Numerical Integration I

Introduction There are two types of integrals: indefinite integral and definite integral. If
we can find an anti-derivative F'(z) of a function f, and F'is an elementary function, then
we can compute

I:/abf(a:)dx:F(b)—F(a).

Maple and Mathematica can do symbolic integration (when possible).

However often it is not possible to obtain such an F'(z) for f(x). e.g. the case of f(z) =
e **. When symbolic integration is not feasible, we can use numerical integration, to
approximate an integral by something which is much easier to compute.

One important interpretation for the definite integral ff f(z)dz is it is the area between
the graph of f and the z-axis on this interval (here the area may be negative).

Rectangle Rule I

Rectangle
Rule
a |<hs> b
Partition [a, b] into n equal subintervals [x;, z;41], @ = 0,1,...,n — 1, all with width h =

(b — a)/n. Each rectangle touches the graph of f at its top left corner.
The area of the rectangle over [z;, x; 1] is

hf(z;) = hf(a+ih).

The total area of the n rectangle panels is

n—1

In=hY fla+ih).

=0

This is an approximation of I = ff f(z)dz and it is called the (left composite) rectangle
rule (for n equal subintervals). Note that f is evaluated at n discrete points.
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Error Analysis of the Rectangle RuleI

Tools for error analysis: The Mean-Value-Theorem

e for sum: Let ¢(x) be continuous on [a,b]. If p(z;) > 0 for i =1,...,n, then

zn:]?(zz)Q(Zz) =q(z) zn:p(zi), some z € [a, b],

=1 =1

e for integrals: Let ¢(x) and p(x) be continuous with p(z) > 0. Then
b b
[ p@)a(e)de = a(2) [ pla)dz, some = € [a,]

Theorem: Let f’ be continuous on [a,b]. Then for some z € [a, b],

1
I—1Ig= é(b —a)hf'(z) = O(h).
Proof: We first show when h = b — a, it is true, i.e.,
1
I—1Ig= §(b —a)?f'(z), for some z € [a,b] (x)

For every z € [a,b], the Taylor series expansion gives

f(x) = f(a)+ (x —a)f'(z,), for some z, € [a,b)].

Then b
I In= [ f@)de - f(a)b—a)
b -

= [ f@ydr - [ fla)de

= [1@) - fla)ar

_ /b(x —a)f(z,)da

= f'(2) /b(x —a)dz (MVT for integral)

= L)
Now let [a,b] be divided into n equal subintervals by xzg,x1,...,z, with spacing h =

(b —a)/n. Applying (%) to subinterval [z;, z;41], we have

Tit1 i1 — i), h
[ pwydn — gagn = E I gy W,
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for some z; € [z, ;41]. So we have

I-1y = [ fdz -0y f)

n=1l iz n—1
= > [ f@dr—h Y fa)
i=0 Y% i=0

1
= f/(z)-énh2 (MVT for sum)

= L0 ahf()

Midpoint Rule I

/( ......... Midpoint

ZA ] Rule

a I<hs b

We make the midpoint of the top of each rectangle intersect the graph.
The midpoint rule:

n—1

I =hY_ fla+ (i+1/2)h], where h = b

1=0

—a
n .

Since part of the rectangle usually lies above the graph of f and part below, the midpoint
rule is more accurate than the rectangle rule.

It can be proven that for some z € [a, b
1

I=Iv =5

(b—a)h?f"(z) = O(h?).

(Try to prove it by yourself)



Trapezoid Rule I

Consider trapezoid-shaped panels:

T

A

Trapezoid
Rule

a ath a+2h

The trapezoid rule:

Iy = Shif(a) + F(B)] + RS fla+ ih), with h= 22

i—1 n

It can be shown that for some z € [a, b]

I—1Ir= (b—a)h?f"(z) = O(h?).

1
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Q Prove both the midpoint and trapezoid rules give the exact integral if f is linear.

Recursive Trapezoid RuleI

Suppose [a, b] is divided into 2™ equal subintervals. Then the trapezoid rule is

1 1 ‘
1(2") = Shlf(@) + fO)+h Y fla+ i)
i=1
where h = (b — a)/2".
The trapezoid rule for 27! equal subintervals is

on—1l_71

Fe(@ ) = Shlf(@) + FO)+h Y flaih),

=1



where h = (b —a)/2""! = 2h. It is easy to show the following recursive formula

277.—1

In(2") = %IT(Z”‘I) B Y flat (20— 1A

i=1

After computing I7(2""1) we can compute I7(2") by this recursive formula without reeval-

uating f at the old points.
Simpson’s Rule'

There is no need for straight edges:

Simpson’s
Rule

a ath a+2h

Each panel is topped by a parabola.
There are an even number of panels with width h = (b — a)/n. The top boundary of the
first pair of panels is the quadratic which interpolates

(a, f(a)), (a+ h, f(a+h)), (a+2h, f(a+ 2h)). The next interpolates (a + 2h, f(a + 2h)),
(a+ 3h, f(a+3h)), (a+ 4h, f(a + 4h)), and so on.
The area of the first 2 panels can be shown to be

h

5Lﬂ@+4ﬂw+@+f@+2@]

Q: How would you obtain this 77
Summing the areas of the pairs

h

S[F(@) + 4@+ h) + fla+2m),

gvm+2m+4ﬂa+ww+fw+4ML

g[f(b —Oh) + 4F(b— h) + F(b),

>



leads to Simpson’s rule (h = b;—“)
h
Is = g[f(a) +4f(a+h)+2f(a+2h)+4f(a+3h)+---

+4f(b—3h)+2f(b—2h)+4f(b—h)+ f(b)].
It can be shown for some z € [a, b]

1

I_[S:_@

(b—a)n' fP(z) = O(n").

Q: What is the highest degree polynomial for which the rule is exact in general 77

Adaptive Simpson’s Method'

Motivation and ideas of an adaptive integration method:

A function may varies rapidly on some parts of the interval [a, b], but varies little on other
parts. It is not very efficient to use some panel width h everywhere on [a,b]. But on
the other hand, it is not known in advance on which part of the integral f varies rapidly.
We can consider an adaptive integration method. The basic idea is we divide [a,b] into 2
subintervals and then decide whether each of them is to be divided into more subintervals.
This procedure is continued until some specified accuracy is obtained throughout the whole
interval [a, b].

A framework of an adaptive method:

function numlI = adapt(f,a,b,e,---)
Compute the integral from a and b in two ways
and call the values I; and I, (assume I5 is better than I;)
Estimate the error in I based on |l — I |
if [the estimated error| < e, then
numl = Iy (or numl = I + the estimated error)
else
c=(a+10b)/2
numl = adapt(f,a,c,€/2,---)
+adapt(f,c,b,e/2,- ")
end

This will guarantee |I — numl| S e.
Now we want to fill in details for Simpson’s method.



Defining [; and I5:
Simpson’s rule for n = 2 gives

[:[1+E1,
where b L
a a
I =22 [f () + 4F(5) + (0
B 1 b—a., (@)
V=m0 - ()
Simpson’s rule for n = 4 gives
[:[2+E2,
where
b—a b—a
b= "0 (@) + 4f(a+ — )
b— 3(b—
+2f(a+ =) +4f(a+ (4a))+
__ 1 b—avip@;
By = — b - o)),

Estimating the error in I5:

We assume f4)(2) in E is equal to f4(Z) in F,. (a reasonable assumption if f* does

not vary much on [a, b]). Then we observe
Ey = 16Es.
Since [ = I, + E; = I, + E>, we have
Iy — I =y — By =165 — Ey = 15,

This gives an error estimate in Is:

1
E2 - E(IQ — Il)



Adaptive Simpson’s algorithm:

function numl = adapt_simpson(f,a,b, €, level, level_max)
h—b—a
c— (a+b)/2
I — h[f(a) +4f(c) + f(b)]/6
level « level + 1
d—(a+c)/2
e— (c+b)/2
I — h[f(a) +4f(d) +2f(c) +4f(e) + f(D)]/12
if level > level_mazx, then
numl «— I
else
if ‘12 - ]1| S 156, then
numl — I (or numl — I, + 1=(Is — I1))
else
numl «— adapt_simpson(f,a,c,€/2,level, level_max)
+adapt_simpson(f,c, b, €/2,level, level_max)
end
end



Gaussian Quadrature Rules'

Unlike previous (composite) integration rules which choose equally spaced nodes for evalua-
tion, Gaussian quadratiure rules choose the nodes xg, x1, . . ., ,, and coefficients Ay, A1, ..., A,
(which are also called weights) to minimize the expected error obtained in the approxima-
tion

b n
[ r@)de = 3" Aif ().
@ i=0
To measure this accuracy, we assume that the best choice of these values is that which
produces the exact result for the largest class of polynomials.

Theorem. Let ¢ be a nontrival polynomial of degree n + 1 such that
b
/ 2*q(x)dr =0, k=0,1,...,n. (1)

Let xg, 21, ..., x, be the zeros of ¢. Then

n

b b T — 1
/a f(x)dx = ZAif(xi>7 A = /a li(z)dz, li(z) = H?:o,#i ( ’ ) )

i—0 Tr; — .fL"j

for any polynomial f(z) with degree less than or equal to 2n + 1.
Any I = >0 Aif(x;) with z; and A; (i = 0,1,...n) defined as in the above theorem
called a Gaussian quadrature rule.

If the interval [a,b] = [—1, 1], the Legendre polynomial g,;(z) defined by

2n+1 () n
rq,(x) —
n—+1 ¢

n+1(x) = Gn-1(2), @) =1, @(z)==z

satisfies (1). Thus the roots of ¢,;1(z) = 0 are the nodes of the Gaussian quadrature rule
for 1, f(z)dz.

If the Gaussian quadrature rule for [', f(z)dz is Ig[—1,1] = X" o A;f(x;). Then it can
shown that the Gaussian quadrature rule for f; f(z)dz is

n

Iofa,t) = B3 Af(a+ fr), o= %(a—l— b, A= %(b _a).

1=0



