Solving a Nonlinear Equation

Problem: Given \(f(x) \), find a root (solution) of \(f(x) = 0 \).

- If \(f \) is a polynomial with degree 4 or less, formulas for roots exist.
- If \(f \) is a polynomial with degree larger than 4, no finite formula exists (proved by Abel in 1824).
- If \(f \) is a general nonlinear function, no formula exists

So we must be satisfied by a method which only computes approximate roots.

Iterative Methods

Since no formula exists for roots of \(f(x) = 0 \), iterative methods will be used to compute approximate roots.

Iterative methods construct a sequence of numbers \(x_1, x_2, \ldots, x_n, x_{n+1}, \ldots \) that converge to a root of \(f(x) = 0 \).

3 major issues with implementation of an iterative method:

- Where to start the iteration?
- Does the iteration converge, and how fast?
- When to terminate the iteration?

Three iterative methods will be introduced in this course:

- The bisection method
- Newton’s method
- The secant method
Bisection Method – Idea

Fact:
If $f(x)$ is continuous on $[a, b]$ and $f(a) \times f(b) < 0$, then there exists r such that $f(r) = 0$.

Idea:
The fact can be used to produce a sequence of ever-smaller intervals that each brackets a root of $f(x) = 0$:
Let $c = (a + b)/2$ (midpoint of $[a, b]$). Compute $f(c)$.

- If $f(c) = 0$, c is a root.
- If $f(a)f(c) < 0$, a root exists in $[a, c]$.
 - If $f(c)f(b) < 0$, a root exists in $[c, b]$.

In either case, the interval is half as long as the initial interval. The halving process can continue until the current interval is shorter than a given tolerance δ.

Bisection Method – Algorithm

Algorithm. Given f, a, b and δ, and suppose $f(a)f(b) < 0$:

\[
\begin{align*}
c &\leftarrow (a + b)/2 \\
\text{error}_\text{bound} &\leftarrow |b - a|/2 \\
\text{while} &\quad \text{error}_\text{bound} > \delta \\
&\quad \text{if} f(c) = 0, \text{then} \\
&\quad \quad \text{c is a root, stop.} \\
&\quad \text{else} \\
&\quad \quad \text{if} f(a)f(c) < 0, \text{then} \\
&\quad \quad \quad b \leftarrow c \\
&\quad \quad \text{else} \\
&\quad \quad \quad a \leftarrow c \\
&\quad \quad \text{end} \\
&\quad \text{end} \\
&\quad c \leftarrow (a + b)/2 \\
&\quad \text{error}_\text{bound} \leftarrow \text{error}_\text{bound}/2 \\
\text{end} \\
\text{root} &\leftarrow c
\end{align*}
\]

When implementing this algorithm, avoid recomputation of values of function, and use $\text{sign}(f(a))\text{sign}(f(c)) < 0$ instead of $f(a)f(c) < 0$ to avoid overflow and underflow.
function root = bisection(fname,a,b,delta,display)
% The bisection method.
% input: fname is a string that names the function f(x)
% a and b define an interval [a,b]
% delta is the tolerance
% display = 1 if step-by-step display is desired,
% = 0 otherwise
% output: root is the computed root of f(x)=0
% fa = feval(fname,a);
fb = feval(fname,b);
if sign(fa)*sign(fb) > 0
 disp('function has the same sign at a and b')
 return
end
if fa == 0,
 root = a;
 return
end
if fb == 0
 root = b;
 return
end
c = (a+b)/2;
fc = feval(fname,c);
e_bound = abs(b-a)/2;
if display,
 disp(' '); disp(' a b c f(c) error_bound');
 disp(' ');
 disp([a b c fc e_bound])
end
while e_bound > delta
 if fc == 0,
 root = c;
 return
 end
 if sign(fa)*sign(fc) < 0 % a root exists in [a,c].
 b = c;
 a = c;
 fc = feval(fname,c);
e_bound = abs(b-a)/2;
 end
end
root = c;
fb = fc;
else % a root exists in [c,b].
a = c;
fa = fc;
end
c = (a+b)/2;
fc = feval(fname,c);
e_bound = e_bound/2;
if display, disp([a b c fc e_bound]), end
end
root = c;

Convergence and Efficiency of the BM

Suppose the initial interval is \([a, b] \equiv [a_0, b_0]\) and \(r\) is a root. At the beginning \((n = 0)\),
\[
c_0 = \frac{1}{2}(a_0 + b_0), \quad |r - c_0| \leq \frac{1}{2}|b_0 - a_0|.
\]

After \(n\) steps, we get interval \([a_n, b_n]\), \(c_n = \frac{1}{2}(a_n + b_n)\),
\[
|b_n - a_n| = \frac{1}{2}|b_{n-1} - a_{n-1}|, \quad |r - c_n| \leq \frac{1}{2}|b_n - a_n|.
\]

Therefore we have
\[
|r - c_n| \leq \frac{1}{2^n}|b_{n-1} - a_{n-1}| = \cdots = \frac{1}{2^{n+1}}|b - a|,
\]
\[
\lim_{n \to \infty} c_n = r.
\]

Q. How many steps are required to ensure \(|r - c_n| \leq \delta\) for a general continuous function? To ensure \(|r - c_n| \leq \delta\), we require \(\frac{1}{2^{n+1}}|b - a| \leq \delta\). From this we obtain
\[
n \geq \log_2 |b - a|/\delta - 1.
\]

So \([\log_2 |b - a|/\delta - 1]\) steps are needed.

Def. Linear convergence (LC):
A sequence \(\{x_n\}\) is said to have **LC** to a limit \(x\) if
\[
\lim_{n \to \infty} \frac{|x_{n+1} - x|}{|x_n - x|} = c, \quad 0 < c < 1.
\]

Obviously the right hand side of \(|r - c_n| \leq \frac{1}{2^{n+1}}|b - a|\) has LC to zero when \(n \to \infty\). So we usually say the bisection method has (at least) LC.
Note: The bisection method uses sign information only. Given an interval in which a root lies, it maintains a guaranteed interval, but is slow to converge. If we use more information, such as values, or derivatives, we can get faster convergence.

Newton’s Method

Idea:
Given a point \(x_0 \). Taylor series expansion about \(x_0 \):

\[
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(z)}{2}(x - x_0)^2.
\]

We can use \(l(x) \equiv f(x_0) + f'(x_0)(x - x_0) \) as an approximation to \(f(x) \). In order to solve \(f(x) = 0 \), we solve \(l(x) = 0 \), which gives the solution

\[x_1 = x_0 - f(x_0)/f'(x_0).\]

So \(x_1 \) can be regarded as an approximate root of \(f(x) = 0 \). If this \(x_1 \) is not a good approximate root, we continue this iteration. In general we have the Newton iteration:

\[x_{n+1} = x_n - f(x_n)/f'(x_n), \quad n = 0, 1, \ldots.\]

Here we assume \(f(x) \) is differentiable and \(f'(x_n) \neq 0 \).

Understand Newton’s Method Geometrically

![Diagram](image-url)
The line L is tangent to \(f \) at \((x, f(x))\), and so has slope \(f'(x) \).
The slope of the line L is \(f(x)/(x - x_{\text{new}}) \), so:

\[
f'(x) = \frac{f(x)}{x - x_{\text{new}}},
\]

and consequently

\[
x_{\text{new}} = x - \frac{f(x)}{f'(x)}.
\]

This is just the Newton iteration.

Newton’s Method – Algorithm

Stopping criteria

- \(|x_{n+1} - x_n| \leq xtol\), or
- \(|f(x_{n+1})| \leq ftol\), or
- The maximum number of iteration reached.

Algorithm. Given \(f, f', x \) (initial point), \(xtol, ftol, n_{max} \) (the maximum number of iterations):

\[
\text{for } n = 1 : n_{max} \\
\quad d \leftarrow f(x)/f'(x) \quad \text{or} \quad |d| \leq xtol \text{ or } |f(x)| \leq ftol, \text{ then} \\
\quad \text{root} \leftarrow x \\
\quad \text{stop} \\
\end{algorithm}

\[
\text{end} \\
\text{root} \leftarrow x
\]
Newton's Method – Matlab Code

```matlab
function root=newton(fname,fdname,x,xtol,ftol,n_max,display)
% Newton's method.
%
% input:
% fname  string that names the function f(x).
% fdname string that names the derivative f'(x).
% x      the initial point
% xtol   and ftol termination tolerances
% n_max  the maximum number of iteration
% display = 1 if step-by-step display is desired,
% = 0 otherwise
% output: root is the computed root of f(x)=0
%
% n = 0;
% fx = feval(fname,x);
if display,
    disp(' n   x   f(x)')
    disp('-------------------------------------')
    disp(sprintf('%4d %23.15e %23.15e', n, x, fx))
end
if abs(fx) <= xtol
    root = x;
    return
end
for n = 1:n_max
    fdx = feval(fdname,x);
    d = fx/fdx;
    x = x - d;
    fx = feval(fname,x);
    if display,
        disp(sprintf('%4d %23.15e %23.15e',n,x,fx))
    end
    if abs(d) <= xtol | abs(fx) <= ftol
        root = x;
        return
    end
end

The function $f(x)$ and its derivative $f'(x)$ are implemented by Matlab, for example

% M-file f.m
```

7
function y = f(x)
y = x^2 -2;

% M-file fd.m
function y = fd(x)
y = 2*x;

Newton on $x^2 - 2$.

```
>> root=newton('f','fd',2,1.e-12,1.e-12,20,1)

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0000000000000000e+00</td>
<td>2.0000000000000000e+00</td>
</tr>
<tr>
<td>1</td>
<td>1.5000000000000000e+00</td>
<td>2.5000000000000000e-01</td>
</tr>
<tr>
<td>2</td>
<td>1.4166666666666667e+00</td>
<td>6.94444444444642e-03</td>
</tr>
<tr>
<td>3</td>
<td>1.414215686274510e+00</td>
<td>6.007304882871267e-06</td>
</tr>
<tr>
<td>4</td>
<td>1.414213562374690e+00</td>
<td>4.510614104447086e-12</td>
</tr>
<tr>
<td>5</td>
<td>1.414213562373095e+00</td>
<td>4.440892098500626e-16</td>
</tr>
</tbody>
</table>

root = 1.414213562373095e+00
```

Double precision accuracy in only 5 steps!
Steps 2, 3, 4: $|f(x)| \approx 10^{-3}$, $|f(x)| \approx 10^{-6}$, $|f(x)| \approx 10^{-12}$.

We say $f(x) \to 0$ with quadratic convergence:

once $|f(x)|$ is small, it is roughly squared, and thus much smaller, at the next step.
In step 4, x is accurate to about **12 decimal digits**. About **6 decimal digits** at the previous step, and about **3 decimal digits** at the step before that.
The number of accurate digits of x is approximately doubled at each step. We say x converges to the root with quadratic convergence.

Failure of Newton’s Method

Newton’s method does not always work well. It may not converge.

- If $f'(x_n) = 0$ the method is not defined.
- If $f'(x_n) \approx 0$ then there may be difficulties. The new estimate x_{n+1} may be a much worse approximation to the solution than x_n is.
Convergence Analysis of Newton’s Method

Def. Quadratic convergence (QC).
A sequence \(\{x_n\} \) is said to have QC to a limit \(x \) if
\[
\lim_{n \to \infty} \frac{|x_{n+1} - x|}{|x_n - x|^2} = c,
\]
where \(c \) is some finite non-zero constant.

Newton iteration:
\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.
\]

Suppose \(x_n \) converges to a root \(r \) of \(f(x) = 0 \).
Taylor series expansion about \(x_n \) is
\[
f(r) = f(x_n) + (r - x_n)f'(x_n) + \frac{(r - x_n)^2}{2}f''(z_n)
\]
where \(z_n \) lies between \(x_n \) and \(r \).
But \(f(r) = 0 \), and dividing by \(f'(x_n) \)
\[
0 = \frac{f(x_n)}{f'(x_n)} + (r - x_n) + \frac{(r - x_n)^2 f''(z_n)}{2f'(x_n)}.
\]
The 1st term on the RHS is \(x_n - x_{n+1} \), so
\[
r - x_{n+1} = c_n(r - x_n)^2, \quad c_n = -\frac{f''(z_n)}{2f'(x_n)}.
\]
Writing the error \(e_n = r - x_n \), we see
\[
e_{n+1} = c_n(e_n)^2.
\]
Since \(x_n \to r \), and \(z_n \) is between \(x_n \) and \(r \), we see \(z_n \to r \) and so
\[
\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^2} = \lim_{n \to \infty} |c_n| = \frac{|f''(r)|}{|2f'(r)|} \equiv c
\]
assuming that \(f'(r) \neq 0 \).
So the convergence rate of Newton method is usually quadratical. At the \((n+1)\)-th step, the new error is equal to \(c_n \) times the square of the old error.
Also we can show \(f(x_n) \) usually converges to 0 quadratically:

Q. Under which condition, \(x_n \to r \)?
It can be shown that if \(f''(x) \) is continuous in a neighborhood of \(r \), a root of \(f(x) = 0 \), \(f'(r) \neq 0 \), and if the initial point \(x_0 \) is close to \(r \) enough, then \(x_n \to r \). (For a rigorous proof, see C&K, pp94-95.)
Remarks:

- If \(f''(r) = 0 \) but \(f'(r) \neq 0 \), then
 \[
 \lim_{n \to \infty} |e_{n+1}/e_n^2| = 0.
 \]
 NM converges faster than quadratic convergence.

 e.g., \(f(x) = \sin(x) \), \(r = \pi \).
 Try \texttt{newton('f', 'fd', 4, 1.e-12, 1.e-12, 20, 1)}

- If \(f'(r) = 0 \), then we can show NM has linear convergence rate.

 e.g., \(f(x) = (x - 1)^2 \), \(r = 1 \).
 Try \texttt{newton('f', 'fd', 1.5, 1.e-12, 1.e-12, 20, 1)}
 For this specific function, try to show NM has linear convergence rate.

- If the initial point is not close to the root \(r \), NM may not converge.
 e.g., \(f(x) = \arctan(x) \), \(r = 0 \), \(x_0 = 1.5 \).
 Try \texttt{newton('f', 'fd', 1.5, 1.e-12, 1.e-12, 20, 1)}

The Secant Method

Idea:

Newton iteration: \(x_{n+1} = x_n - f(x_n)/f'(x_n) \).

Problem with Newton's method: it requires software for the derivative \(f'(x) \) — in many instances, difficult or impossible to encode.

Q: How to get around the problem?

Use divided difference \(\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} \) to replace \(f'(x_n) \), we get the secant iteration:

\[
x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n).
\]

This formula can be understood geometrically:

Draw a secant line which connects two points \((x_{n-1}, f(x_{n-1})) \) and \((x_n, f(x_n)) \) on the graph of \(y = f(x) \). The cross point of the secant line and the x-axis is exactly the \(x_{n+1} \) defined by the secant iteration formula.
Algorithm. Given f, x_0, x_1 (two initial points), $xtol$, $ftol$, n_{max}

for $n = 1 : n_{max}$
 $d \leftarrow \frac{x_1 - x_0}{f_x_1 - f_x_0} f_x_1$
 $x_0 \leftarrow x_1$
 $f_x_0 \leftarrow f(x_1)$
 $x_1 \leftarrow x_1 - d$
 $f_x_1 \leftarrow f(x_1)$
 if $|d| \leq xtol$ or $|f_x_1| \leq ftol$, then
 $root \leftarrow x_1$
 return
 end
end

$root \leftarrow x_1$
Convergence of the Secant Method

If x_n converges to a root r of $f(x) = 0$, we can show (somewhat difficult) that

$$\lim_{k \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|^p} = c$$

where $p = (1 + \sqrt{5})/2 \approx 1.618$. So the secant method converges \textbf{super-linearly}. The secant method may not converge for much the same reason that Newton’s method may not converge. For example, the method is not defined if

$$f(x_n) = f(x_{n-1}).$$

Comparison of the Three Methods

- **The Bisection Method (BM):**
 - Advantages: simple, robust (guaranteed to converge), applicable to non-smooth functions.
 - Disadvantages: generally slower than NM and SM with linear convergence.

- **Newton’s Method (NM):**
 - Advantages: generally faster than BM and SM with quadratic convergence.
 - Disadvantages: needs to compute f', may not converge.

- **The Secant Method (SM):**
 - Advantages: generally faster than BM with super-linear convergence, no need to compute f'.
 - Disadvantages: slower than NM, may not converge.

Two MATLAB Commands

There are two Matlab built-in functions:

- \texttt{roots} for finding all roots of a polynomial.
- \texttt{fzero} for finding a root of a general function.

Check Matlab to see how to use these two functions.