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Abstract

Recently, neural network based approaches have achieved significant
progress for solving large, complex, graph-structured problems. Never-
theless, the advantages of multi-scale information and deep architectures
have not been sufficiently exploited. In this paper, we first analyze key
factors constraining the expressive power of existing Graph Convolutional
Networks (GCNs), including the activation function and shallow learning
mechanisms. Then, we generalize spectral graph convolution and deep
GCN in block Krylov subspace forms, upon which we devise two architec-
tures, both scalable in depth however making use of multi-scale information
differently. On several node classification tasks, the proposed architectures
achieve state-of-the-art performance.

1 Introduction & Motivation

Many real-world problems can be modeled as graphs [14, 18, 25, 12, 27, 7]. Inspired by
the success of Convolutional Neural Networks (CNNs) [20] in computer vision [22], graph
convolution defined on graph Fourier domain stands out as the key operator and one of
the most powerful tools for using machine learning to solve graph problems. In this paper,
we focus on spectrum-free Graph Convolutional Networks (GCNs) [2, 29], which have
demonstrated state-of-the-art performance on many transductive and inductive learning
tasks [7, 18, 25, 3, 4].

One major problem of the existing GCNs is the low expressive power limited by their
shallow learning mechanisms [38, 36]. There are mainly two reasons why people have
not yet achieved an architecture that is scalable in depth. First, this problem is difficult:
considering graph convolution as a special form of Laplacian smoothing [21], networks with
multiple convolutional layers will suffer from an over-smoothing problem that makes the
representation of even distant nodes indistinguishable [38]. Second, some people think it is
unnecessary: for example, [2] states that it is not necessary for the label information to totally
traverse the entire graph and one can operate on the multi-scale coarsened input graph
and obtain the same flow of information as GCNs with more layers. Acknowledging the
difficulty, we hold on to the objective of deepening GCNs since the desired compositionality1

will yield easy articulation and consistent performance for problems with different scales.

In this paper, we break the performance ceiling of the GCNs. First, we analyze the limits of
the existing GCNs brought by the shallow learning mechanisms and the activation functions.
Then, we show that any graph convolution with a well-defined analytic spectral filter can

1The expressive power of a sound deep NN architecture should be expected to grow with the
increment of network depth [19, 16].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



be written as a product of a block Krylov matrix and a learnable parameter matrix in a
special form. Based on this, we propose two GCN architectures that leverage multi-scale
information in different ways and are scalable in depth, with stronger expressive powers
and abilities to extract richer representations of graph-structured data. We also show that
the equivalence of the two architectures can be achieved under certain conditions. For
empirical validation, we test different instances of the proposed architectures on multiple
node classification tasks. The results show that even the simplest instance of the architectures
achieves state-of-the-art performance, and the complex ones achieve surprisingly higher
performance, with or without validation sets.

2 Why Deep GCN Does Not Work Well?

2.1 Foundations

As in [11], we use bold font for vectors (e.g. v), block vectors (e.g. V) and matrix blocks
(e.g. Vi). Suppose we have an undirected graph G = (V,E,A), where V is the node set
with |V| = N, E is the edge set with |E| = E, A ∈ RN×N is a symmetric adjacency matrix
and D is a diagonal degree matrix, i.e. Dii =

∑
j Ai j. A diffusion process [6, 5] on G can

be defined by a diffusion operator L, which is a symmetric matrix, e.g. graph Laplacian
L = D − A, normalized graph Laplacian L = I −D−1/2AD−1/2 and affinity matrix L = A + I,
etc.. In this paper, we use L for a general diffusion operator, unless specified otherwise. The
eigendecomposition of L gives us L = UΛUT, where Λ is a diagonal matrix whose diagonal
elements are eigenvalues and the columns of U are the orthonormal eigenvectors, named
graph Fourier basis. We also have a feature matrix (graph signals) X ∈ RN×F (which can be
regarded as a block vector) defined onV and each node i has a feature vector Xi,:, which is
the i-th row of X.

Spectral graph convolution is defined in graph Fourier domain s.t. x ∗G y = U((UTx)� (UT y)),
where x, y ∈ RN and � is the Hadamard product [7]. Following this definition, a graph
signal x filtered by gθ can be written as

y = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx (1)

where gθ is any function which is analytic inside a closed contour which encircles λ(L), e.g.
Chebyshev polynomial [7]. GCN generalizes this definition to signals with F input channels
and O output channels and its network structure can be described as

Y = softmax(L ReLU(LXW0) W1) (2)

where
L ≡ D̃−1/2ÃD̃−1/2, Ã ≡ A + I, D̃ ≡ diag(

∑
jÃ1 j, . . . ,

∑
j ÃN j) (3)

This is called spectrum-free method [2] since it requires no explicit computation of eigende-
composition and operations on the frequency domain [38].

2.2 Problems

Suppose we deepen GCN in the same way as [18, 21], we have

Y = softmax(L ReLU(· · · L ReLU(L ReLU(LXW0) W1) W2 · · · ) Wn) ≡ softmax(Y′) (4)

For this architecture, [21] gives an analysis on the effect of L without considering the ReLU
activation function. Our analyses on (4) can be summarized in the following theorems.

Theorem 1. Suppose that G has k connected components and the diffusion operator L is
defined as that in (3). Let X ∈ RN×F be any block vector and let W j be any non-negative
parameter matrix with ‖W j‖2 ≤ 1 for j = 0, 1, . . .. If G has no bipartite components, then in
(4), as n→∞, rank(Y′) ≤ k.

Proof See Appendix A. �
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Conjecture 1. Theorem 1 still holds without the non-negative constraint on the parameter
matrices.

Theorem 2. Suppose the n-dimensional x and y are independently sampled from a contin-
uous distribution and the activation function Tanh(z) = ez

−e−z

ez+e−z is applied to [x, y] pointwisely,
then

P(rank
(
Tanh([x, y])

)
= rank([x, y])) = 1

Proof See Appendix A. �

Theorem 1 shows that if we simply deepen GCN, the extracted features will degrade, i.e.
Y′ only contains the stationary information of the graph structure and loses all the local
information in node for being smoothed. In addition, from the proof we see that the
pointwise ReLU transformation is a conspirator. Theorem 2 tells us that Tanh is better at
keeping linear independence among column features. We design a numerical experiment on
synthetic data (see Appendix) to test, under a 100-layer GCN architecture, how activation
functions affect the rank of the output in each hidden layer during the feedforward process.
As Figure 1(a) shows, the rank of hidden features decreases rapidly with ReLU, while having
little fluctuation under Tanh, and even the identity function performs better than ReLU (see
Appendix for more comparisons). So we propose to replace ReLU by Tanh.
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(c) Truncated Block Krylov

Figure 1: Changes in the number of independent features with the increment of network
depth

3 Spectral Graph Convolution and Block Krylov Subspaces

3.1 Block Krylov Subspaces

Let S be a vector subspace of RF×F containing the identity matrix IF that is closed under
matrix multiplication and transposition. We define an inner product 〈·, ·〉S in the block vector
space RN×F as follows [11]:

Definition 1 A mapping 〈·, ·〉S from RN×F
× RN×F to S is called a block inner product onto S if

∀X,Y,Z ∈ RN×F and ∀C ∈ S:

1. S-linearity: 〈X,YC〉S = 〈X,Y〉SC and 〈X + Y,Z〉S = 〈X,Z〉S + 〈Y,Z〉S

2. symmetry: 〈X,Y〉S = 〈Y,X〉T
S

3. definiteness: 〈X,X〉S is positive definite if X has full rank, and 〈X,X〉S = 0F iff X = 0.

There are mainly three ways to define 〈·, ·〉S [11]: 1) (Classical.) SCl = RF×F and 〈X,Y〉Cl
S

= XTY;
2) (Global.) SGl = cIF, c ∈ R and 〈X,Y〉Gl

S
= trace(XTY)IF; 3) (Loop-interchange.) SLi is the

set of diagonal matrices and 〈X,Y〉Li
S

= diag(XTY). The three definitions are all useful yet
we will use the classical one for our contribution.

For further explanations, we give the definition of block vector subspace of RN×F.
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Definition 2 Given a set of block vectors {Xk}
m
k=1 ⊂ R

N×F, the S-span of {Xk}
m
k=1 is defined as

spanS{X1, . . . ,Xm} := {
m∑

k=1
XkCk : Ck ∈ S}

Given the above definition, the order-m block Krylov subspace with respect to the matrix
A ∈ RN×N, the block vector B ∈ RN×F and the vector space S can be defined asKSm(A,B) :=
spanS{B,AB, . . . ,Am−1B}. The corresponding block Krylov matrix is defined as Km(A,B) :=
[B,AB, . . . ,Am−1B].

3.2 Spectral Graph Convolution in Block Krylov Subspace Form

In this section, we show that any graph convolution with well-defined analytic spectral filter
defined on L ∈ RN×N can be written as the product of a block Krylov matrix with a learnable
parameter matrix in a specific form. We take S = SCl = RF×F.

For any real analytic scalar function g, its power series expansion around center 0 is

g(x) =

∞∑
n=0

anxn =

∞∑
n=0

g(n)(0)
n!

xn, |x| < R

where R is the radius of convergence.

The function g can be used to define a filter. Let ρ(L) denote the spectrum radius of L and
suppose ρ(L) < R. The spectral filter g(L) ∈ RN×N can be defined as

g(L) :=
∞∑

n=0

anLn =

∞∑
n=0

g(n)(0)
n!

Ln, ρ(L) < R

According to the definition of spectral graph convolution in (1), graph signal X is filtered by
g(L) as follows,

g(L)X =

∞∑
n=0

g(n)(0)
n!

LnX =
[
X,LX,L2X, · · ·

] [ g(0)(0)
0!

IF,
g(1)(0)

1!
IF,

g(2)(0)
2!

IF, · · ·

]T

= A′B′

where A′ ∈ RN×∞ and B′ ∈ R∞×F. We can see that A′ is a block Krylov matrix and Range(A′B′)
⊆ Range(A′). It is shown in [13, 11] that for S = RF×F there exists a smallest m such that

spanS{X,LX,L2X, · · · } = spanS{X,LX,L2X, . . . ,Lm−1X} (5)
where m depends on L and X and will be written as m(L,X) later. This means for any k ≥ m,
LkX ∈ KSm(L,X). From (5), the convolution can be written as

g(L)X =

∞∑
n=0

g(n)(0)
n!

LnX ≡
[
X,LX, . . . ,Lm−1X

] [
(Γ0
S)T, (Γ1

S)T, · · · , (ΓSm−1)T
]T
≡ Km(L,X)ΓS (6)

where ΓSi ∈ R
F×F for i = 1, . . . ,m−1 are parameter matrix blocks. Then, a graph convolutional

layer can be be generally written as

g(L)XW′ = Km(L,X)ΓSW′ = Km(L,X)WS (7)

where WS
≡ ΓSW′

∈ RmF×O. The essential number of learnable parameters is mF ×O.

3.3 Deep GCN in the Block Krylov Subspace Form

Since the spectral graph convolution can be simplified as (6)(7), we can build deep GCN in
the following way.

Suppose that we have a sequence of analytic spectral filters G = {g0, g1, . . . , gn} and a sequence
of pointwise nonlinear activation functions H = {h0, h1, . . . , hn}. Then, a deep spectral graph
convolution network can be written as

Y = softmax
{
gn(L) hn−1

{
· · · g2(L) h1

{
g1(L) h0

{
g0(L)XW′

0

}
W′

1

}
W′

2 · · ·
}

W′

n

}
(8)
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Define
H0 = X, Hi+1 = hi{gi(L)HiWi}, i = 0, . . . ,n − 1

Then, we have
Y = softmax{gn(L)HnW′

n}

From (7) and (8), we see we can write

Hi+1 = hi{Kmi (L,Hi)WSi
i }, mi ≡ m(L,Hi)

It is easy to see that, when gi(L) = I, (8) is a fully connected network [21]; when n = 1,
g0(L) = g1(L) = L, where L is defined in (3), it is just GCN [18]; when gi(L) is defined by the
Chebyshev polynomial [15], W′

i = I, (8) is ChebNet [7].

3.4 Difficulties & Inspirations

In the last subsection, we gave a general form of deep GCN in the block Krylov form.
Following this idea, we can leverage the existing block Lanczos algorithm [11, 10] to find mi

and compute orthogonal basis ofKSmi
(L,Hi) which makes the filter coefficients compact [25]

and improve numerical stability. But there are some difficulties in practice:

1. During the training phase, Hi changes every time when parameters are updated. This
makes mi a variable and thus requires adaptive size for parameter matrices WSi

i .
2. For classical inner product, the QR factorization that is needed in block Lanczos algorithm

[11] is difficult to be implemented in backpropagation framework.

Despite implementation intractability, block Krylov form is still meaningful for constructing
GCNs that are scalable in depth as we illustrate below.

For each node v ∈ {1, . . . ,N} in the graph, denote N(v) as the set of its neighbors and Nk(v) as
the set of its k-hop neighbors. Then, LX(v, :) can be interpreted as a weighted mean of the
feature vectors of v and N(v). If the network goes deep as (4), Y′(v, :) becomes the “weighted
mean” of the feature vectors of v and N(n+1)(v) (not exactly weighted mean because we have
ReLU in each layer). As the scope grows, the nodes in the same connected component
tend to have the same (global) features, while losing their individual (local) features, which
makes them indistinguishable. Such phenomenon is recognized as “oversmoothing” [21].
Though it is reasonable to assume that the nodes in the same cluster share many similar
properties, it will be harmful to omit the individual differences between each node.

Therefore, the inspiration from the block Krylov form is that, to get a richer representation
of each node, we need to concatenate the multi-scale information (local and global) together
instead of merely doing smoothing in each hidden layer. If we have a smart way to stack
multi-scale information, the network will be scalable in depth. To this end, we naturally
come up with a densely connected architecture [17], which we call snowball network and a
compact architecture, which we call the truncated Krylov network, in which the multi-scale
information is used differently.

4 Deep GCN Architectures

4.1 Snowball

The block Krylov form inspires first an architecture that concatenates multi-scale features
incrementally, resulting in a densely-connected graph network (Figure 2(a)) as follows:

H0 = X, Hl+1 = f (L [H0,H1, . . . ,Hl] Wl) , l = 0, 1, . . . ,n − 1
C = g ([H0,H1, . . . ,Hn] Wn) (9)
output = softmax (LpCWC)

where Wl ∈ R(∑l
i=0 Fi)×Fl+1 ,Wn ∈ R(∑n

i=0 Fi)×FC and WC ∈ RFC×FO are learnable parameter matrices,
Fl+1 is the number of output channels in layer l; f and g are pointwise activation functions;
Hl are extracted features; C is the output of a classifier of any kind, e.g., a fully connected
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neural network or even an identity layer, in which case C = [H0,H1, . . . ,Hn]; p ∈ {0, 1}. When
p = 0, Lp = I and when p = 1, LP = L, which means that we project C back onto graph
Fourier basis, which is necessary when the graph structure encodes much information.
Following this construction, we can stack all learned features as the input of the subsequent
hidden layer, which is an efficient way to concatenate multi-scale information. The size of
input will grow like a snowball and this construction is similar to DenseNet [17], which
is designed for regular grids (images). Thus, some advantages of DenseNet are naturally
inherited, e.g., alleviate the vanishing-gradient problem, encourage feature reuse, increase
the variation of input for each hidden layer, reduce the number of parameters, strengthen
feature propagation and improve model compactness.

4.2 Truncated Krylov

The block Krylov form inspires then an architecture that concatenates multi-scale features
directly together in each layer. However, as stated in Section 3.4, the fact that mi is a variable
makes GCN difficult to be merged into the block Krylov framework. Thus we compromise
and set mi as a hyperparameter and get a truncated block Krylov network (Figure 2(b)) as
shown below:

H0 = X, Hl+1 = f
([

Hl,LHl . . . ,Lml−1Hl

]
Wl

)
, l = 0, 1, . . . ,n − 1

C = g (HnWn) (10)
output = softmax (LpCWC)

where Wl ∈ R
(mlFl)×Fl+1 ,Wn ∈ RFn×FC and WC ∈ RFC×FO are learnable parameter matrices; f

and g are activation functions; C is the output of a classifier of any kind; p ∈ {0, 1}. In the
truncated Krylov network, the local information will not be diluted in each layer because in
each layer l, we start the concatenation from L0Hl so that the extracted local information can
be kept.

There are works on the analysis of error bounds of doing truncation in block Krylov methods
[11]. But the results need many assumptions either on X, e.g., X is a standard Gaussian
matrix [34], or on L, e.g., some conditions on the smallest and largest eigenvalues of L have
to be satisfied [28]. Instead of doing truncation for a specific function or a fixed X, we are
dealing with variable X during training. So we cannot get a practical error bound since we
cannot put any restriction on X and its relation to L.

H1

X

X

H1

H2 H4

H1

H2

H3

X

X

O

(a) Snowball

X
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L2X

L3X
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Lm1
-1H1
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LH2

L2H2

L3H2

Lm2
-1H2

H3
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(b) Truncated Block Krylov

Figure 2: Proposed Architectures

The Krylov subspace methods are often associated with low-rank approximation methods
for large sparse matrices. Here we would like to mention [25] does low-rank approximation
of L by the Lanczos algorithm. It suffers from the tradeoff between accuracy and efficiency:
the information in L will be lost if L is not low-rank, while keeping more information via
increasing the Lanczos steps will hurt the efficiency. Since most of the graphs we are dealing
with have sparse connectivity structures, they are actually not low-rank, e.g., the Erdős-Rényi
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graph G(n, p) with p = ω( 1
n ) [32] and examples in Appendix IV. Thus, we do not propose to

do low-rank approximation in our architecture.

4.3 Equivalence of Linear Snowball GCN and Truncated Block Krylov Network

In this part, we will show that the two proposed architectures are inherently connected. In
fact their equivalence can be established when using identify functions as f , identity layer
as C and constraining the parameter matrix of truncated Krylov to be in a special form.

In linear snowball GCN, we can split the parameter matrix Wi into i + 1 blocks and write it

as Wi =
[
(W (1)

i )T, · · · , (W (i+1)
i )T

]T
and then following (9) we have

H0 = X, H1 = LXW0, H2 = L[X,H1]W1 = LXW (1)
1 +L2XW (1)

0 W (2)
1 = L[X,LX]

[
I 0
0 W (1)

0

] W (1)
1

W (2)
1

, . . .
As in (9), we have CWC = L[H0,H1, . . . ,Hn]WC. Thus we can write

[H0,H1 · · · ,Hn]WC

= [X,LX, · · · ,LnX]


I 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · W (1)
0





I 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · W (1)
1


· · ·



I 0 · · · 0

0 W (n)
n−1 · · · 0

...
...

. . .
...

0 0 · · · W (1)
n−1




W (1)

C

W (2)
C
...

W (n)
C


which is in the form of (7), where the parameter matrix is the multiplication of a sequence
of block diagonal matrices whose entries consist of identity blocks and blocks from other
parameter matrices. Though the two proposed architectures stack multi-scale information
in different ways, i.e. incremental and direct respectively, the equivalence reveals that the
truncated block Krylov network can be constrained to leverage multi-scale information in a
way similar to the snowball architecture. While it is worth noting that when there are no
constraints, truncated Krylov is capable of achieving more than what snowball does.

4.4 Relation to Message Passing Framework

We denote the concatenation operator as ‖. If we consider L as a general aggregation
operator which aggregates node features with its neighborhood features, we see that the
two proposed architectures both have close relationships with message passing framework
[12], which are illustrated in the following table, where N0(v) = {v}, Mt is a message function,
Ut is a vertex update function, m(t+1)

v ,h(t+1)
v are messages and hidden states at each node

respectively, m(t+1) = [m(t+1)
1 , · · · ,m(t+1)

N ]T, h(t+1) = [h(t+1)
1 , · · · ,h(t+1)

N ]T and σ is a nonlinear
activation function.

Compared to our proposed architectures, we can see that the message passing paradigm
cannot avoid oversmoothing problem because it does not leverage multi-scale infor-
mation in each layer and will finally lose local information. An alternate solution
to address the oversmoothing problem could be to modify the readout function to
ŷ = R({h(0)

v ,h
(1)
v , . . . ,h

(T)
v |v ∈ V}).

5 Experiments

On node classification tasks, we test 2 instances of the snowball GCN and 1 instance of
the truncated Krylov GCN, which include linear snowball GCN ( f = g = identity, p = 1),
snowball GCN ( f = Tanh, g = identity, p = 1) and truncated Krylov ( f = g = Tanh, p = 0).
The test cases include on public splits [37, 25] of Cora, Citeseer and PubMed2, as well as
the crafted smaller splits that are more difficult [25, 21, 31]. We compare the instances

2Source code to be found at https://github.com/PwnerHarry/Stronger_GCN
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Table 1: Algorithms in Matrix and Nodewise Forms

Forms

Algorithms Matrix Nodewise

Message Passing m(t+1) = Mt(A,h(t)) m(t+1)
v =

∑
w∈N(v)

Mt(h
(t)
v ,h

(t)
w , evw)

h(t+1) = Ut(h(t),m(t+1)) h(t+1)
v = Ut(h

(t)
v ,m

(t+1)
v )

GraphSAGE-GCN m(t+1) = Lh(t) m(t+1)
v = mean({h(t)

v } ∪ {h
(t)
N(v)})

h(t+1) = σ(m(t+1)Wt) h(t+1)
v = σ(WT

t m(t+1)
v )

Snowball m(t+1) = L[h(0)
‖ . . . ‖h(t)] m(t+1)

v = ‖ti=0mean({h(i)
v } ∪ {h

(i)
N(v)})

h(t+1)
v = σ(m(t+1)Wt) h(t+1)

v = σ(WT
t m(t+1)

v )

Truncated Krylov m(t+1) = h(t)
‖ . . . ‖Lmt−1h(t) m(t+1)

v = ‖mt−1
i=0 mean(∪i

k=0{h
(t)
Nk(v)
})

h(t+1) = σ(m(t+1)Wt) h(t+1)
v = σ(WT

t m(t+1)
v )

against several methods under 2 experimental settings, with or without validations sets. The
compared methods with validation sets include graph convolutional networks for fingerprint
(GCN-FP) [8], gated graph neural networks (GGNN) [23], diffusion convolutional neural
networks (DCNN) [1], Chebyshev networks (Cheby) [7], graph convolutional networks
(GCN) [18], message passing neural networks (MPNN) [12], graph sample and aggregate
(GraphSAGE) [14], graph partition neural networks (GPNN) [24], graph attention networks
(GAT) [33], LanczosNet (LNet) [25] and AdaLanczosNet (AdaLNet) [25]. The copmared
methods without validation sets include label propagation using ParWalks (LP) [35], Co-
training [21], Self-training [21], Union [21], Intersection [21], GCN without validation [21],
Multi-stage training [31], Multi-stage self-supervised (M3S) training [31], GCN with sparse
virtual adversarial training (GCN-SVAT) [30] and GCN with dense virtual adversarial
training (GCN-DVAT) [30].

(a) Linear Snowball (b) Snowball (c) Truncated Krylov

Figure 3: t-SNE for the extracted features trained on Cora (7 classes) public (5.2%).

In Table 2 and 3, for each test case, we report the accuracy averaged from 10 independent
runs using the best searched hyperparameters. These hyperparameters are reported in the
appendix, which include learning rate and weight decay for the optimizers RMSprop or
Adam for cases with validation or without validation, respectively, taking values in the
intervals [10−6, 5 × 10−3] and [10−5, 10−2], respectively, width of hidden layers taking value
in the set {100, 200, · · · , 5000}, number of hidden layers in the set {1, 2, . . . , 50}, dropout in
(0, 0.99], and the number of Krylov blocks taking value in {1, 2, . . . , 100}. An early stopping
trick is also used to achieve better training. Specifically we terminate the training after 100
update steps of not improving the training loss.

We see that the instances of the proposed architectures achieve overwhelming performance
in all test cases. We visualize a representative case using t-SNE [26] in Figure 3. From
these visualization, we can see the instances can extract good features with small training
data, especially for the truncated block Krylov network. Particularly, when the training
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splits are small, they perform astonishingly better than the existing methods. This may
be explained by the fact that when there is less labeled data, larger scope of vision field is
needed to make recognition of each node or to let the label signals propagate. We would
also highlight that the linear snowball GCN can achieve state-of-the-art performance with
much less computational cost. If G has no bipartite components, then in (4), as n → ∞,
rank(Y′) ≤ k almost surely.

Table 2: Accuracy without Validation
Algorithms

Cora CiteSeer PubMed
0.5% 1% 2% 3% 4% 5% 0.5% 1% 2% 3% 4% 5% 0.03% 0.05% 0.1% 0.3%

LP 56.4 62.3 65.4 67.5 69.0 70.2 34.8 40.2 43.6 45.3 46.4 47.3 61.4 66.4 65.4 66.8
Cheby 38.0 52.0 62.4 70.8 74.1 77.6 31.7 42.8 59.9 66.2 68.3 69.3 40.4 47.3 51.2 72.8

Co-training 56.6 66.4 73.5 75.9 78.9 80.8 47.3 55.7 62.1 62.5 64.5 65.5 62.2 68.3 72.7 78.2
Self-training 53.7 66.1 73.8 77.2 79.4 80.0 43.3 58.1 68.2 69.8 70.4 71.0 51.9 58.7 66.8 77.0

Union 58.5 69.9 75.9 78.5 80.4 81.7 46.3 59.1 66.7 66.7 67.6 68.2 58.4 64.0 70.7 79.2
Intersection 49.7 65.0 72.9 77.1 79.4 80.2 42.9 59.1 68.6 70.1 70.8 71.2 52.0 59.3 69.7 77.6
MultiStage 61.1 63.7 74.4 76.1 77.2 53.0 57.8 63.8 68.0 69.0 57.4 64.3 70.2

M3S 61.5 67.2 75.6 77.8 78.0 56.1 62.1 66.4 70.3 70.5 59.2 64.4 70.6
GCN 42.6 56.9 67.8 74.9 77.6 79.3 33.4 46.5 62.6 66.9 68.7 69.6 46.4 49.7 56.3 76.6

GCN-SVAT 43.6 53.9 71.4 75.6 78.3 78.5 47.0 52.4 65.8 68.6 69.5 70.7 52.1 56.9 63.5 77.2
GCN-DVAT 49 61.8 71.9 75.9 78.4 78.6 51.5 58.5 67.4 69.2 70.8 71.3 53.3 58.6 66.3 77.3

Linear Snowball 69.5 74.1 79.4 80.4 81.3 82.4 56.8 64.3 68.8 71.0 72.2 72.3 64.1 69.5 72.9 79.3
Snowball 67.2 73.5 78.5 80.0 81.5 82.3 56.7 65.0 69.5 71.1 72.3 72.6 62.9 68.3 73.3 79.5

Truncated Krylov 72.2 75.7 79.2 80.9 82.5 82.8 60.9 66.2 69.0 71.8 72.4 73.2 69.1 71.8 76.1 80.1

For each (column), the greener the cell, the better the performance. The redder, the worse. If our
methods achieve better performance than all others, the corresponding cell will be in bold.

Table 3: Accuracy with Validation

Algorithms
Cora CiteSeer PubMed

0.5% 1% 3%
5.2%

0.5% 1%
3.6%

0.03% 0.05% 0.1%
0.3%

public public public

Cheby 33.9 44.2 62.1 78.0 45.3 59.4 70.1 45.3 48.2 55.2 69.8
GCN-FP 50.5 59.6 71.7 74.6 43.9 54.3 61.5 56.2 63.2 70.3 76.0
GGNN 48.2 60.5 73.1 77.6 44.3 56.0 64.6 55.8 63.3 70.4 75.8
DCNN 59.0 66.4 76.7 79.7 53.1 62.2 69.4 60.9 66.7 73.1 76.8
MPNN 46.5 56.7 72.0 78.0 41.8 54.3 64.0 53.9 59.6 67.3 75.6

GraphSAGE 37.5 49.0 64.2 74.5 33.8 51.0 67.2 45.4 53.0 65.4 76.8
GAT 41.4 48.6 56.8 83.0 38.2 46.5 72.5 50.9 50.4 59.6 79.0
GCN 50.9 62.3 76.5 80.5 43.6 55.3 68.7 57.9 64.6 73.0 77.8
LNet 58.1 66.1 77.3 79.5 53.2 61.3 66.2 60.4 68.8 73.4 78.3

AdaLNet 60.8 67.5 77.7 80.4 53.8 63.3 68.7 61.0 66.0 72.8 78.1

Linear Snowball 71.7 75.2 81.5 83.7 61.2 67.3 73.4 71.7 73.2 75.7 79.2
Snowball 72.9 76.2 81.1 83.3 62.4 67.0 73.2 70.9 73.0 76.1 79.5

Truncated Krylov 74.1 77.6 81.8 83.5 65.3 68.2 74.2 71.5 73.2 77.0 80.1

6 Future Works

Future research of this like includes: 1) Investigating how the pointwise nonlinear activation
functions influence block vectors, e.g., the feature block vector X and hidden feature block
vectors Hi, so that we can find possible activation functions better than Tanh; 2) Finding a
better way to leverage the block Krylov algorithms instead of conducting simple truncation.

Acknowledgements

The authors wish to express sincere gratitude for the computational resources of Compute
Canada provided by Mila, as well as for the proofreading done by Sitao and Mingde’s good
friend & coworker Ian P. Porada.

9



References

[1] J. Atwood and D. Towsley. Diffusion-convolutional neural networks. arXiv,
abs/1511.02136, 2015.

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep
learning: going beyond euclidean data. arXiv, abs/1611.08097, 2016.

[3] J. Chen, T. Ma, and C. Xiao. Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247, 2018.

[4] J. Chen, J. Zhu, and L. Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

[5] R. R. Coifman and S. Lafon. Diffusion maps. Applied and computational harmonic analysis,
21(1):5–30, 2006.

[6] R. R. Coifman and M. Maggioni. Diffusion wavelets. Applied and Computational Harmonic
Analysis, 21(1):53–94, 2006.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. arXiv, abs/1606.09375, 2016.

[8] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pages 2224–2232, 2015.

[9] X. Feng and Z. Zhang. The rank of a random matrix. Applied mathematics and computation,
185(1):689–694, 2007.

[10] A. Frommer, K. Lund, M. Schweitzer, and D. B. Szyld. The radau–lanczos method for
matrix functions. SIAM Journal on Matrix Analysis and Applications, 38(3):710–732, 2017.

[11] A. Frommer, K. Lund, and D. B. Szyld. Block Krylov subspace methods for functions
of matrices. Electronic Transactions on Numerical Analysis, 47:100–126, 2017.

[12] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[13] M. H. Gutknecht and T. Schmelzer. The block grade of a block krylov space. Linear
Algebra and its Applications, 430(1):174–185, 2009.

[14] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large
graphs. arXiv, abs/1706.02216, 2017.

[15] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

[16] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554, 2006.

[17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4700–4708, 2017.

[18] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv, abs/1609.02907, 2016.

[19] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.

[20] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[21] Q. Li, Z. Han, and X. Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. arXiv, abs/1801.07606, 2018.

[22] R. Li, S. Wang, F. Zhu, and J. Huang. Adaptive graph convolutional neural networks.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[23] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

10



[24] R. Liao, M. Brockschmidt, D. Tarlow, A. L. Gaunt, R. Urtasun, and R. Zemel. Graph parti-
tion neural networks for semi-supervised classification. arXiv preprint arXiv:1803.06272,
2018.

[25] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel. Lanczosnet: Multi-scale deep graph
convolutional networks. arXiv, abs/1901.01484, 2019.

[26] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[27] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein. Geometric
deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[28] C. Musco, C. Musco, and A. Sidford. Stability of the lanczos method for matrix function
approximation. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1605–1624. Society for Industrial and Applied Mathematics,
2018.

[29] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. arXiv preprint arXiv:1211.0053, 2012.

[30] K. Sun, H. Guo, Z. Zhu, and Z. Lin. Virtual adversarial training on graph convolutional
networks in node classification. arXiv preprint arXiv:1902.11045, 2019.

[31] K. Sun, Z. Zhu, and Z. Lin. Multi-stage self-supervised learning for graph convolutional
networks. arXiv, abs/1902.11038, 2019.

[32] L. V. Tran, V. H. Vu, and K. Wang. Sparse random graphs: Eigenvalues and eigenvectors.
Random Structures & Algorithms, 42(1):110–134, 2013.
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Appendices

A Proofs of Theorems 1 and 2

Lemma 1. Suppose that a graph G has k connected components {Ci}
k
i=1 and L is diffusion

operator defined in (3). If G has no bipartite components, then λi(L) ∈ (−1, 1] with
λ1 = · · · = λk = 1 > |λk+1| ≥ · · · ≥ |λN |

Proof See Theorem 1 in [21]. �

Theorem 1. Suppose that G has k connected components and the diffusion operator L is
defined as that in (3). Let X ∈ RN×F be any block vector and let W j be any non-negative
parameter matrix with ‖W j‖2 ≤ 1 for j = 0, 1, . . .. If G has no bipartite components, then in
(4), as n→∞, rank(Y′) ≤ k.

Proof Note that Y′ is N by F. Certainly rank(Y′) ≤ k if k ≥ F. In the following we assume
k < F.

Let Y0 = ReLU(LXW0), then Y0 is a non-negative block vector. Since L and W1 are non-
negative as well, we have

LReLU(LY0W1)W2 = LLY0W1W2 = L2Y0W1W2

which is non-negative. In general, it is easy to see from (4), we have
Y′ = LnY0W1W2 · · ·Wn

Thus, with the condition ‖W j‖2 ≤ 1 for any j, the i-th largest singular value of Y′ satisfies
σi(Y′) ≤ σi(Ln)‖Y0‖2‖W1‖2 · · · ‖Wn‖2 ≤ |λi(L)|n‖Y0‖2, i = 1, 2, . . . ,min{N,F}

From Lemma 1 we can conclude that
lim
n→∞

σi(Y′) = 0, i = k + 1, k + 2, . . . ,min{N,F}

Thus, limn→∞ rank(Y′) ≤ k. �

Theorem 2. Suppose the n-dimensional x and y are independently sampled from a contin-
uous distribution and the activation function Tanh(z) = ez

−e−z

ez+e−z is applied to [x, y] pointwisely,
then

P(rank
(
Tanh([x, y])

)
= rank([x, y])) = 1

Proof Since x and y are sampled from a continuous distribution, P(rank([x, y]) = 2) = 1
(see [9]). Then

P(rank(Tanh([x, y])) = rank([x, y]))
= P(rank(Tanh([x, y])) = rank([x, y]) | rank([x, y]) = 2)P(rank([x, y]) = 2)

+ P(rank(Tanh([x, y])) = rank([x, y]) | rank([x, y]) < 2)P(rank([x, y]) < 2)
= P(rank(Tanh([x, y])) = rank([x, y]) | rank([x, y]) = 2) (11)

For any fixed x ∈ Rn, suppose x and random y are linearly independent, but Tanh(x)
and Tanh(y) are linearly dependent. Without loss of generality, we assume xn , 0. Thus
Tanh(xn) , 0 and Tanh(xn) , 0. Then we have

Tanh(yi)
Tanh(yn)

=
Tanh(xi)
Tanh(xn)

, i = 2, . . . ,n

Thus,

yi = Tanh−1
(

Tanh(xi)Tanh(yn)
Tanh(xn)

)
, i = 2, . . . ,n

For any fixed x, the set formed by all y satisfying the above equalities has dimension 1, and
therefore its Lebesgue measure is 0, implying that

P(rank(Tanh([x, y])) = 1 | rank([x, y]) = 2) = 0
Then from (11) we can conclude the result holds. �
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B Numerical Experiments on Synthetic Data

The goal of the experiments is to test which network structure with which kind of activation
function has the potential to be extended to deep architecture. We measure this potential
by the numerical rank of the output features in each hidden layer of the networks using
synthetic data. The reason of choosing this measure can be explained by Theorem 2.2. We
build the certain networks with depth 100 and the data is generated as follows.

We first randomly generate edges of an Erdős-Rényi graph G(1000, 0.01), i.e. the existence of
the edge between any pair of nodes is a Bernoulli random variable with p = 0.01. Then, we
construct the corresponding adjacency matrix A of the graph which is a R1000×1000 matrix.
We generate a R1000×500 feature matrix X and each of its element is drawn from N(0, 1). We
normalize A and X as [18] and abuse the notation A,X to denote the normalized matrices.
We keep 3 blocks in each layer of truncated block Krylov network. The number of input
channel in each layer depends on the network structures and the number of output channel
is set to be 128 for all networks. Each element in every parameter matrix Wi, i = 1, . . . , 100
is randomly sampled from N(0, 1) and the size is R#input×#output. With the synthetic A,X,Wi,
we simulate the feedforward process according to the network architecture and collect
the numerical rank (at most 128) of the output in each of the 100 hidden layers. For each
activation function under each network architecture, we repeat the experiments for 20 times
and plot the mean results with standard deviation bars.

C Rank Comparison of Activation Functions and Networks
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Figure 4: Column ranks of different activation functions with the same architecture
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Figure 5: Column ranks of different architectures with the same activation function
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Figure 6: Spectrum of the renormalized adjacency matrices for several datasets

D Spectrum of the Datasets

E Experiment Settings and Hyperparameters

The so-called public splits in [25] and the setting that randomly sample 20 instances for each
class as labeled data in [37] is actually the same. Most of the results for the algorithms with
validation are cited from [25], where they are reproduced with validation. However, some
of them actually do not use validation in original papers and can achieve better results. In
the paper, We compare with their best results.

We use NVIDIA apex amp mixed-precision plugin for PyTorch to accelerate our experiments.
Most of the results were obtained from NVIDIA V100 clusters on Beluga of Compute-
Canada, with minor part of them obtained from NVIDIA K20, K80 clusters on Helios
Compute-Canada. The hyperparameters are searched using Bayesian optimization.

A useful tip is the smaller your training set is, the larger dropout probability should be set
and the larger early stopping you should have.

Table 5 and Table 4 show the hyperparameters to achieve the performance in the experiments,
for cases without and with validation, respectively. When conducting the hyperparameter
search, we encounter memory problems: current GPUs cannot afford deeper and wider
structures. But we do observe better performance with the increment of the network size. It
is expected to achieve better performance with more advanced deep learning devices.
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Table 4: Hyperparameters for Tests with Validation

Architecture Dataset Split Accuracy Corresponding Hyperparameters
Our Best SOTA learning rate weight decay width depth/blocks dropout optimizer

linear Snowball

Cora

0.5% 71.69 60.8 3.0911E-05 4.7732E-02 500 17 0.37106 RMSprop
1% 75.20 67.5 4.0685E-04 8.9625E-03 100 12 0.67302 RMSprop
3% 81.50 77.7 1.0256E-05 2.2773E-02 1900 9 0.8031 RMSprop

5.2% (public) 83.65 83.0 7.2385E-05 2.4428E-02 1400 12 0.91054 RMSprop

CiteSeer
0.5% 61.21 53.8 2.0858E-03 1.6430E-02 2800 3 0.98144 RMSprop
1% 67.26 63.3 1.7237E-03 4.0416E-02 5000 2 0.98661 RMSprop

3.6% (public) 73.39 72.5 1.1486E-03 4.7276E-02 2800 2 0.98167 RMSprop

Pubmed

0.03% 71.74 61.0 2.5377E-03 1.0830E-02 1700 2 0.98733 RMSprop
0.05% 73.17 68.8 4.7712E-03 1.8898E-03 400 2 0.89331 RMSprop
0.1% 75.68 73.4 3.7998E-04 1.6507E-02 100 11 0.17388 RMSprop

0.3% (public) 79.22 79.0 8.1370E-04 4.0998E-02 2400 3 0.98527 RMSprop

Snowball

Cora

0.5% 72.90 60.8 1.7430E-04 2.4378E-02 100 23 0.6086 RMSprop
1% 76.16 67.5 3.4202E-03 1.5751E-03 3900 2 0.98907 RMSprop
3% 81.12 77.7 3.4523E-05 1.1752E-02 3800 5 0.16643 RMSprop

5.2% (public) 83.32 83.0 2.4800E-05 3.5866E-02 3800 6 0.91983 RMSprop

CiteSeer
0.5% 62.41 53.8 2.3734E-03 2.2992E-02 2500 2 0.97315 RMSprop
1% 67.04 63.3 1.9889E-03 2.2401E-02 700 4 0.82512 RMSprop

3.6% (public) 73.23 72.5 4.1985E-03 8.9302E-03 3400 1 0.96857 RMSprop

Pubmed

0.03% 70.87 61.0 1.4998E-03 2.4265E-02 500 11 0.93233 RMSprop
0.05% 73.03 68.8 1.4754E-03 3.0558E-02 400 5 0.72253 RMSprop
0.1% 76.09 73.4 4.2362E-04 3.3066E-02 400 4 0.090822 RMSprop

0.3% (public) 79.51 79.0 4.8091E-03 1.3221E-03 2800 1 0.98994 RMSprop

truncated Krylov

Cora

0.5% 74.11 60.8 1.4387E-04 9.4404E-03 3700 86 0.94346 RMSprop
1% 77.55 67.5 3.0239E-03 1.8363E-03 4500 32 0.98817 RMSprop
3% 81.81 77.7 1.5997E-03 1.8666E-04 2200 14 0.9814 RMSprop

5.2% (public) 83.51 83.0 8.9107E-04 3.4034E-03 500 30 0.049966 RMSprop

CiteSeer
0.5% 65.28 53.8 3.3864E-03 4.9753E-02 4600 34 0.9842 RMSprop
1% 68.21 63.3 1.5359E-03 1.1404E-02 3700 22 0.91228 RMSprop

3.6% (public) 74.18 72.5 2.8980E-03 4.2862E-02 2200 19 0.98689 RMSprop

Pubmed

0.03% 71.45 61.0 4.5592E-04 3.7077E-03 5000 7 0.98677 RMSprop
0.05% 73.24 68.8 3.8475E-03 9.1710E-03 1600 7 0.98375 RMSprop
0.1% 77.01 73.4 3.8877E-03 1.5528E-02 3200 6 0.97849 RMSprop

0.3% (public) 80.12 79.0 1.4288E-03 1.6897E-02 4200 7 0.017084 RMSprop

15



Table 5: Hyperparameters for Tests without Validation

Architecture Dataset Percentage
Accuracy Correspondong Hyperparameters

Ours SOTA lr weight_decay hidden layers/n_blocks dropout Optimizer

linear Snowball

Cora

0.5% 69.53 61.5 4.4438E-05 1.7409E-02 550 12 0.007753 Adam
1% 74.12 69.9 1.0826E-03 3.3462E-03 1250 3 0.50426 Adam
2% 79.43 75.9 2.4594E-06 9.6734E-03 1650 12 0.34073 Adam
3% 80.41 78.5 2.8597E-05 3.4732E-02 900 15 0.039034 Adam
4% 81.3 80.4 3.6830E-05 1.5664E-02 3750 4 0.93797 Adam
5% 82.19 81.7 5.8323E-06 8.5940E-03 2850 5 0.14701 Adam

CiteSeer

0.5% 56.76 56.1 4.5629E-03 2.0106E-03 300 3 0.038225 Adam
1% 65.44 62.1 3.5530E-05 4.9935E-02 600 6 0.03556 Adam
2% 68.78 68.6 6.1176E-06 3.0101E-02 1950 3 0.040484 Adam
3% 71 70.3 2.1956E-05 4.3569E-02 3350 3 0.30207 Adam
4% 72.23 70.8 9.1952E-05 4.6407E-02 3350 2 0.018231 Adam
5% 72.21 71.3 3.7173E-03 1.9605E-03 2950 1 0.96958 Adam

Pubmed

0.03% 64.133 62.2 1.0724E-03 8.1097E-03 64 4 0.8022 RMSProp
0.05% 69.48 68.3 1.5936E-03 3.0236E-03 6 10 0.73067 RMSProp
0.1% 72.93 72.7 4.9733E-03 1.3744E-03 128 3 0.91214 RMSProp
0.3% 79.33 79.2 1.7998E-03 9.6753E-04 512 1 0.97483 RMSProp

Snowball

Cora

0.5% 67.15 61.5 9.8649E-04 1.0305E-02 1600 3 0.92785 Adam
1% 73.47 69.9 1.4228E-04 1.3472E-02 100 13 0.68601 Adam
2% 78.54 75.9 5.7111E-06 1.5544E-02 600 13 0.022622 Adam
3% 79.97 78.5 4.0278E-05 2.7287E-02 4350 5 0.57173 Adam
4% 81.49 80.4 1.4152E-05 2.3359E-02 2500 13 0.018578 Adam
5% 81.82 81.7 1.2621E-03 1.5323E-02 3550 2 0.87352 Adam

CiteSeer

0.5% 56.39 56.1 2.6983E-03 2.5370E-02 300 6 0.82964 Adam
1% 65.04 62.1 1.6982E-03 1.5473E-02 2150 2 0.98611 Adam
2% 69.48 68.6 9.7299E-05 4.9675E-02 2150 3 0.71216 Adam
3% 71.09 70.3 1.7839E-04 3.0874E-02 2150 2 0.16549 Adam
4% 72.32 70.8 5.6575E-05 3.5949E-02 4800 2 0.012576 Adam
5% 72.8 71.3 2.8643E-04 1.6399E-02 2000 2 0.37308 Adam

Pubmed

0.03% 62.94 62.2 1.2700E-03 1.4159E-03 128 4 0.76848 RMSProp
0.05% 68.31 68.3 1.1224E-03 9.9166E-05 256 3 0.85496 RMSProp
0.1% 73.29 72.7 6.0506E-04 1.0303E-03 256 2 0.97988 RMSProp
0.3% 79.63 79.2 1.1416E-03 6.1543E-04 128 1 0.989 RMSProp

truncated Krylov

Cora

0.5% 72.96 61.5 3.3276E-03 1.0496E-04 128 18 0.76012 RMSProp
1% 75.52 69.9 7.4797E-04 9.1736E-03 2048 20 0.98941 RMSProp
2% 80.31 75.9 1.7894E-04 1.1079E-02 4096 16 0.97091 RMSProp
3% 81.54 78.5 4.3837E-04 2.6958E-03 512 17 0.96643 RMSProp
4% 82.47 80.4 3.6117E-03 4.1040E-04 64 25 0.021987 RMSProp
5% 83.36 81.7 1.0294E-03 5.3882E-04 256 23 0.028392 RMSProp

CiteSeer

0.5% 59.6 56.1 1.9790E-03 4.0283E-04 16 20 0.007761 RMSProp
1% 65.95 62.1 7.8506E-04 8.2432E-03 64 24 0.28159 RMSProp
2% 70.23 68.6 5.4517E-04 1.0818E-02 256 12 0.27027 RMSProp
3% 71.81 70.3 1.4107E-04 5.0062E-03 1024 9 0.57823 RMSProp
4% 72.36 70.8 4.8864E-06 1.8038E-02 4096 12 0.11164 RMSProp
5% 72.24 71.3 2.1761E-03 1.1753E-02 5000 8 0.71473 Adam

Pubmed

0.03% 69.07 62.2 6.8475E-04 2.8822E-02 4096 7 0.97245 RMSProp
0.05% 71.77 68.3 2.3342E+04 2.2189E-03 1024 8 0.93694 RMSProp
0.1% 76.07 72.7 4.2629E-04 4.1339E-03 2048 8 0.98914 RMSProp
0.3% 80.04 79.2 2.2602E-04 3.3626E-02 2000 7 0.070573 Adam
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