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Abstract. Given an approximate solution to a data least squares (DLS) problem, we would
like to know its minimal backward error. Here we derive formulas for what we call an “extended”
minimal backward error, which is at worst a lower bound on the minimal backward error. When the
given approximate solution is a good enough approximation to the exact solution of the DLS problem
(which is the aim in practice), the extended minimal backward error is the actual minimal backward
error, and this is also true in other easily assessed and common cases. Since it is computationally
expensive to compute the extended minimal backward error directly, we derive a lower bound on
it and an asymptotic estimate for it, both of which can be evaluated less expensively. Simulation
results show that for reasonable approximate solutions the lower bound has the same order as the
extended minimal backward error, and the asymptotic estimate is an excellent approximation to the
extended minimal backward error.
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1. Introduction. Given an approximate solution to a problem, the aim of back-
ward perturbation analysis is to find a minimum size perturbation in the data such
that the approximate solution is an exact solution of the perturbed problem. In the
analysis one tries to find a formula for, or good bounds on, the size of the minimal
perturbation (to be referred to as the minimal backward error) and design an efficient
algorithm to evaluate or estimate the formula or the bounds. If the relative minimal
backward error (i.e., the size of the minimal perturbation divided by an acceptable
measure of the size of the data) is of the order of the unit round-off then we say that
the approximate solution is a (normwise) backward stable solution. Backward pertur-
bation analyses are useful in practice. Sometimes we may not know if an algorithm
for solving a problem is numerically stable, e.g., the backward numerical stability of
some fast algorithms for structured matrix problems is unknown. But if we know
that a computed solution of a specific problem is a backward stable solution, we are
satisfied with this computed solution. Also when we solve a large scale problem by
an iterative algorithm, the results of a backward perturbation analysis can often be
used to design effective stopping criteria, see, for example, [1], [20] and [25].

There has been a lot of work on the backward perturbation analysis of linear
systems, especially in recent years. For example, for consistent linear systems, see
[14], [25], [30], [31], [32], [34], [37]; for unconstrained least squares problems, see [9],
[12], [17]–[19], [26]–[30], [35]; and for constrained least squares problems, see [4], [18]
and [19].
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The main purpose of this paper is to give a norm-wise backward perturbation
analysis for the general linear data least squares (DLS) problem. As a result the
structure of the matrix and magnitudes of individual elements of the matrix in the
DLS problem will not be considered. We derive formulas for an “extended” minimal
backward error in section 2. This extended minimal backward error is at worst a lower
bound on the minimal backward error. But we show that when the given approximate
solution is a good enough approximation to the exact solution of the DLS problem
(which is the aim in practice), the extended minimal backward error is the actual
minimal backward error. Section 2.1 deals with perturbations in both A and b, while
section 2.2 considers perturbations in A alone, and shows how these are limiting
cases of those in section 2.1. Since computing the extended minimal backward error
directly is time consuming, in section 3 we derive a lower bound on, and in section 4
an asymptotic estimate for, this extended minimal backward error. We give numerical
examples in section 5. Finally a summary is given in section 6.

We use I=[e1, . . . , en] to denote the unit matrix. For any matrix B ∈ R
m×n, its

column range is denoted by R(B), its Moore-Penrose generalized inverse is denoted
by B†, its smallest singular value (the p-th largest singular value with p = min{m,n})
by σmin(B), and its condition number in the 2-norm is denoted by κ2(A). For any
symmetric B ∈ R

n×n, its eigenvalues are labeled in non-decreasing order: λmin =
λ1 ≤ λ2 ≤ · · · ≤ λn, but when only λmin is of interest we will write λ = λmin. For
any vector v ∈ R

n, its Moore-Penrose generalized inverse is

v† ≡
{

0 if v = 0,
vT /‖v‖2

2 if v 6= 0;
‖v‖2 ≡ (vT v)

1
2 .

Note that vv† is the orthogonal projector onto R(v) and I − vv† is the orthogonal
projector onto the orthogonal complement of R(v).

2. Backward perturbation analysis. Given A ∈ R
m×n and b ∈ R

m, the data
least squares (DLS) problem defined by DeGroat and Dowling [5] is:

(2.1) σD ≡ min
E,x

‖E‖F subject to (A+ E)x = b, ‖E‖F ≡ [trace(ETE)]
1
2 .

See also, for example, [21, 22]. The purpose of the DLS problem is to find the optimal
x. For applications of the DLS method to some signal processing problems, see [5].
Let Umin(A) be the left singular vector subspace of A corresponding to its minimum
singular value σmin(A). In [21] it was explained that a satisfactory condition for
building the theory for the DLS problem (2.1) is the condition that we will now
assume holds:

(2.2) A has full column rank, and b 6⊥ Umin(A).

With this condition the solution to (2.1) must exist and be unique. From (A+E)x = b
we have Ex = b−Ax. Thus the minimal E must satisfy

(2.3) E = (b−Ax)x†.

But (2.2) implies b 6= 0, so the solution x must be nonzero and this allows us to
eliminate E and reformulate the DLS problem (2.1) as

(2.4) σD ≡ min
x

‖(b−Ax)x†‖F = min
x

‖b−Ax‖2

‖x‖2
.
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From [21, (5.14)–(5.17)], x̂ solves the DLS problem (2.1) if and only if

AT (b−Ax̂) = −x̂‖b−Ax̂‖2
2

‖x̂‖2
2

,(2.5)

‖b−Ax̂‖2

‖x̂‖2
< σmin(A).(2.6)

Differentiating the objective function in (2.4) and setting the result to zero gives (2.5),
corresponding to a stationary point. The global minimum also satisfies (2.6).

The DLS formulation is designed for problems where the right hand side b is
accurately known, but the matrix A is only known approximately. Given a nonzero
approximate solution y ∈ R

n to Ax ≈ b, two questions are of particular interest here:
Q1: Is y a feasible (not necessarily DLS) solution, given the accuracy of the data?
Q2: Is y a backward stable solution to the DLS problem for the given data A, b?

Q1 will often be easy to check: for example if it is known that the given data matrix
A approximates an unknown ideal matrix Â to within ‖A− Â‖{F or 2} ≤ α while b is
accurately known, then from (2.3) we need only check that ‖b−Ay‖/‖y‖ ≤ α. If the
answer to Q1 is positive and we are not interested in the DLS solution, we might accept
y. But then in practice there will be an infinite set of y satisfying Q1, and we will
often seek some additional criterion, for example “does y make sense physically?”—a
difficult question we might ask of an ill-posed problem. Here we consider the more
generally approachable question Q2, since if we can answer this affirmatively we will
know that y is a desirable computational solution to (2.1). Even if the answer to Q1
is “no” we might still check Q2, since it is possible for y to satisfy Q2 but not Q1, in
that y can be a DLS solution for A+ ∆A, b+ ∆b for very small ∆A and ∆b, but the
minimal norm E in (A + ∆A + E)y = b + ∆b can be too large for Q1. This would
indicate that there are difficulties with the data.

To answer Q2 we would like to solve the minimal backward error problem:

(2.7) min
∆A,∆b

‖[∆A,∆b θ]‖F subject to y = arg min
x

‖b+ ∆b− (A+ ∆A)x‖2

‖x‖2
,

see (2.4), where the chosen scalar θ ≥ 0 allows a different emphasis on each data error.
From (2.5) and (2.6) we see that [∆A,∆b] is a backward perturbation for the DLS

problem with the given solution y if and only if it is in the set CA,b where

C+
A,b ≡

{
[∆A,∆b] : (A+∆A)T [b+∆b− (A+∆A)y] = −y ‖b+∆b− (A+∆A)y‖2

2

‖y‖2
2

}
,

(2.8)

CA,b ≡
{
[∆A,∆b] : [∆A,∆b] ∈ C+

A,b &
‖b+∆b− (A+∆A)y‖2

‖y‖2
< σmin(A+∆A)

}
.

(2.9)

The inequality in (2.9) makes it difficult to derive a general expression for [∆A,∆b] ∈
CA,b, so we initially ignore it and consider the larger set C+

A,b, which we will show is also

useful. The following result from Theorem 5.1 of [3] characterizes [∆A,∆b] ∈ C+
A,b.

Lemma 2.1. If A ∈ R
m×n, b ∈ R

m, and y ∈ R
n is nonzero, then [∆A,∆b] ∈ C+

A,b

in (2.8) if and only if there exist w ∈ R
n and Z ∈ R

m×n such that

A+ ∆A = (b+ ∆b− w)y† + (I − ww†)Z(I − yy†), (b+ ∆b)Tw = 0.(2.10)
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2.1. Allowing backward perturbations in A and b. Based on Lemma 2.1
we will first find a computable expression for µF (y, θ) in the following “extended”
minimal backward error problem:

(2.11) µF (y, θ) ≡ min
[∆A,∆b]∈C+

A,b

‖[∆A,∆b θ]‖F , for C+
A,b in (2.8).

We call µF (y, θ) the extended minimal backward error because we minimize over the
extended set C+

A,b, giving at worst a lower bound on the minimal backward error.
If b = 0 the DLS problem (2.1) has the solution x̂ = 0; if y = 0 then it cannot be

the DLS solution of any problem with b 6= 0. We do not need to consider these cases
further. For the remainder of this paper we will assume the conditions and notation
of the following theorem.

The following will simplify the presentation:

(2.12) ρ ≡ 1/(1 + θ2‖y‖2
2), so that ρθ2‖y‖2

2 = 1 − ρ and 0 ≤ ρ ≤ 1.

Theorem 2.2. Suppose that we are given A ∈ R
m×n, b ∈ R

m, nonzero y ∈ R
n

and θ ≥ 0; and suppose that (2.2) holds. Let r ≡ b−Ay, ρ ≡ 1/(1 + θ2‖y‖2
2), and

N ≡ N(θ) ≡ [A(I − yy†), ρ
1
2 θ‖r‖2(I − rr†), b θ],(2.13)

M ≡M(θ) ≡ A
(
I − yy†

)
AT − rρθ2rT + b θ2bT = NNT − ρθ2‖r‖2

2I.(2.14)

Then M(θ) has at most one negative eigenvalue, and the DLS extended minimal
backward error µF (y, θ) in (2.11) satisfies

µ2
F (y, θ) =

{
ρθ2‖r‖2

2 if λmin(M(θ)) ≥ 0,
ρθ2‖r‖2

2 + λmin(M(θ)) = σ2
min(N(θ)) if λmin(M(θ)) < 0.

(2.15)

Furthermore µF (y, θ) is given by the backward perturbations ∆̂A and ∆̂b in

A+∆̂A =

{
A+r(1−ρ)y† if λmin(M(θ)) ≥ 0,

(I−wθw
†
θ)[A+r(1−ρ)y†]+wθw

†
θAyy

† if λmin(M(θ)) < 0,
(2.16)

b+ ∆̂b =

{
b− rρ if λmin(M(θ)) ≥ 0,

(I − wθw
†
θ)(b− rρ) if λmin(M(θ)) < 0,

(2.17)

where wθ is the (‘unique’ when λmin(M(θ)) < 0) eigenvector of M(θ) corresponding
to λmin(M(θ)), also the left singular vector of N(θ) corresponding to σmin(N(θ)).

Proof. A(I−yy†)AT+b θ2bT is nonnegative definite, so from [15, Theorem 4.3.4(b)]
with k=1, M(θ) has at most one negative eigenvalue.

Now we want to determine the optimal w, Z, ∆A and ∆b in (2.10) to minimize
‖∆A,∆b θ‖F . In the following we discuss two cases separately.

Case 1: The optimal w = 0. Let Y = [y/‖y‖2, Y2] ∈ R
n×n be an orthogonal

matrix. From (2.10) we have (b+ ∆b)Tw = 0 automatically, and

∆AY = (b+ ∆b)y†[y/‖y‖2, Y2] + Z(I − yy†)[y/‖y‖2, Y2] −A[y/‖y‖2, Y2]

= [(b+ ∆b)/‖y‖2, 0] + [0, ZY2] − [Ay/‖y‖2, AY2]

= [(r + ∆b)/‖y‖2, (Z −A)Y2].

It follows that

‖[∆A,∆b θ]‖2
F = ‖∆AY ‖2

F + θ2‖∆b‖2
2 =

1

‖y‖2
2

∥∥∥∥
[

I
θ‖y‖I

]
∆b+

[
r
0

]∥∥∥∥
2

2

+ ‖(Z −A)Y2‖2
F .
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Thus ‖[∆A,∆b θ]‖F is minimized when

(2.18) ∆b = ∆̂b ≡ −
[

I
θ‖y‖I

]† [
r
0

]
= −rρ, Z = Ẑ ≡ A,

and from (2.10) we see that the optimal ∆A must satisfy

∆A = ∆̂A ≡ (b− rρ)y† +A(I − yy†) −A = r(1 − ρ)y†,(2.19)

‖[∆̂A, ∆̂b θ]‖2
F = (1 − ρ)2‖ry†‖2

2 + ρ2θ2‖r‖2
2 = ρθ2‖r‖2

2.(2.20)

In Case 2 we will show that if λmin(M) ≥ 0 then w = 0 is optimal.
Case 2: The optimal w 6= 0. Let Y be as in Case 1, and W = [w/‖w‖2,W2] ∈

R
m×m be an orthogonal matrix. Since wT (b + ∆b) = 0 we can write

(2.21) b+ ∆b = W2s for some s ∈ R
m−1.

From (2.10) we have

WT ∆AY =

[
wT /‖w‖2

WT
2

] [
(b+ ∆b − w)y† + (I − ww†)Z(I − yy†) −A

]
[y/‖y‖2, Y2]

=

[
−‖w‖2/‖y‖2 − wTAy/(‖w‖2‖y‖2) −wTAY2/‖w‖2

s/‖y‖2 −WT
2 Ay/‖y‖2 WT

2 ZY2 −WT
2 AY2

]
.

Thus the objective function can be written as five additive nonnegative terms:

‖[∆A,∆b θ]‖2
F =

[
‖w‖2/‖y‖2 + wTAy/(‖w‖2‖y‖2)

]2
+ ‖wTAY2‖2

2/‖w‖2
2

+ ‖s−WT
2 Ay‖2

2/‖y‖2
2 + ‖WT

2 (Z −A)Y2‖2
F + θ2‖W2s− b‖2

2.
(2.22)

To minimize this we take Z = Ẑ ≡ A and note the sum of terms involving s is

φ(s) ≡ ‖s−WT
2 Ay‖2

2/‖y‖2
2 + θ2‖W2s− b‖2

2(2.23)

=
[
‖WT (W2s−Ay)‖2

2 − (wTAy)2/‖w‖2
2 + θ2‖y‖2

2‖W2s− b‖2
2

]
/‖y‖2

2

=
1

‖y‖2
2

∥∥∥∥
[

I
θ‖y‖2I

]
W2s−

[
Ay

b θ‖y‖2

]∥∥∥∥
2

2

−
(

wTAy

‖w‖2‖y‖2

)2

.

The normal equations for ŝ, the optimal s, give (1 + θ2‖y‖2
2)ŝ = WT

2 (Ay + b θ2‖y‖2
2).

Therefore

(2.24) ŝ = WT
2 [Ayρ+ b(1 − ρ)] = WT

2 (b − rρ).

Substituting this in the first line of (2.23) gives with W2W
T
2 = I − ww†

φ(ŝ) = ‖WT
2 r(1 − ρ)‖2

2/‖y‖2
2 + θ2‖ww†b+W2W

T
2 rρ‖2

2

= ρθ2‖(I − ww†)r‖2
2 + θ2‖ww†b‖2

2.

Then from (2.22), we obtain

min
[∆A,∆b]∈C+

A,b

‖[∆A,∆b θ]‖2
F = min

w
[ψ1(w) + ψ2(w)],(2.25)

ψ1(w) ≡
[
‖w‖2/‖y‖2 + wTAy/(‖w‖2‖y‖2)

]2
,(2.26)

ψ2(w) ≡ ‖wTAY2‖2
2/‖w‖2

2 + ρθ2‖(I − ww†)r‖2
2 + θ2‖ww†b‖2

2.(2.27)
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We will minimize ψ2(w), which is a function of w/‖w‖2 alone, and then show that we
can set ψ1(w) to zero by scaling w, leading to the optimal w. Since Y2Y

T
2 = I − yy†,

ψ2(w) =
wTA(I−yy†)ATw

wTw
+ ρθ2‖r‖2

2

wT (I − rr†)w

wTw
+ θ2

wT bbTw

wTw
(2.28)

=
wTNNTw

wTw
= ρθ2‖r‖2

2 +
wTMw

wTw
,

whose minimum is ρθ2‖r‖2
2 + λmin(M) given by w = wθα for any nonzero α ∈ R and

wθ satisfying Mwθ = wθλmin(M), ‖wθ‖2 = 1, since we assumed w 6= 0.
If λmin(M) ≥ 0 the above with (2.20) in Case 1 show that w = 0 is optimal for

minimizing ‖[∆A,∆b θ]‖2
F , giving the minimum value ρθ2‖r‖2

2. So from (2.18), (2.19)
and (2.20) we see that the top equalities in each of (2.15), (2.16) and (2.17) hold.
Only when λmin(M) < 0 do we need to consider the possibility that w 6= 0.

Assume that λmin(M) < 0. It is easy to verify that ψ1(ŵ) = 0 if

(2.29) ŵ ≡ −wθ(w
T
θ Ay) 6= 0.

Suppose wT
θ Ay = 0, then from wT

θ Mwθ = λmin(M) < 0 and (2.14)

0 > λmin(M) = wT
θ AA

Twθ − (wT
θ r)

2ρθ2 + (wT
θ b)

2θ2 = wT
θ AA

Twθ + (wT
θ b)

2(1−ρ)θ2

which is impossible since the right hand side is nonnegative, see (2.12), proving that
the inequality in (2.29) holds. Therefore from (2.25) we see that when λmin(M) < 0
the extended minimal backward error µF (y, θ) satisfies the two bottom equalities in
(2.15). The bottom equality in (2.17) follows immediately from (2.21) and (2.24), and
substituting this with Z = A and (2.29) in (2.10) gives

A+ ∆A = [(I−wθw
†
θ)(b−rρ) + wθ(w

T
θ Ay)]y

† + (I−wθw
†
θ)A(I−yy†)

= (I−wθw
†
θ)[A+ (b−rρ−Ay)y†] + wθ(w

T
θ Ay)y

†

= (I−wθw
†
θ)[A+ r(1−ρ)y†] + wθ(w

T
θ Ay)y

†,

to prove the bottom equation in (2.16).
Remark 2.1. The criterion λmin(M(θ)) ≥ 0 appears in (2.15)–(2.17). But if,

as is usual, m > n+1, then M(θ) has at least m−n−1 zero eigenvalues corresponding
to eigenvectors spanning R([A, b])⊥. Eigenvalues of a parameterized matrix that are
zero independent of the parameter (here θ) will be called “trivial zero eigenvalues”.
Because they remain zero, their limiting behavior is trivial.

2.2. Allowing a backward perturbation in A alone. In DLS problems only
the matrix A is assumed to have uncertainty, so it is also important to consider the
case where there is a backward perturbation in A alone. Then the corresponding
minimal backward error problem becomes

min
∆A∈CA

‖∆A‖F where

C+
A ≡ {∆A : (A+ ∆A)T [b − (A+ ∆A)y] = −y ‖b− (A+ ∆A)y‖2

2

‖y‖2
2

},(2.30)

CA ≡
{
∆A : ∆A ∈ C+

A &
‖b− (A+ ∆A)y‖2

‖y‖2
< σmin(A+ ∆A)

}
,(2.31)
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and these two sets are just C+
A,b and CA,b in (2.8) and (2.9) with ∆b = 0, so that

∆A ∈ C+
A ⇒ [∆A, 0] ∈ C+

A,b. We can force ∆b = 0 by taking the limit as θ → ∞ in
(2.11), giving for the extended minimal backward error in this more limited case

(2.32) µF (y) ≡ min
∆A∈C+

A

‖∆A‖F = lim
θ→∞

µF (y, θ).

Here we have abused the notation a little by using both µF (·) and µF (·, ·). The proof
using θ→∞ (we use ε ≡ θ−2 ց 0) is made possible by a beautiful classical result.

Lemma 2.3. (Rellich [24, pp. 29–37], see also Kato [16, pp. 121–2]). For ε ∈ R

suppose H(ε) =H(ε)T ∈ R
n×n is analytic about ε= 0, then its eigenvalues and an

orthonormal set of eigenvectors can be chosen analytic about ε=0.
We need some more results to prepare for Theorem 2.6.
Lemma 2.4. If M = SWST with S ∈ R

m×n, W = WT ∈ R
n×n, m ≥ n, then

(a) M has no more positive (negative) eigenvalues than W .
(b) If W = I − yαy† then M has at most one negative eigenvalue.
Proof. Part (a) was proven in [15, §4.5.11] for the case m = n. For m > n writing

M = [S, 0] diag(W, 0)[S, 0]T with square [S, 0] proves that (a) still holds. Since I−yαy†
has eigenvalues 1 when y = 0, and 1 − α, 1, . . . , 1 when y 6= 0, (b) follows from (a).

To make later analysis easier, we use ε to replace θ−2. From (2.12)

(2.33) ρ = ε/(ε+‖y‖2
2), ε+ρ‖y‖2

2 = ε(2−ρ), ε ≡ θ−2.

In our limits we only consider ε ≥ 0, so ε→ 0 will always mean ε ց 0.

Theorem 2.5. With (2.33) if A ∈ R
m×n, 0 6= y ∈ R

n, 0 6= b ∈ R
m, r ≡ b−Ay,

(2.34) H(ε) ≡ εA(I−yy†)AT− rρrT+ bbT , ε ∈ R, H(ε)w(ε) = w(ε)λ(ε), w(ε) ∈ R
m,

m ≥ 2 and λ(0) ≡ λmin(H(0)), then for small enough ε ≥ 0 the minimum eigenvalue
λ(ε) and its normalized eigenvector w(ε) can be chosen analytic with the forms

λ(ε) = λ1ε+λ2ε
2+· · · ; w(ε)=w0+w1ε+w2ε

2+· · · , bTw0 =0, ‖w(ε)‖2 =1.(2.35)

If T (ε) ≡ ε−1P⊥
b H(ε)P⊥

b , then T (0) ≡ lim
ε→0

T (ε) = P⊥
b A(I−y2y†)ATP⊥

b .(2.36)

Let λ∗(0) ≡ λmin(T (0)), then for small enough ε ≥ 0 the minimum eigenvalue λ∗(ε)
and its normalized eigenvector w∗(ε) can be chosen analytic in

T (ε)w∗(ε) = w∗(ε)λ∗(ε), w∗(ε) ∈ R
m, ‖w∗(ε)‖2 = 1.(2.37)

Finally limε→0 ε
−1λ(ε) exists (see (2.35)), and for λ∗(0) and w∗(0) in (2.37),

lim
ε→0

bTw(ε) = 0, lim
ε→0

ε−
1
2 bTw(ε) = 0, lim

ε→0
ε−1bTw(ε) = bTw1;(2.38)

lim
ε→0

ε−1λ(ε)<0 ⇒ λ∗(0)<0 ⇒ lim
ε→0

ε−1λ(ε)=λ∗(0) & w(0)=±w∗(0);(2.39)

lim
ε→0

ε−1λ(ε)≥0 ⇔ λ∗(0) = 0;(2.40)

lim
ε→0

ε−1λ(ε)=0 ⇒ λ∗(0)=0 &

{
{∃x such that b=Ax & ∠(x, y)=±π/4},
or {ε−1λ(ε)=0 in a neighborhood of ε=0}.(2.41)

Proof. The expression for T (0) in (2.36) follows from (2.34) and (2.33), and then

(2.42) T (ε)=T (0)+P⊥
b Ayρy

†ATP⊥
b = P⊥

b A[I−y(2−ρ)y†]ATP⊥
b .
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Clearly H(ε) and T (ε) are analytic about ε=0, so w(ε), λ(ε), w∗(ε), and λ∗(ε) can
be chosen to be analytic with ‖w(ε)‖2 = ‖w∗(ε)‖2 = 1, see Lemma 2.3. Also H(ε)
can have at most one negative eigenvalue, see the start of the proof of Theorem 2.2,
so from Lemma 2.4 T (ε) can have at most one negative eigenvalue. Since m ≥ 2,
H(0)= bbT has minimum eigenvalue λ(0) = 0, proving the first part of (2.35). Since
bbTw(0)=w(0)λ(0)=0, we must have bTw(0)= bTw0 =0, proving the rest of (2.35).
Next (2.35) proves (2.38), and we have

lim
ε→0

ε−1λ(ε) = lim
ε→0

ε−1w(ε)TH(ε)w(ε) = lim
ε→0

ε−
1
2w(ε)TP⊥

b H(ε)P⊥
b w(ε)ε−

1
2(2.43)

= lim
ε→0

w(ε)TT (ε)w(ε) = w(0)TT (0)w(0) ≥ λ∗(0) = λmin(T (0)),

so limε→0 ε
−1λ(ε)<0 ⇒ λ∗(0)<0. When λ∗(0)<0 it is a singleton, see Lemma 2.4,

so for small enough ε, λ∗(ε)<0; then bTw∗(ε) = 0 from (2.37) and (2.36), giving

λ∗(ε) = ε−1w∗(ε)
TP⊥

b H(ε)P⊥
b w∗(ε) = ε−1w∗(ε)

TH(ε)w∗(ε).(2.44)

Taking the limit as ε→0 and using (2.43) with ‖w(ε)‖2 =‖w∗(ε)‖2 =1 gives

λ∗(0) = lim
ε→0

ε−1w∗(ε)
TH(ε)w∗(ε) ≥ lim

ε→0
ε−1λ(ε) = w(0)TT (0)w(0)

≥ λ∗(0) = w∗(0)TT (0)w∗(0),

proving equality throughout, so that limε→0 ε
−1λ(ε) = λ∗(0) when λ∗(0) < 0. Also

w(0)TT (0)w(0) = w∗(0)TT (0)w∗(0) is a minimum of wTT (0)w over wTw = 1 with
unique minimizer (up to sign) when λ∗(0) is a singleton, completing the proof of
(2.39). Since T (ε)b = 0 we see that λ∗(0) ≤ 0, and (2.40) follows using (2.39).

Now assume limε→0 ε
−1λ(ε)=0, (λ1 =0 in (2.35)). Then λ∗(0)=0 in (2.41) fol-

lows from (2.40). If [A, b] has rank s then ε−1H(ε) has m−s trivial zero eigenvalues. If
in the limit as ε→0 there are only trivial zero eigenvalues then by continuity ε−1λ(ε)=
0 in some neighborhood of ε= 0. Next assume there is a nontrivial zero eigenvalue,
that is, an eigenpair of the form (2.35) with λ1 =0 and ATw0 6=0. But λ∗(0)=0 shows
that T (0) is positive semi-definite, and 0= limε→0 ε

−1λ(ε)= limε→0 w
T
0 ε

−1H(ε)w0 =
limε→0 w

T
0 T (ε)w0, see (2.36), so 0=wT

0 T (0)w0 =wT
0 A(I−y2y†)ATw0. Here I − y2y†

is a Householder reflection. Thus

(2.45) ‖ATw0‖2
2 = 2(wT

0 Ay)
2/‖y‖2

2, 0 = T (0)w0 = P⊥
b A(I−y2y†)ATw0,

and A(I−y2y†)ATw0 = bb†A(I−y2y†)ATw0 6= 0, see (2.2). Then Axν = bν where

xν = (I − y2y†)ATw0, ν ≡ bTA(I − y2y†)ATw0/b
T b 6= 0.

From this yTxν = −yTATw0, and with (2.45) xTxν2 =‖ATw0‖2
2 = 2(wT

0 Ay)
2/‖y‖2

2 =
2(yTx)2ν2/‖y‖2

2. This gives 2(yTx)2 = yT y·xTx, so ∠(x, y)=±π/4, proving (2.41).

Remark 2.2. In (2.41) the case b=Ax & ∠(x, y) =±π/4 is extremely unlikely
(it has “probability zero”), requiring b ∈ R(A) (a highly unlikely situation when we
are solving DLS problems), and y to be a terrible approximation to the unique x for
which b = Ax, giving exactly ∠(x, y) = ±π/4.

We can now obtain the equivalent of Theorem 2.2 for a backward perturbation
restricted to A alone.
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Theorem 2.6. Suppose that we are given A ∈ R
m×n, m ≥ 2, with nonzero

b ∈ R
m and y ∈ R

n; suppose also that (2.2) holds. Let r ≡ b−Ay and

N∞ ≡
[
(I−bb†)A(I−yy†), ‖r‖2

‖y‖2
(I−bb†)(I−rr†), b

‖b‖2

‖r‖2

‖y‖2

]
,(2.46)

M∞ = M∞(y) ≡ (I−bb†)A
(
I−y2y†

)
AT (I−bb†) = N∞N

T
∞ − ‖r‖2

2/‖y‖2
2 I.(2.47)

Then λmin(M∞) ≤ 0 and M∞ has at most one negative eigenvalue. Also the DLS
extended minimal backward error µF (y) in (2.32) satisfies

µ2
F (y) =

‖r‖2
2

‖y‖2
2

+ λmin(M∞) = σ2
min(N∞).(2.48)

Furthermore µF (y) is given by the backward perturbation:

(2.49) ∆̂A =

{
ry† if λmin(M∞) = 0,

ry† − w∗w
†
∗A(I − y2y†) if λmin(M∞) < 0,

where w∗ is the eigenvector of M∞ corresponding to λmin(M∞)< 0, or equivalently
the left singular vector of N∞ corresponding to σmin(N∞). If λmin(M∞)<0 in (2.47),
then λmin(M∞) = limθ→∞ λmin(M(θ)) in (2.14). In general (2.48)–(2.49) are the cor-
responding limiting values of (2.15)–(2.16) as θ→∞, except possibly in the probability
zero case mentioned in Remark 2.2 that could only occur if limθ→∞ λmin(M(θ))=0 is
a nontrivial zero eigenvalue, see Remark 2.1.

Proof. Since (2.47) follows from (2.46), the results on N∞ follow trivially from
those on M∞. Since M∞b = 0, λmin(M∞) ≤ 0. From Lemma 2.4 M∞ has at most
one negative eigenvalue. In fact M∞ in (2.47) is identical to T (0) in (2.36), so with
w∗≡w∗(0), λ∗≡λmin(M∞)≡λ∗(0) in (2.37), M∞w∗=w∗λ∗. From (2.14) and (2.34)

(2.50) M(θ) ≡ A
(
I−yy†

)
AT −rρθ2rT +b θ2bT = ε−1H(ε) with ε ≡ θ−2.

Since M(θ) can have at most one negative eigenvalue, when limθ→∞ λmin(M(θ))<0,
λmin(M(θ)) is the unique minimum eigenvalue for large enough θ, and wθ in (2.16)
can be taken as w(ε) in Theorem 2.5. This, and noting that λ(θ2H(θ−2)) is equal to
λmin(M(θ)) for large enough θ, gives from (2.38)–(2.41)

lim
θ→∞

λmin(M(θ))<0 ⇒
{
λmin(M∞)=limθ→∞λmin(M(θ))
& w∗=±limθ→∞wθ & limθ→∞ θwT

θ b=0;

lim
θ→∞

λmin(M(θ))≥0 ⇔ λ∗ ≡ λmin(M∞) = 0;

lim
θ→∞

λmin(M(θ))=0 ⇒ λmin(M∞) = 0 &

{
{∃x : b=Ax & ∠(x, y)=±π/4},
or {∃θ1 : λmin(M(θ))=0 ∀θ>θ1}.

But from (2.12) limθ→∞ ρ=0 and limθ→∞ ρθ2 =‖y‖−2
2 , so that (2.48) is the limiting

value of both cases of (2.15) as θ → ∞. If limθ→∞ λmin(M(θ)) 6= 0 it can also be
seen that in the limit the two criteria in (2.16) become the respective criteria in
(2.49), where if limθ→∞ λmin(M(θ))<0, bTw∗=limθ→∞bTwθ =0, so that in the limit

the two expressions for ∆̂A in (2.16) become the respective expressions in (2.49).
If limθ→∞ λmin(M(θ)) = 0 and this corresponds to trivial zero eigenvalues only, the
top row of (2.49) is clearly once again the correct limit. Only the probability zero
case of limθ→∞ λmin(M(θ)) = 0 with b = Ax, ∠(x, y) = ±π/4, allows the possibility
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that λmin(M(θ)) < 0 for arbitrarily large θ, and since in this case λmin(M∞)=0, this
suggests that (2.16) could fail to give the correct limiting perturbation in (2.49). That
is, although (2.49) is correct, until proven otherwise there remains the possibility that

taking the limit in (2.16) could lead to ∆̂A= ry†−w∗w
†
∗A(I−y2y†) rather than ry†

in this one strange case, see (2.49).

Deriving µF (y) directly as we did for µF (y, θ) also leads to the results down to
the sentence including (2.49). But Theorem 2.5 describes the limiting behavior as
well.

To parallel the remark given in [13, Sec. 20.7] for some formulas for the mini-
mal backward error of ordinary least squares problems, computing and adding the
eigenvalue in (2.15) or (2.48) is not wise computationally. Catastrophic cancellation
may occur when it is negative. Furthermore the computed value may have very poor
accuracy even using well-known software such as MATLAB 7.0, e.g., in (2.48) the
computed value of λmin(M∞) may be smaller than −‖r‖2

2/‖y‖2
2. The singular value

is much more reliable for computation. If we computed that using the Golub-Reinsch
singular value decomposition algorithm it would need about 8/3m3 +4mn2 flops, but
one point of this paper is that we can use cheaper lower bounds or estimates instead.

In Theorem 2.2 we have either λmin(M(θ)) < 0 or λmin(M(θ)) ≥ 0, while in
Theorem 2.6 we have either λmin(M∞) < 0 or λmin(M∞) = 0. By substituting the
resulting perturbations in the relevant inequalities it is straightforward to see that the
inequality in (2.9) is satisfied when λmin(M(θ)) ≥ 0 and rank(A+r(1−ρ)y†) = n and
the inequality in (2.31) is satisfied when λmin(M∞) = 0 and rank(A + ry†) = n. It
follows that in these two special cases the extended minimal backward error is actually
the true minimal backward error, and that nothing was lost by using the “supersets”
C+

A,b and C+
A . We will supply further justification for the use of these supersets later.

The following result indicates that the extended minimal backward error µF (y)
is continuous at y = x̂, where x̂ is the DLS solution in (2.5)–(2.6), where of course
µF (x̂) = 0. In order to save space, here and in the rest of the paper we will only
consider the case where A is perturbed, but all the results could be extended to the
more general case where both A and b are perturbed.

Corollary 2.7. With the notation and conditions of Theorem 2.6, and the DLS
solution x̂ in (2.5)–(2.6), define M̂∞ ≡ M∞(x̂) (see (2.47)), and r̂ ≡ b − Ax̂. Then
with (2.15),

lim
y→x̂

µF (y) = µF (x̂) =

( ‖r̂‖2
2

‖x̂‖2
2

+ λmin(M̂∞)

)1/2

= 0.

Proof. First we see that (2.5) just says

AT r̂ = AT (b−Ax̂) = −x̂‖b−Ax̂‖2
2/‖x̂‖2

2 = −x̂‖r̂‖2
2/‖x̂‖2

2,

and multiplying this on the left by x̂T shows that

(2.51) 0 = (b−Ax̂)T (b −Ax̂) + (Ax̂)T (b−Ax̂) = bT (b−Ax̂) = bT r̂,

so that (I − bb†)r̂ = r̂. Since M̂∞ = M∞(x̂) = (I − bb†)A(I − 2x̂x̂†)AT (I − bb†), the
above give

M̂∞r̂ = (I − bb†)A(I − 2x̂x̂†)AT r̂ = −(I − bb†)A(I − 2x̂x̂†)x̂‖r̂‖2
2/‖x̂‖2

2

= (I − bb†)Ax̂‖r̂‖2
2/‖x̂‖2

2 = (I − bb†)(Ax̂ − b)‖r̂‖2
2/‖x̂‖2

2

= −r̂‖r̂‖2
2/‖x̂‖2

2.
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Thus by Lemma 2.4, −‖r̂‖2
2/‖x̂‖2

2 is the only negative eigenvalue of M̂∞, and µF (x̂) =
0. Clearly when y → x̂ we have r = b − Ay → r̂, M∞ → M̂∞, and by the continuity
of the eigenvalues of M∞ in (2.47), λmin(M∞) → λmin(M̂∞), completing the proof.

Since in (2.32) CA ⊆ C+
A ,

µF (y) ≡ min
∆A∈C+

A

‖∆A‖F ≤ min
∆A∈CA

‖∆A‖F ,

i.e., µF (y) is a lower bound on the minimal backward error. However we have found
computationally, see section 5, that when y is a reasonable approximation to the exact
solution of the DLS problem (2.1), the minimal perturbation ∆̂A usually satisfies the
inequality in (2.31). Therefore in such cases µ(y) is actually the minimal backward
error. The following result partially justifies this finding.

Theorem 2.8. For given A ∈ R
m×n and b ∈ R

m suppose that (2.2) holds. Let
x̂ be the DLS solution to (2.1). Then there exists an ǫ > 0 such that if ‖y − x̂‖2 < ǫ,
then µF (y) above is the true minimal backward error.

Proof. For any given y Theorem 2.6 shows that ∆̂A satisfying (2.49) is the

minimizer of (2.32). Notice that when y → x̂ we have from Corollary 2.7 that ∆̂A→ 0.
Thus

lim
y→x̂

(
‖b− (A+ ∆̂A)y‖2

‖y‖2
− σmin(A+ ∆̂A)

)
=

‖b−Ax̂‖2

‖x̂‖2
− σmin(A)

Since ‖b−Ax̂‖2

‖x̂‖2
− σmin(A) < 0, there must exist ǫ > 0 such that when ‖y − x̂‖2 < ǫ,

‖b− (A+ ∆̂A)y‖2

‖y‖2
− σmin(A+ ∆̂A) < 0.

Therefore ∆̂A ∈ CA and µF (y) = min∆A∈CA
‖∆A‖F , i.e., when ‖y − x̂‖2 < ǫ, µF (y)

is the true minimal backward error.

3. A lower bound on min∆A∈C+

A
‖∆A‖2. Since computing µF (y) directly is

expensive, in this section we suggest a good lower bound which can be estimated
easily.

First we give the following result, which is analogous to Theorem 3.1 in [35] for
ordinary least squares problems.

Theorem 3.1. With the notation and conditions of Theorem 2.6, and with C+
A

in (2.30) let µ2(y) ≡ min∆A∈C+

A
‖∆A‖2. Then for µF (y) in (2.32)

(3.1)
1√
2
µF (y) ≤ µ2(y) ≤ µF (y).

Proof. For any ∆A ∈ C+
A we see from Lemma 2.1 that there exist w satisfying

bTw = 0 and Z ∈ R
m×n such that

∆A = (b− w)y† + (I − ww†)Z(I − yy†) −A

= [(I − ww†)b− w]y† + (I − ww†)Z(I − yy†)

− (I − ww†)Ayy† − ww†Ayy† − (I − ww†)A(I − yy†) − ww†A(I − yy†)

= [(I − ww†)(b−Ay) − w − ww†Ay]y† − ww†A(I − yy†)

+ (I − ww†)(Z −A)(I − yy†).
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Denote ∆A1 = [(I − ww†)(b − Ay) − w − ww†Ay]y†, ∆A2 = −ww†A(I − yy†),
and ∆A3 = (I − ww†)(Z − A)(I − yy†). Since ∆A1∆A

T
2 = 0, ∆A1∆A

T
3 = 0 and

∆AT
2 ∆A3 = 0 and ∆A1 and ∆A2 are rank 1 matrices,

‖∆A‖2
2 = ‖∆A1 + ∆A2 + ∆A3‖2

2 = ‖(∆A1 + ∆A2 + ∆A3)(∆A1 + ∆A2 + ∆A3)
T ‖2

= ‖∆A1∆A
T
1 + (∆A2 + ∆A3)(∆A2 + ∆A3)

T ‖2

≥ max{‖∆A1∆A
T
1 ‖2, ‖(∆A2 + ∆A3)(∆A2 + ∆A3)

T ‖2}

≥ 1

2
(‖∆A1‖2

2 + ‖∆A2 + ∆A3‖2
2)

=
1

2
(‖∆A1‖2

2 + ‖(∆A2 + ∆A3)
T (∆A2 + ∆A3)‖2)

=
1

2
(‖∆A1‖2

2 + ‖∆AT
2 ∆A2 + ∆AT

3 ∆A3‖2) ≥
1

2
(‖∆A1‖2

2 + ‖∆A2‖2
2)

=
1

2
(‖∆A1‖2

F + ‖∆A2‖2
F ) =

1

2
‖∆A1 + ∆A2‖2

F ≥ 1

2
min

∆A∈C+

A

‖∆A‖2
F ,

where the last inequality is due to the fact that ∆A1 + ∆A2 ∈ C+
A (take Z = A).

Therefore

min
∆A∈C+

A

‖∆A‖2
2 ≥ 1

2
min

∆A∈C+

A

‖∆A‖2
F ,

leading to the first inequality in (3.1). The second inequality in (3.1) is easy to prove.

In fact, if ∆̂A is a minimal solution to (2.32), then

µF (y) = ‖∆̂A‖F ≥ ‖∆̂A‖2 ≥ µ2(y).

Now we give a lower bound on µ2(y) ≡ min∆A∈C+

A
‖∆A‖2.

Theorem 3.2. With the notation and conditions of Theorem 2.6, and with
µ2(y) ≡ min∆A∈C+

A
‖∆A‖2 for C+

A in (2.30),

(3.2) µ2(y) ≥ µlb
2 (y) ≡ 2β0

β1 +
√
β2

1 + 4β0

,

where

(3.3) β0 ≡
∥∥(AT r‖y‖2

2 + y‖r‖2
2)
∥∥

2

2‖y‖3
2

, β1 ≡ ‖y‖3
2‖A‖2 + 3‖y‖2

2‖r‖2

2‖y‖3
2

.

Proof. For any ∆A ∈ C+
A , from (2.30) we obtain

(A+ ∆A)T (r − ∆Ay)‖y‖2
2 + y‖r − ∆Ay‖2

2 = 0.

Thus we have

AT r‖y‖2
2 + y‖r‖2

2 = AT ∆Ay‖y‖2
2 − ∆AT r‖y‖2

2 + y2(rT ∆Ay)

+ ∆AT ∆Ay‖y‖2
2 − y‖∆Ay‖2

2.

Then taking the 2-norm on both sides of this equation, we obtain the inequality
∥∥(AT r‖y‖2

2 + y‖r‖2
2)
∥∥

2
≤ (‖y‖3

2‖A‖2 + 3‖y‖2
2‖r‖2)‖∆A‖2 + 2‖y‖3

2‖∆A‖2
2,
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that is, with (3.3), the quadratic inequality in terms of ξ ≡ ‖∆A‖2:

β0 ≤ β1ξ + ξ2.

Since ξ and β1 are nonnegative, ξ ≥ ξ+, where ξ+ is the positive root of β0 = β1ξ+ξ2,
so

ξ ≥ ξ+ = (
√
β2

1 + 4β0 − β1)/2 = 2β0/(
√
β2

1 + 4β0 + β1),

giving (3.2).

The lower bound in (3.2) can usually be evaluated in O(mn) flops, since ‖A‖2 can
usually be estimated by a standard norm estimator in O(mn) flops, see [13, Sec. 15.2].
In fact a good estimate of ‖A‖2 might already be available from whatever method
is used for obtaining y, and the cost will essentially be the 4mn flops for computing
AT (b−Ay).

Also µlb
2 (x̂) = µ2(x̂) = µF (x̂) = 0 as desired, see (2.5), Corollary 2.7, and (3.1).

4. An asymptotic estimate for µF (y). Computing µF (y) directly is expen-
sive and the lower bound (3.2) may not be very tight. In this section we would like
to give an asymptotic estimate by following the general approach given in [9].

Let f(A, y) ≡ (b− Ay)T (b −Ay)y + (yT y)AT (b −Ay) = ‖r‖2
2y + ‖y‖2

2A
T r. Note

that f(A, x̂) = 0 (see (2.5)). The extended minimal backward perturbation ∆A is the
matrix satisfying f(A+ ∆A, y) = 0 and µF (y) = ‖∆A‖F . But by Taylor’s expansion,
for small enough E ∈ R

m×n,

f(A+ E, y) ≈ f(A, y) + JAf(A, y)vec(E),

where JAf(A, y) ∈ R
n×mn is the Jacobian matrix of f with respect to vec(A). Thus

an approximation to ∆A is that E giving the minimum 2-norm solution to

(4.1) f(A, y) + JAf(A, y)vec(E) = 0,

that is, E such that

vec(E) = −[JAf(A, y)]†f(A, y), µ̃F (y) ≡ ‖E‖F = ‖[JAf(A, y)]†f(A, y)‖2.(4.2)

Theorem 4.1. With the notation and conditions of Theorem 2.6, µ̃F (y) in (4.2)
is an asymptotic estimate of µF (y) in (2.32), i.e. for x̂ solving (2.1),

lim
y→x̂

µ̃F (y)

µF (y)
= 1.

Proof. By Taylor’s expansion,

(4.3) 0 = f(A+ ∆A, y) = f(A, y) + JAf(A, y)vec(∆A) +O(‖∆A‖2
F ).

Thus from (4.2),

vec(E) = −[JAf(A, y)]†f(A, y) = [JAf(A, y)]†JAf(A, y)vec(∆A) +O(‖∆A‖2
F ).

Taking the 2-norm and noticing [JAf(A, y)]†JAf(A, y) is an orthogonal projection
matrix, we obtain

µ̃F (y) ≤ µF (y) +O(‖∆A‖2
F ),
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which, with Corollary 2.7, leads to limy→x̂ µ̃F (y)/µF (y) ≤ 1.
On the other hand, from (4.1) and (4.3) we can obtain

JAf(A, y)vec(∆A) = JAf(A, y)[vec(E) +O(‖∆A‖2
F )].

Since ∆A is a matrix satisfying the above equality with minimum F-norm, we must
have

‖vec(∆A)‖2 ≤ ‖vec(E) +O(‖∆A‖2
F )‖2 ≤ ‖vec(E)‖2 +O(‖∆A‖2

F )

which, with Corollary 2.7, leads to limy→x̂ µ̃F (y)/µF (y) ≥ 1, completing the proof.

Theorem 4.1 is similar to [9, Cor 3.4], where a general minimal backward error
problem was considered, and applying the corollary to our case will result in the
asymptotic estimate ‖[JAf(A, x̂)]†f(A, y)‖2. We thank the referee who pointed out
that a general version of Theorem 4.1 was given in [10] (with no formal proof).

In the following we will consider computing or estimating µ̃F (y). First we would
like to obtain an explicit expression for it. If f = (fi) and g = (gi) are column vectors,
then we define the matrix ∂f/∂gT ≡ (∂fi/∂gj). Write m× n A = [a1, . . . , an], yT =
(η1, . . . , ηn), then ∂r/∂aT

j = ∂(b − Ay)/∂aT
j = −ηjI, ∂(rT r)/∂aT

j = 2rT∂r/∂aT
j =

−2ηjr
T , and if i 6= j, ∂(aT

i r)/∂a
T
j = −ηja

T
i , while ∂(aT

j r)/∂a
T
j = rT − ηja

T
j , from

which we see that, with vec(A)T = (aT
1 , . . . , a

T
n ) and

JAf(A, y) ≡ ∂f(A, y)/∂vec(A)T = [∂f(A, y)/∂aT
1 , . . . , ∂f(A, y)/∂aT

n ],

∂f(A, y)/∂aT
j = ∂(rT ry + yT yAT r)/∂aT

j = −2ηjyr
T + yT yejr

T − ηjy
TyAT ,

JAf(A, y)·[JAf(A, y)]T =
n∑

j=1

[∂f(A, y)/∂aT
j ]·[∂f(A, y)/∂aT

j ]T

=

n∑

j=1

(−2ηjyr
T + yT yejr

T − ηjy
T yAT )(−2ηjyr

T + yT yejr
T − ηjy

T yAT )T

= ‖y‖6
2[A

TA+AT ry† + (y†)T rTA+ (‖r‖2
2/‖y‖2

2)I]

= ‖y‖6
2

[
A+ ry†

(‖r‖2/‖y‖2)(I − yy†)

]T [
A+ ry†

(‖r‖2/‖y‖2)(I − yy†)

]
.(4.4)

Here the matrix

[
A+ ry†

(‖r‖2/‖y‖2)(I − yy†)

]
has full column rank. In fact if it does not

then there exists nonzero x ∈ R
n such that

(A+ ry†)x = 0, (I − yy†)x = 0,

and it follows that Ay+r = 0, so b = 0, contradicting our assumption (2.2). Therefore
JAf(A, y) has full row rank. Then from (4.2),

µ̃F (y) = ‖[JAf(A, y]T
{
JAf(A, y)·[JAf(A, y)]T

}−1
f(A, y)‖2

= ‖
{
JAf(A, y)·[JAf(A, y)]T

}−1/2
f(A, y)‖2,(4.5)

where the second equality can easily be proved by using the SVD of JAf(A, y).
Define

(4.6) B ≡
[

A+ ry†

(‖r‖2/‖y‖2)(I − yy†)

]
, c ≡

[
r
0

]
∈ R

m+n.
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Note that

(4.7) f(A, y) = ‖y‖2
2(A

T r + ‖r‖2
2(y

†)T ) = ‖y‖2
2B

T c.

Then from (4.5) with (4.4) and (4.7), it follows that

µ̃F (y) =
‖(BTB)−1/2BT c‖2

‖y‖2
=

[cTB(BTB)−1BT c]1/2

‖y‖2
=

‖B(BTB)−1BT c‖2

‖y‖2
.(4.8)

Note that B(BTB)−1BT is an orthogonal projector onto R(B).
The asymptotic estimate µ̃F (y) is analogous to an estimate for the minimal back-

ward error for ordinary least squares problems whose various forms have been studied
in [9], [11], [12], and [17]. One method for computing µ̃F (y) is to use the QR fac-
torization. If B = QR where Q ∈ R

(m+n)×n satisfies QTQ = In, and R is upper
triangular, then we see that

(4.9) µ̃F (y) = ‖QT c‖2/‖y‖2.

If we use Householder QR factorization, this method will cost 2(m+ 2/3n2)n2 flops.
The other method is to use the moment method by following [27, Part I]. For brevity,
we will not give details here.

5. Numerical tests. In section 2 we gave an extended minimal backward error
µF (y), which is a lower bound on the minimal backward error. But if the inequality in

(2.31) holds for the extended minimal backward perturbation ∆̂A given in (2.49), then
µF (y) is in fact the minimal backward error. Our numerical tests indicate that if the
given vector y is a reasonable approximation to the true DLS solution, the inequality
in (2.31) holds, where ∆A is the minimal ∆̂A given in (2.16). We will give some
examples in this section to illustrate this. In sections 3 we gave a lower bound µlb2 (y)
on µ2(y), which is also a lower bound on µF (y) (since µ2(y) ≤ µF (y)). In section 4 we
presented an asymptotic estimate µ̃F (y) of µF (y). We will give numerical examples
to show how good µlb2 (y) and µ̃F (y) are as approximations to µF (y). We carried out
computations using MATLAB 7.4 on a MacBook running Mac OS X 10.4.11.

In our numerical tests the data was constructed as follows (randn and rand are
two MATLAB built-in functions for generating random matrices with normal and
uniform distributions, respectively):

• We use two types of test matrix for A:
Type 1: A = Ã/‖Ã‖F , Ã = randn(100, 40). Typically κ2(A) ≤ 10.
Type 2: A = Ã/‖Ã‖F , Ã = UΣV T , 40 × 40 Σ = diag(σi), σi = 10−4(i−1)/39,
U ∈ R

100×40 and V ∈ R
40×40 are the Q-factors of the QR factorizations of

two random matrices randn(100, 40) and randn(40, 40), respectively. Note
that κ2(A) = 104.

• b = (A + E)x, x = [1, . . . , 1]T ∈ R
40, E = δA√

100×40
rand(100, 40) (note

that ‖E‖F ≤ δA), δA = 10−7, 10−6, . . . , 10−1 for type 1 matrices A, δA =
10−7, 10−6, 10−5, 10−4 for type 2 matrices A. The DLS estimate usually has
no accurate digits compared with x if δA is taken to be larger.

• y = x̂+ 1√
40
δx̂‖x̂‖2 rand(40, 1), x̂ is the computed solution to the DLS problem

(2.1) and δx̂ = 0, 10−7, 10−6, . . . , 10−1 .
• For each pair of δA and δx̂ and each type of matrix, we generated 1000 sample

problems.
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The solution x̂ to the DLS problem satisfies (see [5]):

(5.1) x̂ =
bT b

bTAvD

vD,

where vD is the right singular vector corresponding to the smallest singular value of
(I − bb†)A. The equality (5.1) can also be obtained from [21, Sec. 9], which suggests
a way to compute x̂. In our numerical tests we used the MATLAB built-in function
svd to find vD and then computed x̂. To compute the asymptotic estimate µ̃F (y),
we first computed the QR factorization of B (see (4.6)) to find the Q-factor and then
used (4.9).

In our numerical tests single precision was used to generate the data A, b and y,
and to compute the DLS solution x̂; and both single precision and double precision
were used to compute both sides of the inequality in (2.31) (where ∆A gives the
minimum). The number of failures to satisfy the inequality for each case by single (S)
and double (D) precision is reported in Table 5.1 for type 1 matrices, and in Table 5.2
for type 2 matrices. When δA is small or δx̂ is large, we see that the computed version
of the inequality by single precision sometimes fails. In particular for ill-conditioned
type 2 matrices, when δA = 10−7 or δx̂ = 10−1, the failure percentage is very large.
However the computed version of the inequality by double precision always holds
for these test cases. This shows that these failures were due to rounding errors in
the single precision computed version of the inequality, and for these test cases the
extended minimal backward error is actually the true minimal backward error. The
reason single precision rounding errors caused some tests to fail is almost certainly the
following: in each failed case the gap between the smallest and the second smallest
singular values of N∞ was small, making the computation of the singular vector w∗
(see (2.49)) inaccurate (see, e.g., [2, Thm 1.2.8] or [8, Thm 8.6.5] for perturbation
results concerning the singular vectors). Indeed we noticed that for the failed cases
w∗ computed by single precision was very inaccurate compared with the one computed
by double precision, leading to a large computational error in ∆̂A, where this is needed
for checking the inequality in (2.31).

In Figures 5.1 to 5.8 we give the plots corresponding to eight extreme cases in
Tables 5.1 and 5.2 which exhibit µF (y) (as abscissa) vs µlb2 (y) in (3.2), and µF (y) (as
abscissa) vs µ̃F (y) in (4.2) and (4.9), represented by the points · (blue) for µlb2 (y),
and ∗ (green) for µ̃F (y). The diagonal (red) is plotted for reference. In these figures
the above quantities were computed by double precision. But we can see no difference
between these figures and the corresponding ones obtained by single precision.

From Figures 5.1, 5.2, 5.5 and 5.6, where each y is the computed DLS solution
x̂, we see that the minimal backward error µF (x̂) ≈ 10−7, which is close to the unit
roundoff for single precision, so that each computed x̂ is a backward stable solution.
It is interesting to see from Figures 5.3, 5.4, 5.7 and 5.8 that µF (y) is about one or
two orders of magnitude smaller than δx̂. This phenomenon also holds for other test
cases.

All these figures and the figures we did not display here indicate that the lower
bound µlb2 (y) is a reasonable approximation to the minimal backward error µF (y) in
the sense that these two always had the same order of magnitude, although the case
for type 1 matrices is worse than the case for type 2 matrices. We also see that the
asymptotic estimate µ̃F (y) is an excellent approximation to µF (y), even when y is
not close to the DLS solution x̂, see Figures 5.3, 5.4, 5.7, and 5.8, where δx̂ = 10−1.
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δx̂
0 10−7 10−6 10−5 10−4 10−3 10−2 10−1

δA

10−7 S 9 2 4 2 1 1 2 1
D 0 0 0 0 0 0 0 0

10−6 S 4 2 1 2 4 1 4 1
D 0 0 0 0 0 0 0 0

10−5 S 0 0 0 0 0 4 3 0
D 0 0 0 0 0 0 0 0

10−4 S 0 0 0 0 0 0 2 1
D 0 0 0 0 0 0 0 0

10−3 S 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0

10−2 S 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0

10−1 S 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0

Table 5.1
Number of failures to satisfy the inequality (2.31) out of 1000 samples for type 1

δx̂
0 10−7 10−6 10−5 10−4 10−3 10−2 10−1

δA

10−7 S 718 725 726 749 965 997 1000 997
D 0 0 0 0 0 0 0 0

10−6 S 2 0 1 0 107 970 1000 997
D 0 0 0 0 0 0 0 0

10−5 S 0 0 0 0 0 120 945 995
D 0 0 0 0 0 0 0 0

10−4 S 0 0 0 0 0 0 123 888
D 0 0 0 0 0 0 0 0

Table 5.2
Number of failures to satisfy the inequality (2.31) out of 1000 samples for type 2
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Fig. 5.1. Type 1 A, δA = 10−7, δx̂ = 0
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Fig. 5.2. Type 1 A, δA = 10−1, δx̂ = 0
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Fig. 5.3. Type 1 A, δA = 10−7, δx̂ = 10−1
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Fig. 5.4. Type 1 A, δA = 10−1, δx̂ = 10−1
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Fig. 5.5. Type 2 A, δA = 10−7, δx̂ = 0
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Fig. 5.6. Type 2 A, δA = 10−4, δx̂ = 0
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Fig. 5.7. Type 2 A, δA = 10−7, δx̂ = 10−1
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Fig. 5.8. Type 2 A, δA = 10−4, δx̂ = 10−1

6. Summary and future work. For a given approximate solution y to the
DLS problem (2.1), we first presented formulas (2.15) in Theorem 2.2 for an extended
minimal backward error µF (y, θ) for the case where backward perturbations in both
A and b are allowed. Then by taking θ → ∞ we obtained the corresponding formulas
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(2.48) in Theorem 2.6 for an extended minimal backward error µF (y) for the case
where only backward perturbations in A are allowed—this is the case we considered
later in the paper. In theory µF (y) is a lower bound on the minimal backward error,

but if the inequality in (2.31) is satisfied for the optimal perturbation ∆̂A given in
(2.49), it is in fact the the minimal backward error. Our simulations showed that if
y is a reasonable approximation to the exact DLS solution (that is, having a relative
error in y of less than 10−1 for our test cases), then, apparently the inequality in
(2.31) holds in the absence of rounding errors in checking the inequality. Thus we
believe in practice that µF (y) can usually be used as the minimal backward error.
Since the formula (2.48) for µF (y) involves the minimum singular value of a matrix,
it is expensive to compute directly. In order to overcome this problem we derived a
lower bound µlb2 (y) (see (3.2)) and an asymptotic estimate µ̃F (y) (see (4.6), (4.8) and
(4.9)). These can be computed or estimated more efficiently. For our numerical test
cases µlb2 (y) always had the same order of magnitude as µF (y), and µ̃F (y) was an
excellent approximation to µF (y). Since the computation of µlb2 (y) is so inexpensive,
it would seem to give a simple and effective indicator.

Several problems need to be investigated in the future. To check if the extended
minimal backward error is the actual minimal backward error we need an efficient
and reliable way to test the inequality in (2.31) (or the inequality in (2.9) when
perturbations in both A and b are allowed). The relationships between µF (y) and
µ̃F (y) needs to be studied further. We would also like to incorporate the results
obtained in this paper to design effective stopping criteria for iterative algorithms for
solving the DLS problem, and extend the results here to total least squares problems
(see [7] and [33]) and scaled total least squares problems (see [23] and [21]).
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