Floating Point Representation

and the IEEE Standard

Michael L. Overton

copyright (©1997

1 Introduction

Numerical computing means computing with numbers, and the subject is al-
most as old as civilization itself. Ancient peoples knew quite sophisticated
techniques to solve many numerical tasks, of which perhaps the most impres-
sive was the prediction of astronomical events such as eclipses. The abacus
was used for centuries as an aid to calculation; this originated as a table with
counting stones in the middle east and evolved into the wooden devices with
beads on wires which are still common in the far east. Modern numerical
computing began with Isaac Newton in England in the seventeenth century;
his invention of calculus was in large part driven by its usefulness in solving
numerical problems. In Newton’s footsteps followed Euler, Lagrange, Gauss
and many other great mathematicians of the 18th and 19th centuries. Up
until that time, calculation was primarily done with pencil and paper in the
west and the abacus in the east. In the first half of the 20th century the slide
rule became supreme, and several generations of engineers used this clever
invention which relied on a simple idea: addition is easy; multiplication is
time-consuming; but multiplication can be done by taking logarithms, adding
these together, and exponentiating the result. The slide rule makes this easy,
though only to about three accurate digits, as the numbers are represented on
the slide rule explicitly in a logarithmic scale. During World War 11, scientific
laboratories had rooms full of people doing different parts of a complicated
calculation, using slide rules and mechanical calculators. Indeed, these may
be thought of as the early days of parallel computing before the powerful elec-
tronic digital computer became available for scientific research in the 1950’s.

Electronic computers were first invented in the 1940’s and 1950’s for ex-
actly one purpose: solving hard scientific and engineering problems which

required a great deal of numerical computing. This was the motivation for
the first operating computers build by Zuse in Germany in the early 1940’s;
these machines used electromechanical switching devices. (The machines were
developed too late to have much impact on the war effort, though they were
used to model rocket trajectories.) The first electronic computer built using
vacuum tube technology was the ENIAC (Electronic Numerical Integrator
and Calculator) at the University of Pennsylvania, shortly after World War
II. During the 1950°s, the primary usage of computers was for numerical com-
puting in scientific applications. In the 1960’s, computers became widely used
by large businesses, but their purpose was not primarily numerical; rather,
the principal use of computers became the processing of all kinds of infor-
mation. Some of this information, such as accounting, involved numbers,
but the numbers involved were all integers: numbers of dollars and cents.
Other information, such as character strings, could be regarded as equivalent
to numbers and indeed was represented in the computer as binary numbers.
But the primary business applications were not numerical in nature. During
the next two decades, computers became ever more widespread, to medium-
sized businesses in the 1970’s and to many millions of small businesses and
individuals during the PC revolution of the 1980’s. The vast majority of these
computer users do not see computing with numbers as their primary interest;
rather, they are typically interested in the processing of information: up until
the mid-1980’s, usually textual, but increasingly also aural and visual.
However, in most scientific disciplines, computing with numbers remains
by far the most important use of computers. Physicists use computers to
solve complicated equations modeling everything from the expansion of the
universe to the microstructure of the atom, and to test their theories against
huge quantities of experimental data. Chemists and biologists use computers
to determine the molecular structure of proteins, and a major project now
underway is the modeling of the human genome. Medical researchers use
computers to design new and better medical techniques, for example modeling
the flow of blood in the heart to understand how to design better artificial
heart valves. Atmospheric scientists use numerical computing to process huge
quantities of data and solve appropriate equations to predict the weather,
typically producing five day forecasts which are quite reliable. Aeronautical
engineers use computers to design better airplanes: the Boeing 757, 767 and
777 were designed relying more heavily on computer modeling than on the
older method of wind tunnel tests. The design of the space shuttle was heavily
dependent on numerical computational testing. Ironically, the tragic 1986
Challenger accident was more due to political errors than scientific ones. From

Figure 1: The Real Line

a scientific point of view, re-entry of the space shuttle into the atmosphere
was a far more delicate and difficult procedure than lift-off, and many nervous
scientists were elated and relieved to see that their calculations had worked
so well when the space shuttle first re-entered the atmosphere and landed.
A similar story is often told about the engineer who designed Carnegie Hall
a hundred years earlier and nervously rechecked his numerical calculations
during the first performance. Virtually all branches of engineering rely heavily
on numerical computing.

2 The Real Numbers

Since we will mainly be computing with real numbers, it is important to
understand the different types of real number. The real numbers can conve-
niently be represented by a line. Every point on the line corresponds to a
real number, but only a few are marked in Figure 1.

The line stretches infinitely far in both directions, towards co and —oo. The
real numbers may be divided into two classes: the rational numbers and
the irrational numbers. The rational numbers are further divided into two
subclasses: the integers and the non-integral fractions. The integers may be
listed as follows: 0,1,—-1,2,—2,3,—3,---. Thus we say that there are an
infinite but countable number of integers; by this we mean that every integer
will eventually appear in the list if we count for long enough, even though
we can never count all of them. The rational numbers are all those which
consist of a ratio of two integers, e.g. 1/2, 2/3, 6/3, etc.; some of these, e.g.
6/3, are in fact integers. Those which are not integers are called non-integral
fractions, or fractions for short. To see that the number of rational numbers
is countable, imagine them all listed in an infinite two-dimensional array as
follows:

1 2 3 4
1/1 1/2 1/3 1/4
2/1 2/2 2/3 2/4
3/1 3/2 3/3 3/4
4/1 4/2 4/3 4/4

=W N

Listing the first line and then the second, etc., does not work, since the
first line never terminates. Instead, we generate a list of all rational num-
bers diagonal by diagonal: first 1/1; then 2/1,1/2; then 3/1,2/2,1/3; then
4/1,3/2,2/3,1/4; etc. In this way, every rational number (including every
integer) is eventually generated. In fact, every number is generated many
times (e.g. 1/2 and 2/4 are the same number). However, every rational num-
ber does have a unique representation in lowest terms, that is canceling any
common factor in the numerator and denominator (thus 2/4 reduces to 1/2).

Most real numbers are not rational, i.e. there is no way of writing them
as the ratio of two integers. These numbers are called irrational. Familiar
examples of irrational numbers are v/2, m and e. The first two of these
numbers were known to ancient peoples such as the Babylonians and Greeks.
The square root of a positive number « is defined to be the positive number
x satisfying

P =a

while 7 is defined as the ratio of a circle’s circumference to its diameter. The
third number mentioned, e, or Euler’s number, is defined to be the limit of

(1)

as m — o0o. Irrational numbers can always be defined as limits of sequences
of rational numbers, but there is no way of listing all the irrational numbers:
the set of irrational numbers is said to be uncountable.

What is the most convenient way to represent numbers? It is interesting
to note that the positional system we use today was not standard in an-
cient times; for example, the Romans used a system where each power of 10
required a different symbol: X for 10, C for 100, M for 1000, etc. Large num-
bers cannot conveniently be represented by such a system. The positional
notation we use today requires a key idea: the representation of zero by a
symbol. Such a system was developed in India and used widely in the middle
east before being passed on to Europe by the Arabs about a thousand years

ago, giving rise to the name Arabic numerals. This decimal, or base 10, sys-
tem requires 10 symbols, representing the numbers zero through nine. The
system is called positional because the meaning of the number is understood
from the position of the symbols. Zero is needed, for example, to distinguish
the number 601 from the number 61.! The reason for the decimal choice is
the simple biological fact that humans have ten fingers and thumbs. Other
positional systems developed by ancient peoples were a base 20 system de-
veloped by the Mayans, which was used for very sophisticated astronomical
calculations, and a base 60 system used by the Babylonians, whose vestiges
are still seen today in our division of the hour into 60 minutes and the minute
into 60 seconds. Although decimal representation is convenient for people, it
is not particularly convenient for computer purposes. The binary, or base 2,
representation system is much more convenient: in this system, every number
is represented as a string of 0’s and 1’s.

Every real number has a decimal representation and a binary representa-
tion (and, indeed, a representation in a base equal to any other integer greater
than one). The representation of integers is simple, requiring an expansion
in nonnegative powers of the base; for example here is a decimal number:

(71)10 =7x10+1
and its binary equivalent:
(1000111)2 =1x644+0x324+0x164+0x84+1x4+1x24+1x1.

Non-integral fractions have entries to the right of the decimal (and binary)
point, and these entries may be either finite or infinite. For example, the
fraction 11/2 has the representations

11—(55) =5Xx1+4+5x !
2 e 10

and

11 1
5 = (10112 =1x440x 2+ 1x 1 41x 5.

! Although the need for a zero might seem obvious, it was not present in the ancient
cultures. It was not used by the Babylonians until about the 3rd century B.C., and it
seems likely that the Indian zero was derived later from the Babylonian one. The Chinese
did not use a zero until much later still, following the Indian influence. The only well
documented use of zero known to be independent of the Babylonians is the Mayan system.

Both of these are finite. However, the fraction 1/10, while obviously having
the finite decimal expansion (0.1)1¢, has the binary representation

L (0.0001100110011 ..)y = =gy O L1 0
0 U206 327 64 128 0 256 ¢ 512 1024

Note that this representation, while infinite, is repeating. The fraction 1/3
has infinite representations in both binary and decimal:

If the representation of a rational number is infinite, it must be repeating.
For example,
1/7 = (0.142857142857 ..)10

Irrational numbers always have infinite, non-repeating expansions. For
example:

V2 = (1.414213...)10, 7 = (3.141592..)10, € = (2.71828182845 ..)10.

Looking at just the first 8 digits of e, you might think its representation is
repeating, but in fact it is not.

Exercise 1 Determine the binary representations of some integers and frac-
tions, and then convert these back to decimal again as a check. Since (1001.11),
is just the decimal number

Ix24+0x224+0x2'+1x2°+1x 27 +1x 272

we see it is easy to convert from binary to decimal. For decimal to binary we
can convert the integer and fractional parts separately. For example if x is
an integer written in decimal, we wish to find coefficients ag,ay, ..., a,, all
0 or 1, so that

Un X 2" +ap_1 x 2"V p oo x 2° =z,

giving the two representations (a,@,—1 -+ -ag)2 = (z)10. Clearly dividing x by
2 gives ag as remainder, leaving as quotient

U X 2"V by, 1 x 27724 ay x 29,

and so we can continue to find ay then ay etc. Work out a similar approach
for decimal fractions. When working with binary numbers, it is often con-
venient to write them in octal notation, that is base 8, using the symbols
0 through 7 to write the binary strings 000 through 111. Alternatively, use
the hexadecimal system, i.e. base 16, using the symbols 0,...,9,A,...,F to
represent the binary strings 0000 through 1111.

3 Computer Representation of Numbers

What is the best way to represent a real number in the computer? In the case
of the nonnegative integers, the answer is easy: as a bitstring giving the binary
representation of the integer. Thus, the integer 71 would be represented as
the bitstring

| 000...01000111 |

Suppose that the computer word size is 32 bits. The number 23? is too big to
be stored in such a word using the straightforward bitstring representation,
since its binary representation consists of a one followed by 32 zeros. The
next smallest integer, i.e. 232 — 1, whose binary representation consists of 32
ones, is the largest integer which will fit.

How should we represent negative integers? The most obvious suggestion
is sign-and-modulus: store the magnitude of the integer as just discussed and
use an extra bit to represent the sign. Since 32 bits is the standard computer
word size, the use of one bit for the sign restricts the allowable magnitude to
231 _ 1 instead of 232 — 1. However, there is a more convenient representation
called 2’s complement, used by most machines. The nonnegative integers
between 0 and 23! — 1 inclusive are stored in the same way as before, but
a negative integer —x, where z has a value between 1 and 23! inclusive, is
stored instead as the positive integer 232
between 23! and 232 — 1. For example, the integer —71 would be stored as
the bitstring

— x, which must then have a value

111...10111001 |

That this is correct can be verified by adding the bitstring for 71 to it and
seeing that the sum is 2%2. In general since 2% — 2z = (232 — 1 — 2) + 1,
and 232 — 1 is all 1s, converting the binary representation of z to the 2’s
complement representation 232 — z of —z requires simply changing all zero
bits to ones, one bits to zero and adding one.

To see one advantage of 2’s complement representation, suppose we want
to do the operation y + (—z), where z and y are both nonnegative numbers
between 0 and 23! — 1. Note that

y—z=—(z—-y),

and the 2’s complement representations of y and —z are the nonnegative
numbers y and 232 — z. If we add these representations, we obtain

22 4y~ =2 (2 —v).

If y > z, the left hand side will not fit in a 32-bit word, and the leading
bit can be dropped over the left end of the word, giving the correct result,
y—z. If y < z, the right hand side shows we already have the correct result,
since it represents the negative value —(z — y) in the correct way. Thus, no
special hardware is needed for integer subtraction. The addition hardware
can be used once the negative number —z has been represented using 2’s
complement.

There is a third system for the representation of negative integers called
1’s complement. This is similar to 2’s complement, except that a negative
integer —z is stored as 23?2 — 2 — 1. This system was used on the CDC
computers which dominated supercomputing in the 1960’s and 1970’s but is
now obsolete.

Exercise 2 Try some examples until you are convinced that this discussion
is correct. Use a 4 bit word instead of a 32 bit word to keep things simple.

Exercise 3 For a given wordlength,
(a) Which of these 3 systems can represent the most integers?

(b) For which of these 3 systems is there only one possible representation
for zero?

(c) What is the quickest way of deciding if a number is negative or non-
negative using 2’s complement representation?

How should non-integral real numbers be represented? Rational numbers
could be represented by a list of two integers, the numerator and denomi-
nator. This has the advantage of accuracy, but the disadvantage of being
very inconvenient for arithmetic. Systems which represent rational numbers
in this way are said to be symbolic rather that numeric. For most numerical
computing purposes however, real numbers, whether rational or irrational, are
approximately stored using the binary representation of the number. There
are two possible methods, called fixed point and floating point.

In fized point representation, the computer word is divided into three
fields, one one-bit field for the sign of the number, one field of bits for the
binary representation of the number before the binary point, and one field
for the binary representation after the binary point. For example, in a 32-bit
word with field widths of 1,15 and 16, the number 11/2 would be stored as:

| 0 | 000000000000101 | 1000000000000000 |

while the number 1/10 would be stored as

| 0 [000000000000000 | 0001100110011001 |

The fixed point system has a severe limitation on the size of the numbers to
be stored, however. In the example just given, only numbers ranging in size
from (exactly) 27!¢ to (slightly less than) 2!5 could be stored. This is not
adequate for general-purpose scientific applications, where one may need to
use very large or very small numbers, e.g. representing the age of the earth or
the mass of the electron. Therefore, fixed point representation is rarely used
for general numerical computing and will not be discussed further.

Floating point representation solves this problem by using a system closely
related to well known ezponential notation (also known as scientific notation).
In (normalized) exponential notation, a nonzero real number is written as

+m x 10%, where 1 < m < 10,

and F is an integer. The numbers m and F are called the significand and
the exponent respectively. For example, the number 365.25 is represented
as 3.625 x 10%, and the number 0.00036525 is represented as 3.6525 x 10~
For representation on the computer, we prefer a base which is binary, not
decimal, so we write a nonzero number x as

z=14mx2F where 1 <m< 2.

This is always possible, as m can be obtained from z by repeatedly mul-
tiplying or dividing by 2 until the result is less than 2 but greater than or
equal to one, changing the exponent I accordingly. Consequently, the binary
expansion for m is

m = (bo.b1b2b3 .. .)2, with bo =1.

To store such numbers, consider dividing the computer word into 3 fields,
to represent the sign, the exponent F, and the significand m respectively. A
32-bit word could be divided into fields as follows: 1 bit for the sign, 8 bits
for the exponent and 23 bits for the significand. Since the exponent field is
8 bits, it can be used to represent exponents between —128 and 127 (if 2’s
complement representation is used). The significand field can store the first
23 bits of the binary representation of m, namely

bo.by .. .bag, (if we store bg).

If bys, bag, ... are not all zero, this floating point representation of z is not
exact but approximate. A number is called a (computer) floating point num-
ber if it can be stored ezactly on the computer using the given floating point
representation scheme, i.e. in this case, bas, boy4, . .. are all zero.

For example, the number

11/2 = (1.011), x 2

would be represented by

(0] F=2 |1.0110000000000000000000],

and the number
71 = (1.000111)5 x 2°

would be represented by

(0] E=6 | 1.0001110000000000000000 |

To avoid confusion, the exponent F, which is actually stored in a binary
representation, is shown in decimal for the moment. The binary point between
bo and by is shown for convenience, but is not stored. The representation
for negative numbers is obtained by changing the sign bit in the first field
from 0 to 1. This sign-and-modulus convention is standard for floating point
significands, in contrast to integer representation. Now consider the much

larger number
271 = (1.000)y x 27",

This number, although an integer, is much too large to store in a 32-bit word
using the standard integer format. However, there is no problem representing
it in floating point, using the representation

|0 E=71 [1.0000000000000000000000 .

Exercise 4 What is the largest floating point number in this system, i.e.
where the significand field can store only the bits by.by . . .boy and the exponent
is limited by —128 < K < 127%

The floating point representation of a nonzero number is unique as long
as we require that 1 < m < 2. If it were not for this requirement, the number
11/2 could also be written

(0.01011)4 x 2*

10

and could therefore be represented by

(0] EF=4 |0.0101100000000000000000 |

However, this is not allowed since bg = 0 and so m < 1. A more interesting

example is
1/10 = (0.0001100110011 .. .)2.

Since this binary expansion is infinite, we must truncate the expansion some-
where. (An alternative, namely rounding, is discussed later.) The simplest
way to truncate the expansion to 23 bits would give the representation

(0] E=0]0.0001100110011001100110 |,

but this means m < 1 since by = 0. An even worse choice of representation
would be the following: since

1/10 = (0.00000001100110011...)5 x 2°,

the number could be represented by

(0] F=4]0.0000000110011001100110 |

This is clearly a bad choice since less of the binary expansion of 1/10 is
stored, due to the space wasted by the leading zeros in the significand field.
This is the reason why m < 1, i.e. by = 0, is not allowed. The only allowable
representation for 1/10 uses the fact that

1/10 = (1.100110011 ..)5 x 274,

giving the representation

0] F=-4]1.1001100110011001100110]

This representation includes more of the binary expansion of 1/10 than the
others, and is said to be normalized, since by = 1, i.e. 2 > m > 1. Thus none
of the available bits is wasted by storing leading zeros.

We can see from this example why the name floating point is used: the
binary point of the number 1/10 can be floated to any position in the bitstring
we like by choosing the appropriate exponent: the normalized representation,
with by = 1, is the one which should be always be used when possible. It is
clear that an irrational number such as 7 is also represented most accurately

11

by a normalized representation: significand bits should not be wasted by
storing leading zeros. However, the number zero is special. It cannot be
normalized, since all the bits in its representation are zero. The exponent F
is irrelevant and can be set to zero. Thus, zero could be represented as

0] E=0]0.0000000000000000000000 |

The gap between the number 1 and the next largest floating point number
is called the precision of the floating point system, ? or, often, the machine
precision, and we shall denote this by ¢. In the system just described, the
next floating point number bigger than 1 is

bo.by .. .by3 = 1.0000000000000000000001,

with the last bit byy = 1. Therefore, the precision is € = 2722,

Exercise 5 What is the smallest possible positive normalized floating point
number using the system just described?

Exercise 6 Could nonzero numbers instead be normalized so that % <m<
12 Would this be just as good?

It is quite instructive to suppose that the computer word size is much
smaller than 32 bits and work out in detail what all the possible floating
numbers are in such a case. Suppose that the significand field has room only
to store bg.b1bo, and that the only possible values for the exponent F are —1,
0 and 1. We shall call this system our toy floating point number system. The
set of (normalized) toy floating point numbers is shown in Figure 2.

The largest number is (1.11)g X 2! = (3.5)19, and the smallest positive
normalized number is (1.00)3 x 27! = (0.5)19. All of the numbers shown are
normalized except zero. Since the next floating point number bigger than 1 is
1.25, the precision of the toy system is € = 0.25. Note that the gap between
floating point numbers becomes smaller as the magnitudes of the numbers
themselves get smaller, and bigger as the numbers get bigger. Specifically,
consider the positive floating point numbers with £ = 0: these are just the
numbers 1, 1.25, 1.5 and 1.75. For each of these numbers, say z, the gap
between z and the next floating point number larger than z is ¢ = 0.25. Then

2 Actually, the usual definition of precision is one half of this quantity, for reasons that
will become apparent in the next section. We prefer to omit the factor of one half in the
definition.

12

L]
[11T
...... 0 1

Figure 2: The Toy Floating Point Numbers

look at the positive floating point numbers z with ¥ = 1: we see that the
gap is twice as big, i.e. 2¢. Then look at the positive floating point numbers
with ¥ = —1: we see that the gap is %e. In general, we see that the gap
between a floating point number (bg.b1bg) x 27 and the next bigger floating
point number is

e x 2F,

Another important observation to make about Figure 2 is that the gap
between between zero and the smallest positive number is much bigger than
the gap between the smallest positive number and the next positive number.
We shall show in the next section how this gap can be “filled in” with the
introduction of “subnormal numbers”.

4 1EEE Floating Point Representation

In the 1960’s and 1970’s, each computer manufacturer developed its own float-
ing point system, leading to a lot of inconsistency as to how the same program
behaved on different machines. For example, although most machines used
binary floating point systems roughly similar to the one described in the last
section, the IBM 360/370 series, which dominated computing during this pe-
riod, used a hexadecimal base, i.e. numbers were represented as +m x 167,
Other machines, such as HP calculators, used a decimal floating point system.
Through the efforts of several computer scientists, particularly W. Kahan, a
binary floating point standard was developed in the early 1980’s and, most
importantly, followed very carefully by the principal manufacturers of float-
ing point chips for personal computers, namely Intel and Motorola. This
standard has become known as the IEEE floating point standard since it was
developed and endorsed by a working committee of the Institute for Electrical

13

and Electronics Engineers. ® (There is also a decimal version of the standard
but we shall not discuss this.)
The IEEE standard has three very important requirements:

e consistent representation of floating point numbers across all machines
adopting the standard

e correctly rounded arithmetic (to be explained in the next section)

e consistent and sensible treatment of exceptional situations such as di-
vision by zero (to be discussed in the following section).

We will not describe the standard in detail, but we will cover the main
points.

We start with the following observation. In the last section, we chose to
normalize a nonzero number z so that z = m x 2¥, where 1 < m < 2, i.e.

m = j:(bo.blbgbg .. -)27

with by = 1. In the simple floating point model discussed in the previous
section, we stored the leading nonzero bit by in the first position of the field
provided for m. Note, however, that since we know this bit has the value one,
it is not necessary to store it. Consequently, we can use the 23 bits of the
significand field to store by, bg, ..., bas instead of by, by, ..., bos, changing the
machine precision from € = 2722 to ¢ = 2723, Since the bitstring stored in the
significand field is now actually the fractional part of the significand, we shall
refer henceforth to the field as the fraction field. Given a string of bits in the
fraction field, it is necessary to imagine that the symbols “1.” appear in front
of the string, even though these symbols are not stored. This technique is
called hidden bit normalization and was used by Digital for the Vax machine
in the late 1970°s before the IEEE standard was developed.

Exercise 7 Show that the hidden bit technique does not result in a more
accurate representation of 1/10. Would this still be true if we had started
with a field width of 24 bits before applying the hidden bit technique?

Note an important point: since zero cannot be normalized to have a
leading nonzero bit, hidden bit representation requires a special technique for
storing zero. We shall see what this is shortly. A pattern of all zeros in the
fraction field of a normalized number represents the significand 1.0, not 0.0.

SANSI/IEEE Std 754-1985

14

Zero is not the only special number for which the IEEE standard has a
special representation. Another special number, not used on older machines
but very useful, is the number co. This allows the possibility of dividing
a nonzero number by 0 and storing a sensible mathematical result, namely
0o, instead of terminating with an overflow message. This turns out to be
very useful, as we shall see later, although one must be careful about what
is meant by such a result. One question which then arises is: what about
—o0? It turns out to be convenient to have representations for —oco as well
as 0o and —0 as well as 0. We will give more details later, but note for now
that —0 and 0 are two different representations for the same value zero, while
—oo and oo represent two very different numbers. Another special number
is NaN, which stands for “Not a Number” and is consequently not really a
number at all, but an error pattern. This too will be discussed further later.
All of these special numbers, as well as some other special numbers called
subnormal numbers, are represented through the use of a special bit pattern
in the exponent field. This slightly reduces the exponent range, but this is
quite acceptable since the range is so large.

There are three standard types in IEEE floating point arithmetic: single
precision, double precision and extended precision. Single precision numbers
require a 32-bit word and their representations are summarized in Table 1.

Let us discuss Table 1 in some detail. The + refers to the sign of the
number, a zero bit being used to represent a positive sign. The first line
shows that the representation for zero requires a special zero bitstring for the
exponent field as well as a zero bitstring for the fraction, i.e.

| 0 [00000000 | 00000000000000000000000 |

No other line in the table can be used to represent the number zero, for all
lines except the first and the last represent normalized numbers, with an
initial bit equal to one; this is the one that is not stored. In the case of the
first line of the table, the initial unstored bit is zero, not one. The 27126 in
the first line is confusing at first sight, but let us ignore that for the moment
since (0.000...0)3 x 27126 is certainly one way to write the number zero. In
the case when the exponent field has a zero bitstring but the fraction field
has a nonzero bitstring, the number represented is said to be subnormal. *
Let us postpone the discussion of subnormal numbers for the moment and go
on to the other lines of the table.

*These numbers were called denormalizedin early versions of the standard.

15

Table 1: ITEEE Single Precision

‘ + ‘ ajdagasz . ..adg ‘ blbgbg...bgg ‘

‘ If exponent bitstring a; .. .as is ‘ Then numerical value represented is ‘
(00000000)2 = (0)10 i(Oblebg . .b23)2 X 2_126
(00000001)2 = (1)10 i(lblbgbg . .b23)2 X 2_126
(00000010)2 = (2)10 i(lblbgbg .. .b23)2 x 27125
(00000011)2 = (3)10 i(lblbgbg . .b23)2 X 2_124

3 N3
(01111111)2 = (127)10 +(1.b1bgb3 . . .by3)y x 2°
(10000000)2 = (128)10 :l:(lblbgbg o .b23)2 X 21

))
(11111100)2 = (252)10 +(1.b1bobs . . . ba3)2 x 212°
(11111101)2 = (253)10 +(1.b1b2bs3 .. .ba3)q x 2126
(11111110)2 = (254)10 +(1.b1bab3 . .. ba3)g x 2177
11111111)9 = (255)19 oo if by = ... = by3 = 0, NaN otherwise
()2 = (255) 7

All the lines of Table 1 except the first and the last refer to the normalized
numbers, i.e. all the floating point numbers which are not special in some way.
Note especially the relationship between the exponent bitstring ajaqas. . .ag
and the actual exponent F, i.e. the power of 2 which the bitstring is intended
to represent. We see that the exponent representation does not use any of
sign-and-modulus, 2’s complement or 1’s complement, but rather something
called biased representation: the bitstring which is stored is simply the binary
representation of E + 127. In this case, the number 127 which is added to
the desired exponent F is called the exponent bias. For example, the number
1= (1.000...0)2 x 2° is stored as

‘ 0 ‘ 01111111 | 00000000000000000000000 |.

Here the exponent bitstring is the binary representation for 0 + 127 and the
fraction bitstring is the binary representation for 0 (the fractional part of 1.0).
The number 11/2 = (1.011)3 x 22 is stored as

| 0 [10000001 | 01100000000000000000000 |

16

and the number 1/10 = (1.100110011...)5 x 27* is stored as

| 0 [01111011 [10011001100110011001100 |

We see that the range of exponent field bitstrings for normalized numbers
is 00000001 to 11111110 (the decimal numbers 1 through 254), representing
actual exponents from F,,;,, = —126 to F,,4, = 127. The smallest normalized
number which can be stored is represented by

| 0 | 00000001 | 00000000000000000000000 |

meaning (1.000...0)y x 2726 ie. 27125 which is approximately 1.2 x 10738,
while the largest normalized number is represented by

\ 0 \11111110 \11111111111111111111111

meaning (1.111...1)3 x 227 ie. (2 — 272%) x 2!27 which is approximately
3.4 x 10%8.

The last line of Table 1 shows that an exponent bitstring consisting of all
ones is a special pattern used for representing 0o and NaN, depending on
the value of the fraction bitstring. We will discuss the meaning of these later.

Finally, let us return to the first line of the table. The idea here is as
follows: although 27126
resented, we can use the combination of the special zero exponent bitstring

is the smallest normalized number which can be rep-

and a nonzero fraction bitstring to represent smaller numbers called subnror-
mal numbers. For example, 27127 which is the same as (0.1)5 x 27126 is
represented as

| 0 [00000000 [10000000000000000000000 |

while 2719 = (0.0000...01)2 x 27126 (with 22 zero bits after the binary
point) is stored as

| 0 [00000000 | 00000000000000000000001 |

This last number is the smallest nonzero number which can be stored. Now we

27126 in the first line. It allows us to represent numbers

see the reason for the
in the range immediately below the smallest normalized number. Subnormal
numbers cannot be normalized, since that would result in an exponent which
does not fit in the field.

Let us return to our example of a machine with a tiny word size, illustrated

in Figure 2, and see how the addition of subnormal numbers changes it. We

17

Figure 3: The Toy System including Subnormal Numbers

get three extra numbers: (0.11)y x 27! = 3/8, (0.10)2 x 27! = 1/4 and
(0.01)3 x 271 = 1/8: these are shown in Figure 3. Note that the gap between
zero and the smallest positive normalized number is nicely filled in by the
subnormal numbers, using the same spacing as that between the normalized
numbers with exponent —1.

Subnormal numbers are less accurate, i.e. they have less room for nonzero
bits in the fraction field, than normalized numbers. Indeed, the accuracy
drops as the size of the subnormal number decreases. Thus (1/10) x 27122 =
(0.11001100. . .)3 x 27126 is stored as

| 0 [00000000 | 11001100110011001100110 |,

while (1/10) x 27'%3 = (0.11001100...)5 x 27?6 is stored as

| 0 [00000000 | 00000000001100110011001 |

Exercise 8 Determine the IFEE single precision floating point representa-
tion of the following numbers: 2, 1000, 23/4, (23/4) x 2190 (23/4) x 27100,
(23/4) x 27135 1/5,1024/5, (1/10) x 27149,

Exercise 9 What is the gap between 2 and the first IEFFFE single precision
number larger than 29 What is the gap between 1024 and the first IEFEFE
single precision number larger than 1024% What is the gap between 2 and the
first IEEE double precision number larger than 29

Exercise 10 What is the smallest power of 2 which is not a single precision
floating point number?

Exercise 11 Let x = m x 2F be a normalized single precision number, with
1 < m < 2. Show that the gap between x and the next largest single precision

18

Table 2: IEEE Double Precision

‘ + ‘ ai1aaas3...a11 ‘ blbgbg...b52 ‘

‘ If exponent bitstring is aq . ..aqq ‘ Then numerical value represented is ‘
(00000000000), = (O) +(0.b1b2b3 . . .bsa)y x 271022
(00000000001)2 = (1)10 +(1.b1b2bs . . .bsa)y x 271022
(00000000010)2 = (2)10 +(1.b1b2b3 . . .bsg)y x 271021
(00000000011)2 = (3)10 +(1.b1b2b3 .. .bsy)y x 271020

3 3
(01111111111)3 = (1023)1¢ +(1.b1bgb3 .. .bsa)2 x 2°
(10000000000)2 = (1024)1¢ +(1.b1b2b3 . . .bsa)y x 21

I I
(11111111100)4 = (2044)10 +(1.b1bobs . . . bsa)g x 2102
(11111111101)2 = (2045)1¢ +(1.b1b2bs . . . bsg)o x 21022
(11111111110) = (2046)10 i(l b1babs ... bsy)g x 21022
(I1111111111)9 = (2047)10 +oo if by = bse = 0, NaN otherwise

number is
e x 28,

(It may be helpful to recall the discussion following Figure 2.)

Exercise 12 Write down an algorithm that tests whether a floating point
number x is less than, equal to or greater than another floating point number
y, by simply comparing their floating point representations bitwise from left to
right, stopping as soon as the first differing bit is encountered. The fact that
this can be done easily is the main motivation for biased exponent notation.

For many applications, single precision numbers are quite adequate. How-
ever, double precision is a commonly used alternative. In this case each
floating point number is stored in a 64-bit double word. Details are shown in
Table 2. The ideas are all the same; only the field widths and exponent bias
are different. Clearly, a number like 1/10 with an infinite binary expansion
is stored more accurately in double precision than in single, since by, ..., bs9
can be stored instead of just by, ..., bo3.

There is a third IEEE floating point format called extended precision.
Although the standard does not require a particular format for this, the stan-

19

Table 3: What is that Precision?

IEEE Single ce=2"P~12x10""
IEEE Double €c=2"522992x%x 10716
IEEE Extended | e = 2793 &~ 1.1 x 1071?

dard implementation used on PC’s is an 80-bit word, with 1 bit used for the
sign, 15 bits for the exponent and 64 bits for the significand. The leading bit
of a normalized number is not generally hidden as it is in single and double
precision, but is explicitly stored. Otherwise, the format is much the same as
single and double precision.

We see that the first single precision number larger than 1 is 1 4 2723,
while the first double precision number larger than 1is 142752, The extended
precision case is a little more tricky: since there is no hidden bit, 1 + 2764
cannot be stored exactly, so the first number larger than 1is 14+27%3, Thus the
exact machine precision, together with its approximate decimal equivalent, is
shown in Table 3 for each of the IEEE single, double and extended formats.

The fraction field of a single precision normalized number has ezactly 23
bits of precision, i.e. the significand has 24 bits counting the hidden bit. This
corresponds to approzimately 7 accurate decimal digits, since

2724 ~ 1077,

In double precision, the fraction has ezactly 52 bits of precision, i.e. the signif-
icand has 53 bits counting the hidden bit. This corresponds to approzimately
16 accurate decimal digits, since

2753 ~ 10716,

In extended precision, the significand has ezactly 64 bits of precision, and this
corresponds to approzimately 19 accurate decimal digits. So, for example, the
single precision representation for the number 7 is approzimately 3.14159,
with about 7 accurate digits. The double precision representation of 7 is
approzimately 3.14159265358979, with about 16 accurate digits. (Since a 24
bit binary number cannot be converted exactly to a 7 digit number, the actual
decimal value for the binary representation of 7 has more than 7 nonzero
digits, but only the first 7 digits are accurate approximations to 7.)

20

Figure 4: Rounding in the Toy System

5 Rounding and Correctly Rounded Arithmetic

We use the terminology “floating point numbers” to mean all acceptable num-
bers in a given IEEE floating point arithmetic format. This set consists of +0,
subnormal and normalized numbers, and £oc, but not NaN values. The set
of floating point numbers is a finite subset of the real numbers. We have seen
that most real numbers, such as 1/10 and 7, cannot be represented exactly
as floating point numbers. For ease of expression we will say a general real
number is “normalized” if its modulus lies between the smallest and largest
positive normalized floating point numbers, with a corresponding use of the
word “subnormal”. In both cases the representations we give for these num-
bers will parallel the floating point number representations in that by = 1 for
normalized numbers, and by = 0 with ¥ = —126 for subnormal numbers.

For any number z which is not a floating point number, there are two
obvious choices for the floating point approximation to z: the closest floating
point number less than z, and the closest floating point number greater than
x. Let us denote these x_ and z respectively. For example, consider the
toy floating point number system illustrated in Figures 2 and 3. If z = 1.7,
for example, then we have z_ = 1.5 and 24 = 1.75, as shown in Figure 4.

Now let us assume that the floating point system we are using is IEEE sin-
gle precision. Then if our general real number z is positive, (and normalized
or subnormal), with

r = (bo.b1b2 .. .b23b24b25 .. .)2 X 2E,

we have
r_ = (bo.blbg .. .b23)2 X 2E

Thus, z_ is obtained simply by truncating the binary expansion of m at the
23rd bit and discarding bqy, bos, etc. This is clearly the closest floating point

21

number which is less than . Writing a formula for z; is more complicated
since, if bog = 1, finding the closest floating point number bigger than z will
involve some bit “carries” and possibly, in rare cases, a change in F. If z is
negative, the situation is reversed: it is 4 which is obtained by dropping bits
bag, bas, etc., since discarding bits of a negative number makes the number
closer to zero, and therefore larger (further to the right on the real line).

The 1IEEE standard defines the correctly rounded value of x, which we
shall denote round(z), as follows. If 2 happens to be a floating point number,
then round(z) = z. Otherwise, the correctly rounded value depends on which
of the following four rounding modes is in effect:

e Round down. (Sometimes called round towards —oo).
round(z) = z_.

e Round up. (Sometimes called round towards co).
round(z) = 4.

e Round towards zero.
round(z) is either z_ or x4, whichever is between zero and z.

e Round to nearest.
round(z) is either z_ or z4, whichever is nearer to z. In the case of a
tie, the one with its least significant bit equal to zero is chosen.

If x is positive, then z_ is between zero and z, so round down and round
towards zero have the same effect. If 2 is negative, then x4 is between zero
and z, so it is round up and round towards zero which have the same ef-
fect. In either case, round towards zero simply requires truncating the binary
expansion, i.e. discarding bits.

The most useful rounding mode, and the one which is almost always used,
is round to nearest, since this produces the floating point number which is
closest to z. In the case of “toy” precision, with x = 1.7, it is clear that
round to nearest gives a rounded value of z equal to 1.75. When the word
“round” is used without any qualification, it almost always means “round to
nearest”. In the more familiar decimal context, if we “round” the number
m = 3.14159... to four decimal digits, we obtain the result 3.142, which is
closer to 7 than the truncated result 3.141.

Exercise 13 What is the rounded value of 1/10 for each of the four rounding
modes? Give the answer in terms of the binary representation of the number,
not the decimal equivalent.

22

Exercise 14 Suppose x and y are single precision floating point numbers.
Using round to nearest, is it true that round(z — y) = 0 only when z = y?
Hllustrate your answer with some examples. Do you get the same answer if
subnormal numbers are not allowed, i.e. subnormal results are rounded to
zero? Again, illustrate with an example.

Exercise 15 Make up an example where x_ and x4 are the same distance
from x, and use the tie breaking rule to decide which is used for round-to-
nearest.

The absolute value of the difference between round(z) and z is called
the absolute rounding error associated with z, and its value depends on the
rounding mode in effect. In toy precision, when round down or round to-
wards zero is in effect, the absolute rounding error for 2 = 1.7 is 0.2 (since
round(z) = 1.5), but if round up or round to nearest is in effect, the absolute
rounding error for z = 1.7 is 0.05 (since round(z) = 1.75). For all rounding
modes, it is clear that the absolute rounding error associated with x is less
than the gap between x_ and x4, while in the case of round to nearest, the
absolute rounding error can be no more than half the gap between z_ and
Ty.

Now let z be a normalized IEEE single precision number, and suppose
that z > 0, so that

2 = (bo.biby . . .by3bagbos . .)y x 27
with by = 1. Clearly,
z_ = (bo.biby...by3)s x 2F.
Thus we have, for any rounding mode, that
[round(z) — z| < 2723 x 27,
while for round to nearest
[round(z) — z| < 27 x 2F.

Similar results hold for double and extended precision, replacing 2723 by 2752

and 2753 respectively, so that in general we have

[round(z) — z| < € x 2F (1)

23

for any rounding mode and
1 E
|round(z) — z| < 7€ X 27,
for round to nearest.

Exercise 16 For round towards zero, could the absolute rounding error be
exactly equal to € x 282 For round to nearest, could the absolute rounding
error be exactly equal to %e x 2F 2

Exercise 17 Does (1) hold if z is subnormal, i.e. £ = —126 and by =07

The presence of the factor 2% is inconvenient, so let us consider the relative
rounding error associated with z, defined to be

5— round(z) = round(z) — z

Z Z

Since for normalized numbers
z=1mx2F where m > 1
(because by = 1) we have, for all rounding modes,

e x 28

i< =

=e. (2)
In the case of round to nearest, we have

1 E
7€ X 2 1

Exercise 18 Does (2) hold if x is subnormal, i.e. ' = —126 and by = 07
If not, how big could § be?

Now another way to write the definition of ¢ is
round(z) = z(1 + 9),

so we have the following result: the rounded value of a normalized number z
is, when not exactly equal to z, equal to z(1 +), where, regardless of the
rounding mode,

18] < e.

24

Here, as before, ¢ is the machine precision. In the case of round to nearest,
we have

1
18] < =e.
2

This result is very important, because it shows that, no matter how z is
displayed, for example either in binary format or in a converted decimal
format, you can think of the value shown as not exact, but as exact within a
factor of 1+ €. Using Table 3 we see, for example, that IEEE single precision
numbers are good to a factor of about 1 + 1077, which means that they have
about 7 accurate decimal digits.

Numbers are normally input to the computer using some kind of high-
level programming language, to be processed by a compiler or an interpreter.
There are two different ways that a number such as 1/10 might be input. One
way would be to input the decimal string 0.1 directly, either in the program
itself or in the input to the program. The compiler or interpreter then calls a
standard input-handling procedure which generates machine instructions to
convert the decimal string to its binary representation and store the correctly
rounded result in memory or a register. Alternatively, the integers 1 and 10
might be input to the program and the ratio 1/10 generated by a division
operation. In this case too, the input-handling program must be called to
read the integer strings 1 and 10 and convert them to binary representation.
Either integer or floating point format might be used for storing these values
in memory, depending on the type of the variables used in the program, but
these values must be converted to floating point format before the division
operation computes the ratio 1/10 and stores the final floating point result.

From the point of view of the underlying hardware, there are relatively
few operations which can be done on floating point numbers. These include
the standard arithmetic operations (add, subtract, multiply, divide) as well as
a few others such as square root. When the computer performs such a floating
point operation, the operands must be available in the processor registers or
in memory. The operands are therefore, by definition, floating point numbers,
even if they are only approximations to the original program data. However,
the result of a standard operation on two floating point numbers may well not
be a floating point number. For example, 1 and 10 are both floating point
numbers but we have already seen that 1/10 is not. In fact, multiplication
of two arbitrary 24-bit significands generally gives a 48-bit significand which
cannot be represented exactly in single precision.

When the result of a floating point operation is not a floating point num-
ber, the IEEE standard requires that the computed result must be the cor-

25

rectly rounded value of the exact result, using the rounding mode and precision
currently in effect. It is worth stating this requirement carefully. Let z and
y be floating point numbers, let +,— %,/ denote the four standard arithmetic
operations, and let §,6,,0 denote the corresponding operations as they are
actually implemented on the computer. Thus, z + y may not be a floating
point number, but z @ y is the floating point number which the computer
computes as its approximation of z + y. The IEEE rule is then precisely:

z @y =round(z + y),
r 6 y=round(z — y),
r ®y = round(z * y),
and
z @y =round(z/y).
From the discussion of relative rounding errors given above, we see then that

the computed value z @ y satisfies

tdy=(z+y)(1+9)

where
18] < ¢

for all rounding modes and
6 < le
2

in the case of round to nearest. The same result also holds for the other
operations &, ® and Q.

Exercise 19 In IFEFE single precision, using round to nearest, what are the
correctly rounded values for: 64 + 22°, 64 4 2720, 32 4+ 2729 16 4 2729,
8 + 2720, ive the binary representations, not the decimal equivalent. What
are the results if the rounding mode is changed to round up?

Exercise 20 Recalling how many decimal digits correspond to the 23 bit
fraction in an IEEFE single precision number, which of the following numbers
do you think round exactly to the number 1, using round to nearest: 141077,
1410710 14107152

Exercise 21 What is the smallest number a for which the correctly rounded
value of 14 a is exactly 1, using single precision with round to nearest. What
about double precision?

26

We see that the IEEE rule is that the result of a single floating point oper-
ation must always be the correctly rounded value of the true result. However,
this does not apply to a sequence of operations! For example, consider the
computation @ + b — ¢, where @ = 1, b = 272°, and ¢ = 1, using IEEE
single precision with round to nearest. These are all floating point num-
bers, with @ = ¢ = 1.0 x 2° and b = 1.0 x 2725, The value of a + b is
1.0000000000000000000000001, which is not a single precision floating point
number, so it is correctly rounded to the value 1. The final result is computed
to be 1 — ¢ which is 0. However, the exact value of @ + b — c is 272°, which
is a floating point number.

Exercise 22 Using the same example, what is the result of a + b — c if the
rounding mode is round up?

Exercise 23 In exact arithmetic, the addition operation is commutative, i.e.
a+b=b+a
for any two numbers a, b, and also associative, i.e.
a+(b+c)=(a+b)+c.

Are these also true of the floating point addition operator &% Give a careful
answer.

The Intel Pentium chip received a lot of bad publicity in the Fall of 1994
when the fact that it had a floating point hardware bug was exposed. For
example, on the original Pentium, the division operation

4195835
3145727

gave an inaccurate answer. The error took place only in rare cases, and could
easily have remained undiscovered much longer than it did (it was found by
a mathematics professor doing experiments in number theory). Nonetheless,
it created a sensation, mainly because it turned out that Intel knew about
the bug but had not released the information. The public outcry against
incorrect floating point arithmetic depressed Intel’s stock value significantly
until the company finally agreed to replace defective processors for everyone,
not just those that Intel thought really needed correct arithmetic! See The
New York Times, Nov. 22, 1994, p. D1, and also The Mathematics of the

27

Pentium Division Bug, by Alan Edelman, SIAM Review, March 1997 (URL
ftp://theory.lcs.mit.edu/pub/people/edelman/pentium/pentium.ps)
Now we ask the question: how is correctly rounded arithmetic imple-
mented? This is surprisingly complicated. Let us consider the addition of
two floating point numbers z = m x 2F and y = p x 2F, using IEEE single
precision. If the two exponents F and F' are the same, it is necessary only
to add the significands m and p. The final result is (m + p) x 2F, which
then needs further normalization if m + p is 2 or larger, or less than 1. For
example, the result of adding 3 = (1.100)2 x 2! to 2 = (1.000) x 2 is:

(1.10000000000000000000000)q x 2*

+ (1.00000000000000000000000)y x 2!

= (10.10000000000000000000000), x 2!
Normalize : (1.01000000000000000000000), x 22.

However, if the two exponents £ and F are different, say with £ > F, the
first step in adding the two numbers is to align the significands, shifting p
right I/ — I’ positions so that the second number is no longer normalized and
both numbers have the same exponent F. The significands are then added as
before. For example, adding 3 = (1.100)2 x 2! to 3/4 = (1.100)3 x 27! gives:

(1.10000000000000000000000), x 2!
+ (0.01100000000000000000000), x 21
= (1.11100000000000000000000), x 2.

In this case, the result does not need further normalization.
Now consider adding 3 to 3 x 2723, We get

(1.10000000000000000000000)5 x 2*
+ (/0.00000000000000000000001|1)y x 2!
= (1.10000000000000000000001|1), x 21
(1.10000000000000000000001)5 x 2!
(1.10000000000000000000010) x 2.

Round Down :
or Round Up :

This time, the result is not an IEEE single precision floating point number,
since its significand has 24 bits after the binary point: the 24th is shown
beyond the vertical bar. Therefore, the result must be correctly rounded. In
the case of rounding to nearest, there is a tie, so the result with the even final
bit is used (round up in this case).

The situation is still more complicated by the fact that rounding must not
take place until the result is normalized. Consider the example of subtracting

28

the floating point number 1 + 2722 4 2723 from 3 (or equivalently adding 3
and — (14272 +272%). We get

2><21
2X21
2><21
2)(20.

1.10000000000000000000000
0.10000000000000000000001|1
0.11111111111111111111110J1
1.11111111111111111111101

Normalize :

AAAA
NN N N

Thus, rounding is not needed in this example.

Exercise 24 Work out what happens for the examples 1 + 272 and 1 — 2724,
Give some additional examples of your own.

The following example shows that implementation of correct addition and
subtraction is not trivial even in the case that the result is a floating point
number and therefore does not require rounding. For example, consider com-
puting z — y with = (1.0)g x 2% and y = (1.1111...1)2 x 27!, where the
fraction field for y contains 23 ones after the binary point. (Notice that y
is only slightly smaller than z; in fact it is the next floating point number
smaller than z.) Aligning the significands, we obtain:

(1.00000000000000000000000])9 x 2°
— (0111111111111 111111111 g x 2°

(0.00000000000000000000000|1)5 x 2°
Normalize : (1.00000000000000000000000]0), x 2724,

This is an example of cancellation, since almost all the bits in the two numbers
cancel each other. The result is (1.0)5x 2724 which is a floating point number,
but in order to obtain this correct result we must be sure to carry out the
subtraction using an extra bit, called a guard bit, which is shown after the
vertical line following the b3 position. When the IBM 360 was first released,
it did not have a guard bit, and it was only after the strenuous objections
of certain computer scientists that later versions of the machine incorporated
a guard bit. Twenty-five years later, the Cray supercomputer still did not
have a guard bit. When the operation just illustrated, modified to reflect the
Cray’s longer wordlength, is performed on a Cray XMP, the result generated
is wrong by a factor of two since a one is shifted past the end of the second
operand’s significand and discarded. In this example, we have

roy=2(z—-y) insteadof zoy=(z—y)(1+45), whered<e (3)

29

On a Cray YMP, on the other hand, the second operand is rounded before the
operation takes place. This converts the second operand to the value 1.0 and
causes the final result x © y = 0, an even worse answer than the XMP gives.
Evidently, Cray supercomputers do not use correctly rounded arithmetic.
Machines supporting the IEEE standard do, however, have correctly rounded

arithmetic. Exactly how this is implemented depends on the machine. On
PC’s, floating point operations are carried out using extended precision regis-
ters, e.g. 80-bit registers, even if the values loaded from and stored to memory
are only single or double precision. This effectively provides many guard bits
for single and double precision operations, but if an extended precision oper-
ation on extended precision operands is desired, at least one additional guard
bit is needed. In fact, the following example (given in single precision for
convenience) shows that one, two or even 24 guard bits are not enough to
guarantee correctly rounded addition with 24-bit significands when the round-
ing mode is round to nearest. Consider computing — y where 2 = 1.0 and
y = (1.000...01)y x 2725 where y has 22 zero bits between the binary point
and the final one bit. In exact arithmetic, which requires 25 guard bits in
this case, we get:

(1.00000000000000000000000| Yo x 20
— (0.00000000000000000000000/0100000000000000000000001)4 x 2°
= (0.11111111111111111111111]10111 111111111 11111111111)5 x 2°
()
()

L1111 1111111111111 111011111 111111 1111111111110) x 271
l1.11111111111111111111111 g x 271

Normalize :
Round to Nearest :

This is the correctly rounded value of the exact sum of the numbers. However,
if we were to use only two guard bits (or indeed any number from 2 to 24),
we would get the result:

(1.00000000000000000000000 2 x 20

(0.00000000000000000000000[01)5 x 2°
= (0. 1111111111111 11111111111)g x 2°

(

(

)

)

)
LTI 1111) x 27

)

)

Normalize :
Round to Nearest : (10.00000000000000000000000 o x 271
Renormalize : (1.00000000000000000000000 9% 20

In this case, normalizing and rounding results in rounding up instead of down,
giving the final result 1.0, which is not the correctly rounded value of the
exact sum. Machines that implement correctly rounded arithmetic take such
possibilities into account, and it turns out that correctly rounded results can

30

be achieved in all cases using only two guard bits together with an extra bit,
called a sticky bit, which is used to flag a rounding problem of this kind.
Floating point multiplication, unlike addition and subtraction, does not
require significands to be aligned. If z = m x 2F and y = p x 2F, then
Xy =(mxp)x2EtF
so there are three steps to floating point multiplication: multiply the sig-
nificands, add the exponents, and normalize and correctly round the result.
Single precision significands are easily multiplied in an extended precision reg-
ister, since the product of two 24-bit significand bitstrings is a 48-bit bitstring
which is then correctly rounded to 24 bits after normalization. Multiplication
of double precision or extended precision significands is not so straightfor-
ward, however, since dropping bits may, as in addition, lead to incorrectly
rounded results.

Exercise 25 Assume that z and y are normalized numbers, i.e. 1 < |m| < 2,
1 < |p| < 2. How many bits may it be necessary to shift the significand
product m X p left or right to normalize the result?

6 Exceptional Situations

One of the most difficult things about programming is the need to anticipate
exceptional situations. In as much as it is possible to do so, a program
should handle exceptional data in a manner consistent with the handling of
standard data. For example, a program which reads integers from an input
file and echos them to an output file until the end of the input file is reached
should not fail just because the input file is empty. On the other hand, if
it is further required to compute the average value of the input data, no
reasonable solution is available if the input file is empty. So it is with floating
point arithmetic. When a reasonable response to exceptional data is possible,
it should be used.

The simplest example is division by zero. Before the IEEE standard was
devised, there were two standard responses to division of a positive number
by zero. One often used in the 1950’s was to generate the largest floating
point number as the result. The rationale offered by the manufacturers was
that the user would notice the large number in the output and draw the
conclusion that something had gone wrong. However, this often led to total
disaster: for example the expression 1/0 — 1/0 would then have a result of 0,

31

[

Figure 5: The Parallel Resistance Circuit

which is completely meaningless; furthermore, as the value is not large, the
user might not notice that any error had taken place. Consequently, it was
emphasized in the 1960’s that division by zero should lead to the generation
of a program interrupt, giving the user an informative message such as “fatal
error — division by zero”. In order to avoid this abnormal termination, the
burden was on the programmer to make sure that division by zero would never
occur. Suppose, for example, it is desired to compute the total resistance in
an electrical circuit with two resistors connected in parallel, with resistances
respectively Ry and R ohms, as shown in Figure 5.
The standard formula for the total resistance of the circuit is

1
T=—"——

T
This formula makes intuitive sense: if both resistances R; and R; are the
same value R, then the resistance of the whole circuit is T = R/2, since the
current divides equally, with equal amounts flowing through each resistor.
On the other hand, if one of the resistances, say Ry, is very much smaller
than the other, the resistance of the whole circuit is almost equal to that
very small value, since most of the current will flow through that resistor and
avoid the other one. What if I, is zero? The answer is intuitively clear: if one
resistor offers no resistance to the current, all the current will flow through
that resistor and avoid the other one; therefore, the total resistance in the
circuit is zero. The formula for T also makes perfect sense mathematically;

we get,
1 1 1
TII 1 = 1 :—:0
ot ®m O+g X

Why, then, should a programmer writing code for the evaluation of parallel

32

resistance formulas have to worry about treating division by zero as an ex-
ceptional situation? In IEEE floating point arithmetic, the programmer is
relieved from that burden. As long as the initial floating point environment
is set properly (as explained below), division by zero does not generate an
interrupt but gives an infinite result, program execution continuing normally.
In the case of the parallel resistance formula this leads to a final correct result
of 1/00 = 0.

It is, of course, true that @ x 0 has the value 0 for any finite value of a.
Similarly, we can adopt the convention that a/0 = oo for any positive value
of a. Multiplication with co also makes sense: a X oo has the value co for any
positive value of a. But the expressions co 0 and 0/0 make no mathematical
sense. An attempt to compute either of these quantities is called an invalid
operation, and the IEEE standard calls for the result of such an operation to
be set to NaN (Not a Number). Any arithmetic operation on a NaN gives
a NaN result, so any subsequent arithmetic computation with an expression
which has a NaN value also results in a NaN value. When a NaN is discovered
in the output of a program, the programmer knows something has gone wrong
and can invoke debugging tools to determine what the problem is. This may
be assisted by the fact that the bitstring in the fraction field can be used to
code the origin of the NaN. Consequently, we do not speak of a unique NaN
value but of many possible NaN values. Note that an oo in the output of
a program may or may not indicate a programming error, depending on the
context.

Addition and subtraction with oo also make mathematical sense. In the
parallel resistance example, we see that co + RLQ = oco. This is true even if
Ry also happens to be zero, because co 4+ 0o = co. We also have a 4+ 0o = oo
and @ — co = —oo for any finite value of a. But there is no way to make
sense of the expression oo — oo, which must therefore have a NaN value.
(These observations can be justified mathematically by considering addition
of limits. Suppose there are two sequences zj and y; both diverging to oo,
eg. xp = 2F, yp = 2k, for k = 1,2,3,.... Clearly, the sequence z3 + y
must also diverge to oo. This justifies the expression oo + 0o = co. But it is
impossible to make a statement about the limit of z; — yi, without knowing
more than the fact that they both diverge to oo, since the result depends on
which of zj or y; diverges faster to c0.)

Exercise 26 What are the possible values for

1 1

a b

33

where a and b are both nonnegative (positive or zero)?

Exercise 27 What are sensible values for the expressions oo/0, 0/cc and
o0o/o00?

Exercise 28 Using the 1950’s convention for treatment of division by zero
mentioned above, the expression (1/0)/10000000 results in a number very
much smaller than the largest floating point number. What is the result in
IEEFE arithmetic?

The reader may very reasonably ask the following question: why should
1/0 have the value oo rather than —oo? This is the main reason for the
existence of the value —0, so that the conventions a/0 = oo and a/(—0) = —c0
may be followed, where @ is a positive number. (The reverse holds if a is
negative.) It is essential, however, that the logical expression (0 = —0) has
the value true while (co = —o0) has the value false. Thus we see that it is
possible that the logical expressions (¢ = b) and (1/a = 1/b) have different
values, namely in the case a = 0, b = —0 (or @ = o0, b = —o0). This
phenomenon is a direct consequence of the convention for handling infinity.

Exercise 29 What are the values of the expressions 0/(—0), co/(—o0) and
—o00/(—0)?

Exercise 30 What is the result of the parallel resistance formula if an input
value is —0, or NaN#

Another perhaps unexpected consequence of these conventions concerns
arithmetic comparisons. When a and b are finite real numbers, one of three
conditions holds: @ = b, @ < b or a > b. The same is true if ¢ and b are
floating point numbers in the conventional sense, even if the values oo are
permitted. In both cases we also have for finite a: —0co < a < co. However,
if either @ or b has a NaN value, none of the three conditions =, <, > can be
said to hold (even if both a and b have NaN values). Instead, a and b are said
to be unordered. Consequently, although the logical expressions (¢ < b) and
(not(a > b)) usually have the same value, they are defined to have different
values (the first false, the second true) if either @ or b is a NaN.

Exercise 31 Suppose a and b both have the value oo. Which of the following
are true: a = b, a > b and a > b?

34

Let us now turn our attention to overflow and underflow. Quverflow is
said to occur when the true result of an arithmetic operation is finite but
larger in magnitude than the largest floating point number which can be
stored using the given precision. As with division by zero, there were two
standard treatments before IEEE arithmetic: either set the result to (plus
or minus) the largest floating point number, or interrupt the program with
an error message. In IEEE arithmetic, the standard response depends on the
rounding mode. Suppose that the overflowed value is positive. Then round up
gives the result co, while round down and round towards zero set the result to
the largest floating point number. In the case of round to nearest, the result
is 0co. From a strictly mathematical point of view, this is not consistent with
the definition for non-overflowed values, since a finite overflow value cannot
be said to be closer to co than to some other finite number. From a practical
point of view, however, the choice co is important, since round to nearest is
the default rounding mode and any other choice may lead to very misleading
final computational results.

Underflow is said to occur when the true result of an arithmetic operation
is smaller in magnitude than the smallest normalized floating point number
which can be stored. Historically, the response to this was almost always
the same: replace the result by zero. In IEEE arithmetic, the result may
be a subnormal positive number instead of zero. This allows results much
smaller than the smallest normalized number to be stored, closing the gap
between the normalized numbers and zero as illustrated earlier. However,
it also allows the possibility of loss of accuracy, as subnormal numbers have
fewer bits of precision than normalized numbers.

Exercise 32 Work out the sensible rounding conventions for underflow. For
example, using round to nearest, what values are rounded down to zero and
what values are rounded up to the smallest subnormal number?

Exercise 33 More often than not the result of oo following division by zero
indicates a programming problem. Given two numbers a and b, consider

setting
a b

=, d = —
ﬂ/aQ_l_bQ ﬂ/aQ_|_b2
Is it possible that ¢ or d (or both) is set to the value co, even if @ and b are
normalized numbers? ®

A better way to make this computation may be found in the LAPACK routine slarg,
which can be obtained by sending the message ”slartg from lapack” to the Internet address
netlib@ornl.gov

35

Table 4: IEEE Standard Response to Exceptions

Invalid Operation Set result to NaN
Division by Zero Set result to oo
Overflow Set result to +o0o or largest f.p. number
Underflow Set result to zero or subnormal number
Precision, or Inexact Set result to correctly rounded value

Exercise 34 Consider the computation of the previous exercise again. Is it
possible that ¢ and d could have many less digits of accuracy than a and b,
even though a and b are normalized numbers?

Altogether, the IEEE standard defines five kinds of exceptions: invalid
operation, division by zero, overflow, underflow and precision, together with
a standard response for each of these. All of these have just been described
except the last. The last exception is, in fact, not exceptional at all because it
occurs every time the result of an arithmetic operation is not a floating point
number and therefore requires rounding. Table 4 summarizes the standard
response for the five exceptions.

The IEEE standard specifies that when an exception occurs it must be
signaled by setting an associated status flag, and that the programmer should
have the option of either trapping the exception, providing special code to
be executed when the exception occurs, or masking the exception, in which
case the program continues executing with the standard response shown in
the table. If the user is not programming in assembly language, but in a
higher-level language being processed by an interpreter or a compiler, the
ability to trap exceptions may or may not be passed on to the programmer.
For example, the Borland C++ compiler does pass on this feature to the user.
However, users rarely needs to trap exceptions in this manner. It is usually
better to mask all exceptions and rely on the standard responses described
in the table. Again, in the case of higher-level languages the interpreter or
compiler in use may or may not mask the exceptions as its default action.

7 The Intel Floating Point Processor

The IEEE floating point standard was developed in the early 1980’s, during
the design phase of the early Personal Computers (PC’s). The two largest

36

manufacturers of chips for PC’s incorporated most of the standard in the
early stages of their design process: these were Intel (used by IBM PC’s
and clones) and Motorola (used by Apple Macintoshes and the early Sun
workstations). We shall confine our attention to the Intel 8087/8088 and its
successors, since these chips are the most widely used.

The original IBM PC used the Intel 8088 chip. This chip included the
central processing unit (CPU) and the arithmetic-logical unit (ALU) but did
not support floating point operations. The floating point unit (FPU) was
contained in the 8087 numeric processor extension (NPX), also known as
the floating point coprocessor chip. This design choice was made because
many users did not need floating point and, because floating point logic is
complicated, overall costs could be reduced by eliminating floating point from
the primary chip. The separate floating point coprocessor design continued
with the successors of the 8088/8087, namely the 80286/80287 (used by the
IBM AT) and the 80386/80387 DX (used by the IBM PS/2), or just 286/287
and 386/387 for short. However, the successor to the 386/387 DX, namely
the 486 DX, included the floating point unit on the main chip. (The slower
486 SX does not include floating point.) As the processors have became very
much faster with each new chip design, keeping floating point on a separate
chip became a liability rather than an advantage. Floating point instructions
can be executed on 8088, 80286 and 80386 machines without floating point
coprocessors, using emulation, but they take a great deal more processor
time.

Although the various versions of the Intel floating point unit differ in
many details, the basic organization is the same. Floating point instructions
operate primarily on data stored in eight 80-bit floating point registers, each
of which can accommodate an extended precision floating point number. The
eight registers are numbered 0 to 7 and are organized in a stack. At any
given time, the top register in the stack is denoted ST(0), the second-to-top
register ST(1), etc. The actual physical register corresponding to the top
register ST(0) is determined by a top-of-stack pointer stored in a 3-bit field
of the 16-bit status word, which is stored in a dedicated 16-bit register. If this
bitstring is 011, for example, ST(0) is equivalent to physical register 3, ST (1)
is equivalent to physical register 4, and so on, i.e. ST(7) is physical register
2. When the register stack is pushed, the top-of-stack pointer is decremented,
e.g. the top register is changed from physical register 3 to physical register 2,
ST(1) becomes physical register 3, and ST(7) becomes physical register 1.

The register stack is very convenient for the evaluation of arithmetic ex-

37

pressions. For example, consider the task of computing the expression
(a+b)xc

assuming the floating point numbers a, b and ¢ are available in memory loca-
tions A,B and C respectively, and that the result is to be stored in memory
location X. A sequence of assembly language instructions which will carry
out this task is

FLD A
FLD B
FADD
FLD C
FMUL
FSTP X

Here the first FLD instruction pushes the value in memory location A onto
the stack; in other words, it first decrements the top-of-stack pointer and then
copies the value in A, namely «, to the new stack register ST(0). The second
FLD instruction then pushes the value in the memory location B onto the
stack; this requires decrementing the stack pointer and copying the value in
B, namely b, to the new ST(0). At this point ST(0) contains b and ST(1)
contains ¢. The FADD instruction then adds the value in ST(0) to the value in
ST(1) and pops the stack, i.e. increments the top-of-stack pointer. The third
FLD instruction pushes the value in location C, namely ¢, onto the stack.
Then the FMUL instruction multiplies the new value in ST(0), namely ¢, onto
the value in ST(1), namely a+b, and pops the stack, leaving the final value of
the expression in the top register ST(0). Finally, the FSTP instruction stores
the final result in memory location X, popping the stack one more time. The
register stack now has the same configuration it did before the expression
evaluation began (either empty, or containing some other results still to be
processed). The whole computation is summarized in Table 5.

Notice that the computation is always organized so that the latest result is
at the top of the stack. The values in the registers are floating point numbers,
not formulas, of course. The expression a®b is used rather than a+b, because
this is the actual computed value, the rounded value of a + b.

Suppose ST(0) is initially equivalent to physical register 3. Then the
contents of the physical registers during the expression evaluation are shown
in Table 6. The symbol — indicates the top register in the stack at each
point in time.

38

Table 5: Logical Register Stack Contents, at Successive Times

Register

Time 0

Time 1

Time 2

Time 3

Time 4

Time 5

ST(0)
ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

a

b

a

adb

c

a®b

(adb)®c

Table 6: Physical Register Stack Contents, at Successive Times

Register

Time 0

Time 1

Time 2

Time 3

Time 4

Time 5

P.R.0O
P.R.
P.R.
P.R.
P.R.
P.R.
P.R.
P.R.

~1 O Tk W N

— b
a

b
- adb

— C
a®b

— (adb)®c

39

Each time the register stack is pushed, the top register, i.e. ST(0), moves
one position in terms of the physical registers. Also, when the register stack is
popped, and ST(0) moves back to its previous position, the numerical value
in the physical register remains unchanged until it is overwritten, e.g. by a
subsequent push instruction.

It is clear that the register stack can conveniently handle arithmetic ex-
pressions nested up to seven levels. However, it is possible to overflow the
stack by pushing it too many times. When this happens, an invalid opera-
tion is signaled and, if the invalid operation exception is masked, a NaN is
generated. Clearly, compiler writers should bear this in mind so that stack
overflow does not occur when complex expressions are parsed.

There are other versions of the floating point arithmetic instructions which
require only one operand to be in a register and the other operand to be in
memory. Though these result in slightly shorter assembly language programs,
they make the functionality of the stack somewhat less clear.

In addition to the top-of-stack pointer, the status word also contains the
five exception flags which are required by the IEEE standard. The flag is
set to one when the corresponding exception takes place. These flags can be
cleared by the programmer using special assembly language instructions such

as FCLEX.

In addition to the status word, the floating point unit has another special
word called the control word which is stored in another dedicated 16-bit
register. The control word is used to control the rounding mode, the precision
mode and the exception masks. There are two bits associated with control
of the rounding mode, set to 00 for round to nearest, for example. There
are also two bits used to control the precision mode, which can have one of
three values: single, double and extended. Five bits are used for exception
masks. When an exception occurs, and the corresponding flag in the status
word is set, the corresponding mask in the control word is examined. If the
exception mask is zero, the exception is trapped and control is passed to the
user-provided trapping routine. If the exception mask is one, i.e. the exception
is masked, the processor takes the default action described in Table 4 and
execution continues normally. The user can load any desired value for the
control word using the assembly instruction FLDCW. However, this is not a
good idea! The best way to reset the floating point environment to a default
initial state is by using the instruction FNINIT: this clears all status flags
in the status word, and sets the control word as follows: rounding control is
round to nearest, precision mode is extended, and all exceptions masked.

40

8 Higher-Level Languages

Although it is interesting to be able to access the features of the IEEE stan-
dard (such as rounding control) by using Assembly language, in practice
almost all users of floating point computing use higher-level languages. The
first of these was Fortran, which dates to 1958. Its successors Fortran 77 and
Fortran 90 are still in wide use in the scientific computing community. In the
1980’s, the C programming language became a popular choice for numerical
computing, as has its derivatives C++ and Java more recently.. A great deal
of numerical code is available in Fortran and C, including many important
public-domain software packages: go to the URL http://www.netlib.org
for information.

A very popular alternative to more conventional compiled languages is the
interactive system Matlab. Although not as fast as compiled code, Matlab is
very popular because of its ease of use, its extensive software toolboxes and
its graphics capabilities. An excellent introduction to numerical computing
using Matlab is Charles Van Loan’s Introduction to Scientific Computing: A
Matriz-Vector Approach using Matlab (Prentice-Hall, 1997).

Unfortunately, many of the features of the IEEE standard remain inacces-
sible to the user of high-level languages. For example, when writing code in a
high-level language, one cannot be sure what precision is in use: for example,
when two double-precision numbers are added together, this operation may
take place in an extended precision register, and one may not know whether or
not the result is rounded to double-precision following the operation. Making
the features and intents of the standard fully available to users of higher-level
languages remains a challenge to the compiler and interpreter writers of the
next generation.

Acknowlegments. The author thanks Jim Demmel for introducing him to
the IEEE standard and Chris Paige for some contributions to these notes.

41

