’

7.0711e-01 -1.2539e-06
Qe = 0 1.0000e-10

Qe = 7.0711e-01 -7.0711e-01) , _ [1.4142 1.4142¢+00
2¢ = [7.0711e-01  7.0711e-01|’ "¢~ | 0  1.4142e-10|

These have errors

_ ~ -6 _ |[Ric.—R ~ -16
ea, = [Qic — Qullr = 173107, ep, = Berlle ~ 9.9 5 10716,

cay = [Qac — Qallr = 1.9x10716, e, = faertele ~ 3.3 10717,
(5.5)

where A1 = Q1 Ry and As = Q2 Rs are the exact QR factorizations.
The condition numbers (5.3) are

(A1) = 4.0 x 10'°,  p(Ay) =~ 2.8 x 10%. (5.6)

MATLAB computes the QR factorization using Householder trans-
formations. Comparing (2.5) with (4.7) we see AQ = @ — @ and
AR = R, — R, so (2.6) and (5.2) with € = vy, pu in (2.5) show that

1Qc = Qllr < Y pp(A)u + O(u?), (5.7)
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where 7y, , is a moderate constant depending on m and n. Finally
(5.1) with € = v, pu in (2.5) shows that

R.—R
Wl < ot oty + O, 5:8)

where again 'y;{],n is a moderate constant depending on m and n. For
more details of such arguments, see [7, pp.367-368, 382] and [18].
From the computed results, we see for Q1 the bound (5.7) matches
the actual error eq, in (5.5) very well, but for Q2, R; and Ry the
bounds (5.7) and (5.8) are bad overestimates of the corresponding
errors. 0O

Although the matrices (5.4) are contrived, they do represent a fairly
common case when A has a very large condition number: each matrix
has only one very small singular value. By choosing such examples
with small dimensions we are able to illustrate the drawbacks of the
bounds in [18] simply and directly, showing that it is necessary to
obtain stronger perturbation bounds.

6 Rigorous bounds

Later we will derive tighter first-order bounds, but in order to explain
some subtleties of these we first obtain some simple but weak rigorous
bounds. From the QR factorization (4.7), with A = QR,

RTAR+ ARTR+ ARTAR = RTQTAA + AATQR + AAT AA.

Multiplying on the left by R~ and the right by R~! we see that
ARR™'+ RTAR" = Q"AAR™ + R7TAATQ
+ R T(AATAA— ARTAR)R™.

Since ARR ™! is upper triangular, this gives with (3.3)
ARR '=up|[Q"AAR'+ R TAAQ+ R "(AATAA— ARTAR)R™].
Using (3.5) we obtain

IARR™ || < V2| QTAAR™||»+ (|AART[; + |ARR™'2)/V2,
V2||ARR™|» < |AAR™Y|r(2+ |AART!£) + ||ARR™Y||Z. (6.1)
Also from (Q + AQ)(R+ AR) = QR + AA we see that

AQR + (Q + AQ)AR = AA,
AQ = AAR™' — (Q + AQ)ARR !,
1AQ|x < [AAR™Y||z + [|ARR™" | (6.2)



10 Xiao-Wen Chang, Chris Paige

If we replace AA here by tG, |t| < e satisfying (4.2) as in The-
orem 4.1, then (6.1) and (6.2) still hold with AQ and AR con-
tinuous functions of t. Let p(t) = ||ARR™Y|», 6(t) = ||AAR™!||5,
B(t) = 6(t)(2 + 6(t)), then p(0) = 6(0) = B(0) =0, and from (6.1)

p()(V2 = p(1)) < B(1).

Here the left hand side has its maximum of 1/2 with p(t) = 1/v/2.
If B(t) < 1/2 for |t| < € then the left hand side cannot attain its
maximum, and so for || < ¢, p(t) < 1/+/2. This means that
\/i_ p(t) > 1/\/57 and

p(t) < BH)/(V2 = p(t)) <V2B(t) = V252 +5(1)), [t <e

(6.3)

But with §(2) > 0, 8(t) = 6(¢)(2+6(t)) = (8(t) +1)>—1 < 1/2 if and
only if 6(t) < v/3/+/2 — 1, and the following rigorous bounds hold.

Theorem 6.1 Assume that the conditions and assumptions of The-
orem 4.1 hold together with

d|GR™Y» = |AAR™Y» < V3/V2 -1~ 3178.  (6.4)
Then A+ AA = A+ €G has the unique QR factorization
A+ AA=(Q+ AQ)(R+ AR),

where with the notation of (3.1) and (3.2),

1AQ|I» < (1+ V2 + V3)nzconds(R)e, (6.5)
” f ];T'”F < (V2 + V3)nzconda(R)e. (6.6)
2

Proof Since |G| < C-|Q| - |R| from (4.1), (6.3) and (6.4) show

IARR™||» < V2[|AART[[r(2+/3/2-1) = (V2+V3)| AAR™ |
< (V2+V3)e||CIQIR|:[R || < (V2 + v3)nsconds(R)e,

This result with (6.2) gives (6.5). Finally (6.6) follows since
IAR||» < |ARR™||¢||R]2- D

Remark 6.1 The bounds (6.5) and (6.6) are clearly the rigorous ver-
sions of the first order bounds (5.2) and (5.1), which were analogous
to Zha’s [18, Theorem 2.1] results. Thus (6.5) and (6.6) are just as
weak as (5.2) and (5.1) were shown to be by Example 5.1. O
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7 Refined analysis for Q

The expression (5.2) gives an important overall bound on the change
AQ in Q. But by looking at how AQ is distributed between R(Q),
the range of @, and its orthogonal complement R*(Q), we will obtain
better results. These show more clearly where any ill-conditioning lies.

Take a matrix Q € R™*(m=n) guch that [Q, Q] is square and
orthogonal. Then from (4.9) we see that

AQ = eQQ"Q(0) + QR Q(0) + O(e?),

and the key is to bound the first term on the right separately from the

second. Since @ is an orthonormal matrix, QT Q(0) = 0 when n = 1,

and results involving Q" Q(0) will only be nontrivial when n > 1.
For the part of Q(0) orthogonal to R(Q), we see from (4.6) that

Q"Q0) =Q"GR™, (7-1)
and combining this with (4.1) gives
1QQTQO)I» = 1QQTGR™I» < 1Q"[-C-QI |l | IRI- R~ |2-
Thus with (3.2) and (3.1) we have

QATAQ = eQQTQ(0) + O(e?),
1QQT AQ||» < macondz(R)e + O(€?), (7.2)

and condy(R) can be regarded as the condition number for the part

of AQ in R(Q). Note the similarity with (5.2).

Now we deal with that part of AQ lying in R(Q), first we show
there is an important lower bound on ||QQT AQ||>- Since Q + AQ has
orthonormal columns,

(Q+AQ)T(Q+AQ) =T+ QTAQ + AQTQ + AQTAQ =1,
1AQT AQ|2 = |1AQ|3 = QT AQ + AQT Q> < 2]|1QT AQ|l2, (7.3)

and we have the useful lower bound
1
1QQRTAQ|l2 = QT AQ||2 > §||AQ||§-

To obtain a good upper bound, we will manipulate the equations to
avoid using the triangle equality (||X +Y|| < [| X+ ||Y]|) etc. where
possible. We see from (4.6) and (3.3) that

Q"Q(0) = Q"GR™ —wp[Q"GR ™ + (Q"GR )]
=low(QTGR™!) — [low(QTGR™1]T, (7.4)
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which is skew symmetric with clearly zero diagonal. Now partition
@, G and R as follows

n—1 1
n—11 n—11 R, 1 T
Q :[Qn—l’Q]’ G :[Gn—lag]a R :[ 0 r :| .
nn
This allows us to rewrite (7.4) as
QTQ(O) = IOW([QTanlRﬁil’ QT(_anlR;ilr +9)/rnn))
— {low((Q" Gn1 B Ly, QT (=Goa By Ly + 9) frnn]) Y
=low([QTGn-1R,11,0]) — {low([QT Gn1 R, 11, 0]} (7.5)
From (4.1) it follows that
|Gn—1‘ S C'Qn—1|'|Rn—1|7 (76)
and using (3.6), we have from (7.5) and (7.6) that
1QQT Q)| < V2|Q"Gna R ||
< V2[[1Q]-C-|Qn-a| Il [l | R—1 ][R Il2
<V2([1QT|-C-Q el 1Rn—1]-|R, 24| [lo-
This with (4.9), (3.2) and (3.1) gives our bound
1QQT AQ||» < V2nicondy(Ry_1)e + O(€?). (7.7)

If we define
ro(A) = V2condy(R, 1), (7.8)

then we can regard this as the the condition number (for small enough
AA) for that part of AQ in R(Q), and summarize the results for Q.

Theorem 7.1 Suppose all the assumptions of Theorem 4.1 hold, and
Q € R™*(m=1) s a4 matriz such that [Q, Q)] is orthogonal. Then
A+ AA = A+ eG has the unique QR factorization

A+ AA=(Q+ AQ)(R+ AR),
such that
1QQT AQ||» < 2 conda(R)e + O(?), (7.9)
LIAQIE < 1QQ7 AQ|r < ma(A)e + 0. (7.10)
If | GR Y| » = || AAR Y ||» < V3/v/2 — 1 holds as well, then

14QI1- = 1QQT AQIFHIQRT AQIZ)/? < (1+ﬁ+¢§)n3cond?(R)ej

7.11
Here 11, no and n3 are defined in (3.2), condy(-) is defined in (3.1),
and kqg(A) is defined by (7.8). O
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Proof The unique QR factorization follows from Theorem 4.1, (7.9)
is just (7.2), (7.10) follows from (7.3) and (7.7)—(7.8), while (7.11) is
just (6.5) in Theorem 6.1, since (6.4) holds. O

In some problems we are interested in the change in ) lying in
R(Q), that is QQT AQ. For example when A is square @ is nonexis-
tent, and the change in @ necessarily lies in R(Q). Theorem 7.1 shows
the upper bound on ||QQT AQ||» can be smaller than was previously
thought in for example [18], see (5.2). In particular if A has only one
small singular value and its columns are not badly scaled (both matri-
ces in Example 5.1 are of this form), and we use the standard column
pivoting strategy in computing the QR factorization (see, for exam-
ple, [6, p248]), then usually we will have condz(R,—1) < conda(R).
For the two matrices in Example 5.1, the values of condy(R,,—1) are
1 and 1, while the values of conds(R) are about 3 x 10'° and 2 x 1010,
with or without column pivoting.

In some special cases standard column pivoting may not give
condz(R;,_1) < condy(R), for example the Kahan matrices (see [10]).
For these a rank revealing pivoting strategy such as in [9] is required
to obtain a significant improvement of condy (R, 1) over conda(R),
see the kqy(A) or ko(AP) (V2conds(R,_1)) and @(A) or p(AP)
(v/2 condz(R)) columns in Tables 9.9 and 9.10 of Section 9.

Now we return to the error eq, in (5.5) for the example with A,
n (5.4). When m = n, Q does not exist, so (7.10) gives

1AQII» < mrq(A)e + O(?),

and by a similar argument to that for (5.7), we have for the MATLAB
QR factorization

1Qc = Qllr < Yy nhiq(A)u + O(u?). (7.12)

For Ay, m =n = 2,50 kig(Az) = v/2in (7.8). We see for @, the bound
of O(107'6) using (7.12) matches the observed eq, of 1.9 x 107!6 in
(5.5) well, whereas the bound of O(10%) using (5.7) was very weak.

Remark 7.1 When m>n it is possible to have || AQ||» > |QQTAQ||F,
and (7.10) must be used carefully. Of course (7.10) is asymptotically
correct, but when e is large enough, the O(e?) term can dominate in
the upper bound in (7.10) when the overall || AQ|| is large. That is,
the multiplier in the O(€e?) term can be very large. This is illustrated
nicely in the computational example with A; in (5.4), for there m = 3,
but n = 2 s0 ky(A1) = V2, also from (2.5)—(2.6)

A1+ AA; = Q1 Ry, QlTél =1,
1Q1 — Qucllr = O(10716), [|AA4]lr = O(10716).
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We see from the argument preceding (2.6), and eq, in (5.5), that

AQ =Q1— Q1 ~ Qe — Q1, eq, =||Q1c — Qullr = 1.7 x 1076,
©(A1) = V2 condy(Ry) = 4.0 x 10,

see (5.6). However we also found using MATLAB that

1Q:1Q7 (Q1e — Q1) || = 2.5 x 10712,

so that necessarily

1@1QT AQ:|I» = |Q1QT(Q1 — Q1)||r ~ 2.5 x 10712,

which is much larger than the first-order term in the upper bound
in (7.10), whose value is O(1071¢). But from our computations the
lowest bound in (7.10) is 3||AQ, |13 &~ 2.4 x 10712, which is also much
larger than the first-order term, so the O(e?) term dominates the e
term in (7.10) even though € ~ 10716, explaining this result. O

Theorem 7.1 can be used effectively as follows. Estimate conds(R)e
and kg (A)e. Since (7.11) is rigorous, the O(¢?) term in (7.9) can never
obscure the ngconds (R)e term, so use this latter as the (approximate)
bound. (n3condy(R)e)? gives an indication of how large the lower
bound in (7.10) could be. The O(e) term in the upper bound of (7.10)
is an excellent asymptotic bound, but if (73conda(R)€)? > n1 ko (A)e,
then the O(e?) term may dominate in (7.10), and we are forced to
use n3conds(R)e as the (approximate) upper bound for |QQT AQ||F
as well.

8 Perturbation analyses for R

In Section 4 we saw (4.4) gives a basis for deriving first-order pertur-
bation bounds for R in the QR factorization of a full column rank
matrix A. In [4] it was shown there were two effective approaches to
carrying out such derivations. These were named the matrix—vector
equation approach, and the (refined) matrix equation approach. The
matrix—vector equation approach will be used to provide a good mea-
sure of the conditioning of R, and a tight lower bound on the result-
ing condition number. We will then use ideas from the refined matrix
equation approach to obtain an upper bound on this condition num-
ber, and a useful approach to estimating it in practice.
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8.1 Matriz—vector equation analysis for R

The first approach views the matrix equation (4.4) as a large matrix—
vector equation. For any matrix C = (¢;5) = [c1,...,cn) € R™*",
denote by cg-z) the vector of the first 4 elements of column c¢;. With
this, we define (“u” denotes “upper”)

It is the vector formed by stacking the columns of the upper triangular
part of C' into one long vector.

The matrix equation (4.4) can be rewritten as the following form
(for the derivation, see [2,4], or just write down the “uvec” of (4.4)
for the n = 2 case).

Wruvec(R(0)) = Zzvec(QTQ), (8.1)

n(n+1) _ n(n+1) n(n+1) 2
where WoeR™ 2 *" 2 and ZpeR 2z *" are

11
r12|T11
T12 T22
Wy = ’
R in )
Cr _
r12 T22 T11
T12 T22
Iy =
Tin T2n * Tnn T11
Tin T2n * Tnn| |T12 T22
L Tin T2n * Tnn |

Since R is nonsingular, W5, is also, and from (8.1)

uvec(R(0)) = W' Zpvec(QTG). (8.2)



16 Xiao-Wen Chang, Chris Paige

In [4] we only assumed a bound on ||G||r, and the tight condition
number for R was immediately seen to be ||W ! Zg]||2. Here the anal-
ysis has to be more subtle to take account of the important additional
information in (4.1).

From (4.1)

QTG <1QTI|G| < 1QT|-C-|A] < |QT]-C|Q|-|R],
and with this (8.2) gives
luvec(R(0))] < (W 'Znlvec(IQ"G) < Wy 'Zy|vec(IQ"]-C-|Q|| R)).

The second inequality here appears to lead to upper bounds which
are not in general tight, but this seems unavoidable. Note for any
matrix Y € RP*™ and N € R™*",

vec(YN) = (NT ® I))vec(Y), (8.3)

where ® denotes the Kronecker product (see for example [11, p. 410]).
It follows that

Juvec(R(0))] < [Wg' Za|-|[R" ® Lnlvec(IQT|-C- Q). (8.4)
Taking the 2-norm, we obtain

IRO)[lr < 1 1W;' Ze|-|RT @ L] ll2 || |1QT]-C-|@Q] |l -
Finally using the Taylor expansion (4.8) and the notation in (3.2),

IAR]» _ m W5 Ze|-|RT @ In| |2
IRl2 — 1£2]|2

e+ 0(é%). (8.5)

Thus for perturbations of the form (4.1) we can regard the quantity

| [Wr Zl-[RT @ I] |1
A) = R
wn(4) &

as the condition number for R in the QR factorization of A.

Now we obtain a lower bound for kz(A). It is not difficulty to
verify (see the Appendix of [2]) from the structures of Wy and Z,
that the first row of W;1Zj is

(8.6)

(1,0,...,0,0,...,0),
—_——— ———
n (n—1)n

and the (i — 1)/2 + 1-th row of W;1Z; is, for i = 2,...,n,
(0,7"%/7‘11,...,7"1',‘/7‘11,0,...,0,0,...,0,1,0,...,0,0,...,0).
S d .

~~

n (i—2)n n (n—i)n
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Thus by simple multiplications, we see that the first n elements of
the (i — 1)/2 + 1-th row of |W;1Z,|-|RT ® I,,| are

(|7"1,~|, ‘7‘21",... , |7‘Z’Z’|,0,...,0), 1=1,...,n.
"
n—i

That is to say there exists a permutation matrix P such that

_ RT| x
P|WRlzR|-|RT®In|:(‘X‘ x).

Hence we have

W ' Ze|-|[RT ® In| |2
122]|2

kr(A) = > 1, (8.7)

where it can be seen from the matrices Wy and Zy following (8.1)
that this lower bound is attained with R = 1.

The difficulty with the condition number kz(A) is that it is ex-
pensive to compute or even estimate directly. In Section 8.2 we will
obtain bounds suggesting a practical condition estimator.

8.2 Obtaining upper bounds using matriz equation ideas

The matrix equation description (4.5) showing R(0) = up[Q”GR™ '+
(QTGRA)T]R, is just another way of saying the same thing as
uvec(R(0)) = W;'Zzvec(QT'G) in (8.2). So for any X € R™*",

W' Zgvec(X) = uvec{up[XR™' + (XR™')T]|R}. (8.8)

It is clear from the right hand side of this that each element of W17,
is a sum of terms, where each term is a product of an element of R~}
with an element of R. It follows that for any X >0 € R™*",

W' Zg|vee(X) < uvec{up[X|R™'| + (X|RT')"]IR]}.  (8.9)

This can also be proven by comparing the ith elements of both sides
of (8.9) (i = 1,2,...,n(n+1)/2). Let D; = diag(sign((W;'Zr)i..))
and define X; € R™*"™ by vec(X;) = D; - vec(X). Then for X >0

(IWz' Znlvec(X))i = (Wg ' Zg)i, - Di-vec(X)

= (Wx ' Za)i, VeC(X')

= (uvec{up[X; R + (X;R HT]R});, see (8.8),
< (uvec{up[|X;[-|[R™"[ + (IX:[-[RT')T]|RI})i.
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Notice that X > 0 and |X;| = X, so (8.9) indeed holds. Now we
define M to be our matrix of interest in (8.6), that is

M=|W:'Z|-|IR" @ I|,  ra(A) = [M]2/||Rll2.  (8.10)
For later use, notice from (8.3) that for any Y € R"*"
W' Zg|vec(Y|R|) = Mvec(Y).

We want to find practical bounds for ||M||s. Write D,, for the set of
all n x n real positive definite diagonal matrices. For any D € D,,, let
R = DR. Notice that for any matrix B we have up(B)D = up(BD).
Now from (8.9) with X =Y|R| and Y > 0, it follows that

[Mvec(Y)ll2 _ IW5 ' Zrlvec(Y|R])|l2
[[vee(Y)]2 [[vee(Y)]2

< luvec{up[Y|R|-|[RY| + (VIR [R_')T]| BRI},
- [vee(Y) ]2
= |luplY |R|-[R™!| + (YIRI-IRT )R /1Y ||+
= |lup[Y |R|-|[R™"| + D™ (Y|R|-|IR™" )" D]|R|||s/IIY |l¢
< polY R[B! |2 Rl2/IY lle, see (3.4)
< poll [R||R™[D[2| D~ R]l,-

But since M > 0, || M|z = maxy ¢y || Mvec(Y)||2/|lvec(Y)||2, so
IM]l2 < poll |R|-|[R™*|D||2|[D~"Rll2, VD €Dy.  (8.11)
When D = I, pp = v/2, and this last with (8.5) and (8.10) gives

|AR]|-
(2P

< V2n1condy(R)e + O(€2),

which is exactly our 2- and F-norm analogy (5.1) of Zha’s [18, The-
orem 2.1] bound. Clearly by choosing D carefully we will usually get
a better result than this. Now we define (with p, as in (3.4))

' —
kp(A) = Dlé%n k(R, D), (8.12)
K(R, D) = po|| |R|-|R™*|Dll2||D~" Rl|2/|| Bl|2. (8.13)

This gives bounds on the true condition number kz(A) in (8.6) and
(8.7) (with ¢(A) in (5.3)) of

1 < kr(A) < KL(A) < K(R,I) = V2condy(R) = p(A).  (8.14)

The above analysis, with (8.5), leads to the following theorem.
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Theorem 8.1 Assume that the conditions and assumptions of Theo-
rem 4.1 hold, then A+ AA = A+€G has the unique QR factorization

A+ AA=(Q+ AQ)(R+ AR),

where
[AR] < mer(A)e+ O(€?), (8.15)
| R2
1< ra(A) < Kh(A) < (4), (8.16)

with m, kr(A), KR(A) and p(A) defined by (3.2), (8.6), (8.12) with
(8.13), and (5.3). O

When we use the standard column pivoting strategy in AP = QR,
where P is the permutation matrix, we get a very nice result. Here

the elements of the resulting R satisfy, for 1 = 1,...,n,
J
T%ZZT;%]-, for each j=14,...,n.
k=i

It follows that 711 > T2 > ... > 7y, and 74 > |ry]. Take D =
diag(r), then pp, < /2, and R = D™'R is unit upper triangular
with 1 = 7 > |ry;| for all j > 4, and it is easy to show that for
§ >4, [(R71)i] < 2771 (see, for example, [7, Lemma 8.6]). Thus
from (8.13) we have

Ko(AP) < K(R,D) < V2 |R 6| Rllx < /n2(1+n)(4"+6n—1)/3.

We see that when the standard pivoting strategy is used, the sensi-
tivity of R is bounded for any n. We summarize this as a theorem.

Theorem 8.2 Let A € R™*"™ be of full column rank, with the QR
factorization AP = QR when the standard column pivoting strategy
is used. Then in (8.16)

1 < kp(AP) < Kp(AP) < \/n2(1+n)(4" +6n—1)/3. O (8.17)

In contrast, ¢(A) in (5.3) can be arbitrarily large for fixed n,
even when standard column pivoting is used. For example, A = R =

[(1) 1?], with very small e > 0. It is easy to see p(A) = O(%) So the
bounds (5.1) can severely overestimate the sensitivity of R.

Clearly x,(A) in (8.12) is a candidate for estimating the condition
number kz(A) of R in the QR factorization. We now give some insight
as to why R in the QR factorization is often less sensitive than the
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earlier condition estimates ¢(A) = v/2 condy(R) suggested. We know
that condz(R) = || |[R[|/R™| |2 only takes out the effect of bad column
scaling in R, whereas according to [17, Thm. 3.3], we have

|RI-\R Dy D, Rll2 < v ing || |RI-IR D2 D Rl

where D, = diag(||(R)i,.||2)- Thus || |R|-|R™*|D;||2|| D1 R||2 takes out
the effect of bad column and row scaling in R. Thus for an R with
poor row scaling, if p;, is not large, then s/, (A4) will be much smaller
than p(A).
Now we return to the example in Section 5. By a similar argument
to that for (5.8), we have for the MATLAB QR factorization
IBe — Blle

<7

2
T mantir(A)u+ O(u”). (8.18)

For the matrices A; and As, we take row scaling Dy = diag(2,1019)
and Dy = diag(2,v/2 x 10710), respectively, then with (8.12)—(8.14)

kr(A1) < K£(Ry,D1) = 2.3, kg(A2) < k(Rz, D) =~ 2.3.

The analysis by Zha [18] leads to condition numbers of about ¢(A4;) =
4.0 x 1019, p(4s) ~ 2.8 x 100, see (5.1), (5.2). Obviously the new
error bound (8.18) gives good estimates for both e, and ez, in (5.5),
in contrast to [18].

9 Condition estimation and numerical experiments

In Section 7 we gave first-order perturbation bounds for the change
in @ lying in R(Q), and the change in @ lying in the orthogonal
complement of R(Q), and defined xq(A) = v2|| |Rn_1|-|R; 1| |2 as
the (asymptotic) condition number for the former.

In Section 8.2 we presented a perturbation bound for the R factor,
and defined kz(A) as a corresponding condition number. In practice
we would like to choose D such that

K(R, D) = | |R|-[R' Dl D~ Rll2/||Rll2

is a good approximation to the infimum x',(A) of k(R, D), where we
know kg(A) < k) (A).

It seems there is no obvious way to cheaply find the best D. Our
numerical experiments indicate if we choose D to equilibrate the rows
of D7'R, i.e., D = D, = diag(||(R)i,.||2), we usually obtain a good
estimate of k(A). But sometimes it can lead to large p, and result
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in an overestimate. However in such situations we found the previous
estimate p(A4) = k(R,I) gave a good approximation. So we may
use min{k(R, D, ),k(R,I)} as an estimate of the condition number
kr(A). The remaining problem is in practice how to cheaply estimate
I||R| - |R~YD||2 with D = D, or D = I. Since |||R|-|R~}|D||2 and
| |R|-|R~!|D||; differ by at most a factor of /n, we can estimate the
latter instead of the former. Following van der Sluis [17, Thm. 2.6],

IRI-|[R™ Dl = |RD;|1ID:R™Dll1, D= diag(ll(R):,jlll()g- )
Notice |[D.R D||; can be estimated in O(n?) flops (see for exam-
ple Higham [7, Chap. 14]). Thus both k(R, D,) and k(R,I) can be
estimated in a total of O(n?) flops.

Our numerical experiments also suggest that another option for
D may give a good approximation. With D, as given in (9.1), choose
D = diag(;) to approximately equilibrate the columns of D.R™! in
(9.1) while keeping p, < v/2. To do this, take 6; = 1/||[(DcR™1). 1|2,
then for j = 2,...,n take §; = 1/|[(D.R™Y). 4ll2 if [|[(DeR7™). 402 >
I(D.R™1). j—1ll2; otherwise 6; = §;_1. For this D we write

D, =D (9.2)

to indicate this choice in the tables (“e” denotes “equilibration”).
The problem is that to our knowledge there is no known way to esti-
mate the 2-norm of each column of the inverse of an upper triangular
matrix in O(n?) flops yet. This is an interesting problem in itself.

We showed with (5.4) that it is easy to construct artificial exam-
ples where the previous bounds (5.1)-(5.3) are exceptionally poor,
while the new ones here are very good. The examples we now give
are intended to develop a feeling for more usual behaviour.

We give three sets of examples, each with and without pivoting,
to show how good the new condition numbers are compared with
the previous ones, how well the new error bounds match the actual
errors in the computed factors, and how well the condition estimates
approximate these new condition numbers. In all these experiments
we computed the condition numbers and condition estimates. For
the first and second sets of examples, see Tables 9.1-9.8, we also
computed (c.f. (7.12) and (8.18), with P = I for no pivoting):

eq = Qe = Qllr,  bo = K(AP)u,
R.— R
€Ep — M, bR — K,R(AP)U. (9.3)
1R]2
Here Q. and R, are the computed QR factors of A in single precision
by means of a MATLAB program chop.m provided by Higham [8],
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Q@ and R are the computed QR factors of A by MATLAB (in double
precision), and u ~ 5.96 x 10~% is the single precision unit roundoff.
So eq and ey, are very good approximations to the norms of the actual
errors in the computed (). and R, and by and by are approximations
to the error bounds (note the matrices in our examples are square
and here we ignore the constant -y, ,, in (7.12) and vy, ,, in (8.18)).

Each matrix in the first set has the form A = D{BD,y, where
D, = diag(1,dy,...,d" ), Dy = diag(l,dQ,...,dgfl) and B is an
n X n random matrix produced by the MATLAB function randn, so
these A are graded. The results for n = 20, dy,ds € {0.8,1,2}, and
the same matrix B, are shown in Tables 9.1-9.4. The results are given
for @, then for R, first without, then with standard pivoting.

Each matrix in the second set has the form A = Q(D1U Ds), where
U is the upper triangular part of a random matrix produced also by
randn, and D; and D5 are the same as in the first set of examples. )
is a random orthogonal matrix produced by gmult.min [8]. This gives
the less likely case of graded R when no pivoting is used. The results
for n = 20, d1,ds € {0.8,1,2}, the same matrix U, but different Q
for each case, are shown in Tables 9.5-9.8.

The third set involves n x n Kahan matrices (see [10]):

1—c-—c
A:R:dia’g(l’s’-..’s'fb—l) ]. :—‘C )
1

where ¢ = cos(0), s = sin(#). The results for n = 5,10, 15,20, 25 with
0 = ©/8 are shown in Table 9.9 without pivoting, and in Table 9.10
for AP where P is a permutation such that the first column moves to
the last column position and the remaining columns are moved left
one position — this permutation is adopted in the rank-revealing QR
factorization for Kahan matrices, see for example Hong and Pan [9].

We now comment on the tables. Ideally we have AP = QR, with
P =T for no pivoting. Remember that p(AP) = k(R, I), see (8.14).

1. We used square matrices in the examples, so QQTAQ = AQ.
The new measure of sensitivity o (AP) of Q, see (7.8), (7.10),
is never larger than the old p(AP) = k(R,I), see (5.2), (5.3). In
Tables 9.7, 9.10 the new measure gives a significant improvement
over the old, and even in the other tables the difference makes it
worthwhile using the new measure.

2. For the sensitivity of R, the old measure k(R, I) compares poorly
with the new measure kx(A) and estimates (R, D,) and k(R, D,)
in all except Table 9.6, where it is clearly superior to (R, D,) in
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the last three cases (it is also marginally better in the fifth and
sixth cases). In all but these three anomalous cases k(R, D,) gave
an excellent estimate of kz(AP), while in these anomalous cases
k(R,I) gave a good estimate, supporting the suggestion of taking
min{k(R, D,), k(R, I)}. In all the cases where x(R, I) is very large,
the new measure kz(AP) is significantly smaller. This suggests R
in the QR factorization is not nearly as sensitive to perturbations
of the form (1.1) as was previously thought, see [18].

3. When standard column pivoting is used kz(AP) can be improved
significantly, and in fact in Tables 9.4 and 9.8, kz(AP) is O(1).
kq(AP) can also be improved significantly, compare Table 9.5 with
9.7. But the old measure for both, (R, I), does not change much.

4. The error bounds b, and by match the corresponding actual errors
eq and ey very well, see (9.3). The numerical results show that
standard pivoting can significantly improve the accuracy of both
the QR factors, compare Table 9.5 with 9.7, and 9.6 with 9.8.

5. The Kahan matrix is theoretically already in standard column piv-
oting form, and kz(A) grows significantly as n increases, though
not as fast as the bound in (8.17). But rank-revealing pivoting
brought xz(AP) back down to O(1).

Table 9.1. A = D;BD, without pivoting, sensitivity of Q

di | d2 | Ka(A) | p(A)=kK(R,I) | eq be

0.8 | 0.8 | 3.5e+02 3.9e+03 1.3e-06 | 2.1e-05
0.8 1 | 3.5e+02 3.9e+03 1.5e-06 | 2.1e-05
0.8 2 | 3.5e+02 3.9e+03 1.5e-06 | 2.1e-05
1 | 0.8 | 3.5e+01 3.5e+02 1.1e-06 | 2.1e-06
1 1 | 3.5e+01 3.5e+02 1.1e-06 | 2.1e-06
1 2 | 3.5e+01 3.5e+02 1.1e-06 | 2.1e-06
2 | 0.8 | 1.1e+06 7.4e+06 1.7e-02 | 6.6e-02
2 1 1.1e+-06 7.4e+06 2.8e-02 | 6.6e-02
2 2 1.1e4-06 7.4e+06 2.8e-02 | 6.6e-02

10 Summary and future work

Componentwise perturbation analyses have been given for the QR
factorization of a matrix A with the form of perturbations we could
expect from the equivalent backward error in A resulting from numer-
ically stable computations. For the () factor we derived the condition
numbers for that part of AQ in R(A), and that part in R+(A). Both
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Table 9.2. A = D;BD, without pivoting, sensitivity of R

di | do kr(A) | k(R,D;) | k(R,D¢) | k(R,I) €r br
0.8 | 0.8 | 1.9e+00 | 5.8e+400 7.7e4+00 | 3.9e4+03 | 2.0e-07 | 1.1e-07
0.8 1 1.2e4+01 | 5.0e+01 4.2e401 | 3.9e+03 | 2.6e-07 | 7.1e-07
0.8 | 2 | 1.3e+01 | 1.9e+02 | 6.2e+01 | 3.9e+03 | 2.0e-07 | 7.7e-07
0.8 | 1.1e4+00 | 2.8e+00 | 3.8e+00 | 3.5e+02 | 1.3e-07 | 6.6e-08
1 9.2e400 | 2.8e+01 3.1e+01 | 3.5e+02 | 4.1e-07 | 5.5e-07
2 1.1e401 | 2.2e4-02 4.8e+01 | 3.5e+02 | 3.2e-07 | 6.3e-07
0.8 | 2.0e+00 | 1.2e+01 | 1.6e+01 | 7.4e+06 | 6.2e-08 | 1.2e-07
1 1.7e4+01 | 2.1e+02 9.0e4+01 | 7.4e4+06 | 1.2e-07 | 1.0e-06
2 5.2e+01 | 1.1e+03 | 4.1e+02 | 7.4e+06 | 4.2e-07 | 3.1le-06

N DN DN b= = =

Table 9.3. A = D;BD, with standard pivoting, sensitivity of @

di | da | ko(AP) | ¢(AP) = k(R,I) e bq
0.8 | 0.8 | 3.3e+02 3.7e+03 1.0e-06 | 2.0e-05
0.8 | 1 | 3.5e+02 3.8e+03 1.2e-06 | 2.1e-05
0.8 | 2 | 5.0e+02 3.7e+03 1.9¢-06 | 3.0e-05
1 | 0.8 | 3.4e+01 3.5e+02 9.4e-07 | 2.0e-06
1 1 | 4.2e+01 3.5e+02 1.0e-06 | 2.5e-06
1 2 | 5.5e+01 3.4e+02 1.4e-06 | 3.3e-06
2 0.8 | 1.1e+06 7.4e+06 1.6e-02 | 6.6e-02
2 1 1.4e+06 7.5e+06 2.2e-02 | 8.2e-02
2 2 | 1.5e+06 7.4e+06 2.0e-02 | 9.1e-02

Table 9.4. A = D;BD, with standard pivoting, sensitivity of R

di | d2 | kr(AP) | k(R,D,) | k(R,D.) | k(R,I) €r br
0.8 | 0.8 | 1.6e+00 | 4.2e4+00 | 6.5e+00 | 3.7e4+03 | 2.1e-07 | 9.6e-08
0.8 1 5.6e+00 | 1.5e+401 1.7e4+01 | 3.8e+03 | 2.4e-07 | 3.4e-07
0.8 | 2 | 1.0e+00 | 1.9e+00 | 5.8¢+01 | 3.7e+03 | 1.1e-07 | 6.0e-08
0.8 | 1.1e4+00 | 2.4e+00 | 3.7e+00 | 3.5e+02 | 9.2e-08 | 6.5e-08
1 | 6.1e+00 | 1.5e+01 | 1.7e+01 | 3.5e+02 | 3.7e-07 | 3.6e-07
2 1.0e4+00 | 1.7e4+00 | 4.3e4+00 | 3.4e4+02 | 7.2e-08 | 6.0e-08
0.8 | 1.3e4+00 | 5.2e+00 1.0e+01 | 7.4e406 | 6.1e-08 | 7.5e-08
1 | 3.8e+00 | 2.1e+01 | 2.4e+01 | 7.5e+06 | 7.0e-08 | 2.3e-07
2 1.0e4+00 | 2.6e+400 7.6e+02 | 7.4e+06 | 8.5e-08 | 6.2e-08

N DN DN b= = =

can be estimated in O(n?) flops. For the R factor, we first derived the
new condition number, and then suggested practical condition esti-
mators. These provide estimates in O(n?) flops. The analyses more
accurately reflect the sensitivity of the problem than previous such
results. Both the analysis and numerical results show that standard
column pivoting can significantly decrease the sensitivity of R, and
Q@ as well, and so give more accurate QR factors. We also found a
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Table 9.5. A = Q(D1UD>) without pivoting, sensitivity of @

di | d2 | ra(4) | p(A) = K(R,T) €q be
0.8 | 0.8 | 2.3e+07 2.3e+07 4.6e-02 | 1.4e+00
0.8 1 2.3e+-07 2.3e+07 1.4e-01 | 1.4e+00
0.8 2 2.5e+-07 2.5e+07 2.8e+00 | 1.5e+00
1 | 0.8 | 4.8¢e+05 4.8e+05 8.2e-03 2.9e-02
1 1 | 4.8e+05 4.8e+05 5.0e-04 2.9e-02
1 2 | 4.8e+05 4.8e+05 4.7e-03 2.9e-02
2 | 0.8 7.3e+01 7.3e+01 1.9e-06 4.3e-06
2 1 7.3e+01 7.3e+01 4.1e-06 4.3e-06
2 7.3e+01 7.3e+01 3.2e-06 4.3e-06

Table 9.6. A = Q(D,UD;) without pivoting, sensitivity of R

di | do kr(A) | K(R,D;) | k(R,De) | &(R,I) €r br
0.8 | 0.8 | 3.2e+03 | 1.5e+04 1.6e+04 | 2.3e+07 | 1.2e-05 | 1.9e-04
0.8 1 8.0e+04 | 5.3e+05 4.0e4+05 | 2.3e4+07 | 4.7e-04 | 4.8e-03
0.8 2 2.1e+05 | 1.4e+06 1.0e4+06 | 2.5e+07 | 2.3e-02 | 1.2e-02
0.8 | 4.2e403 | 2.6e+04 2.0e4+04 | 4.8¢+05 | 7.1e-05 | 2.5e-04
1 9.9¢+04 | 6.5e+05 4.7e+05 | 4.8e+05 | 8.9e-05 | 5.9e-03
2 1.6e4+05 | 1.8e+06 7.3e+05 | 4.8e+05 | 1.5e-03 | 9.2e-03
0.8 | 5.2e401 | 1.9e+04 1.0e4+02 | 7.3e+01 | 5.6e-07 | 3.1e-06
1 5.2e+01 | 4.6e+05 1.0e+02 | 7.3e4+01 | 3.4e-07 | 3.1le-06
2 5.2e+4+01 | 2.8e+06 1.0e+02 | 7.3e4+01 | 9.4e-07 | 3.1e-06

N DD N b= = =

Table 9.7. A= Q(D1UD,) with standard pivoting, sensitivity of Q

di | dz | #o(AP) | 9(AP) = w(B, 1) | eo bo
0.8 | 0.8 | 9.2e+04 2.5e+07 2.1e-04 | 5.5e-03
08| 1 | 9.5e+04 2.5e+07 3.0e-04 | 5.6e-03
08| 2 | 9.5e+04 2.6e+07 2.8¢-04 | 5.7¢-03
1 |08 | 29+03 5.0e+05 2.0e-05 | 1.7e-04
1 | 1 | 29e+03 5.1e+05 1.8e-05 | 1.7e-04
1 | 2 | 3.0e+03 5.2¢4+05 3.8¢-05 | 1.8e-04
2 | 08 | 3.2e+01 7.5e+01 2.3e-06 | 1.9e-06
2 | 1 |3.2e+01 7.6e+01 1.6e-06 | 1.9e-06
2 | 2 | 3.1et01 8.0e+01 1.4e-06 | 1.9e-06

rank-revealing pivoting strategy could improve the condition of R
and Q.

The @ and R factors have practical meanings in several applica-
tions, see for example [3]. Certainly in these cases it can be important
to know how accurate, or sensitive, these factors are. One contribution
of this paper has been to provide the theory whereby the sensitivity
of computed QR factors may be obtained. We propose that standard
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Table 9.8. A = Q(D1UD-) with standard pivoting, sensitivity of R

di | d2 | kr(AP) | k(R,D,) | K&(R,D.) | w(R,I) €r br
0.8 | 0.8 | 2.3e+00 | 9.2e+400 1.3e+01 | 2.5e+07 | 1.0e-07 | 1.4e-07
0.8 1 5.4e+4+00 | 1.9e+01 1.9e+01 | 2.5e+07 | 1.1e-07 | 3.2e-07
0.8 2 1.0e+00 | 2.0e4+00 | 6.1e+00 | 2.6e+07 | 3.2e-08 | 6.0e-08
0.8 | 3.5e+00 | 1.4e+01 | 1.6e+01 | 5.0e+05 | 1.2e-07 | 2.1e-07
1 4.6e4+00 | 1.3e+01 1.4e+01 | 5.1e4+05 | 2.0e-07 | 2.8e-07
2 1.0e+00 | 1.8e400 | 3.8e+00 | 5.2e+05 | 3.8e-08 | 6.0e-08
0.8 | 1.0e+00 | 2.0e+00 | 3.1e+00 | 7.5e+01 | 9.2e-08 | 6.0e-08
1 1.0e+00 | 2.0e4+00 | 3.1e4+00 | 7.6e+01 | 3.1e-08 | 6.0e-08
2 1.0e+00 | 1.7e4+00 | 3.6e+00 | 8.0e+01 | 1.6e-07 | 6.0e-08

N N DN b= = =

Table 9.9. n x n Kahan matrices without pivoting

n Ko (A) Kkr(A) k(R,D;) | k(R,De) | p(A) =k(R,I)
5 1.8e+02 | 6.5e+00 1.4e+01 1.5e+01 9.0e+02
10 | 5.8e+05 | 1.2e4+02 | 3.5e+02 4.0e+02 2.9e+06
15 | 1.9e+09 | 2.5e+03 | 9.5e+03 1.1e+04 9.3e+09
20 | 6.0e+12 | 5.8e+04 | 2.6e+05 2.9e+05 3.0e+13
25 | 1.9e+16 | 1.4e+06 | 7.0e+06 7.6e+06 9.6e+16

Table 9.10. n x n Kahan matrices with rank-revealing pivoting

n | ko(AP) | kr(AP) | K(R,D,) | k(R,De) | p(AP) =k(R,I)
5 | 2.8e+01 | 1.8e+00 | 4.9e+00 | 5.0e+00 8.9e+02
10 | 3.5e+03 | 2.3e+00 | 1.1le+01 1.1e+01 2.8e+06
15 | 4.2e+05 | 2.5e+00 | 1.8e+01 1.8e+01 9.1e4-09
20 | 5.1e+07 | 2.6e+00 | 2.6e+01 2.4e+01 2.9e+13
25 | 6.3e+09 | 2.7e+00 | 3.3e+01 3.1e4+01 9.4e+16

numerical linear algebra software packages include the option of esti-
mating the condition estimates given in this paper for the QR factors.
This can be done by using standard norm estimators that are already
available in the packages. These estimates can then be used to sup-
ply measures of the accuracy of the computed factors. As pointed out
in section 9, this estimation can be done in O(n?) flops. Compared
with the O(mn?) flops required for the computation of the QR fac-
torization itself by the Householder or givens transformations, this
extra computation does not cost much. Such information will be very
helpful to users interested in either the accuracy of the computed QR
factors, or their sensitivity to other perturbations of the form (1.1).
In the future we would like to investigate how well the suggested
practical condition estimates approximate the corresponding condi-
tion numbers. Also we would like to apply the approaches here to the
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Householder QR factorization with complete pivoting (see Cox and
Higham [5]).

Acknowledgements The referees’ suggestions improved the presentation greatly.
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