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ABSTRACT

The celebrated LAMBDA method has been widely
used in GNSS for fixing integer ambiguities. For real
time kinematic GNSS applications with high dimen-
sions, the computational speed is crucial. In this
paper a modified LAMBDA method (MLAMBDA)
is presented. Several strategies are proposed to re-
duce the computational complexity. Numerical simu-
lations show that MLAMBDA is (much) faster than
LAMBDA.
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1 INTRODUCTION

A key computational component in high precision rel-
ative GNSS positioning is to resolve double differ-
enced carrier phase ambiguities as integers. There are
many methods of ambiguity resolution in the GNSS
literature. Among them is the celebrated LAMBDA
(Least-squares AMBiguity Decorrelation Adjustment)
method presented by Teunissen, see, e.g., Teunissen
(1993, 1995a,b, 1998, 1999). A detailed description
of the algorithms and implementation is given by De
Jonge and Tiberius (1996). Its software (Fortran ver-
sion and MATLAB version) is available from Delft
University of Technology. Frequently asked questions
and misunderstanding about the LAMBDA method
are addressed by Joosten and Tiberius (2002).

The LAMBDA method solves an integer least squares
(ILS) problem to obtain the estimates of the double
differenced integer ambiguities. ILS problems may
also arise from other applications, such as communica-
tions, cryptography and lattice design et al, see, e.g.,
Agrell et al. (2002). So they can also be solved by the
LAMBDA method.

For real time kinematic GNSS applications and other
applications with high dimensions, computational
speed is crucial. In this paper a modified LAMBDA
method (MLAMBDA) is presented to improve the
computational efficiency of the LAMBDA method.
The LAMBDA method consists of two stages. The
first stage is to transfer the original ILS problem to a
new one by mean of the so called Z-transformations.
Since this stage decorrelates the ambiguities, it is
called “decorrelation” in the GNSS literature. But ac-
tually it does more than decorrelation (see section 2.1),
thus we prefer to call this stage “reduction” instead.
The second stage is to search the optimal estimate or
a few optimal estimates of the parameter vector over
a hyper ellipsoidal region, and so it is called “search”.
The goal of the first stage is to make the second stage
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more efficient. Our MLAMBDA method will improve
both of these two stages.

The rest of this paper is organized as follows. In sec-
tion 2 we introduce the LAMBDA method. In sec-
tion 3 we show how to effectively reduce the computa-
tional cost of the LAMBDA method by several strate-
gies: symmetric pivoting, greedy selection, lazy trans-
formations, and shrinking. And we present the new
algorithm in detail. In section 4 we give the numer-
ical simulation results. Finally we give a summary in
section 5.

We now describe the notation to be used in this pa-
per. The sets of all real and integer m × n matrices
are denoted by R

m×n and Z
m×n, respectively, and the

set of real and integer n-vectors are denoted by R
n

and Z
n, respectively. The identity matrix is denoted

by I and its ith column is denoted by ei. MATLAB
notation is used to denote a submatrix. Specifically, if
A = (aij) ∈ R

m×n, then A(i, :) denotes the ith row,
A(:, j) the jth column, and A(i1 : i2, j1 : j2) the sub-
matrix formed by rows i1 to i2 and columns j1 to j2.
For the (i, j) element of A, sometimes we use aij and
sometimes we use A(i, j). For a scalar z ∈ R, we use
⌊z⌉ to denote its nearest integer. If there is a tie, ⌊z⌉
denotes the one with smaller magnitude.

2 THE LAMBDA METHOD

Suppose â ∈ R
n is the real-valued least squares (LS)

estimate of the integer parameter vector a ∈ Z
n

(the double differenced integer ambiguity vector in
the GNSS context) and Qâ ∈ R

n×n is its variance-
covariance matrix, which is symmetric positive defi-
nite. The ILS estimate ǎ is the solution of the mini-
mization problem:

min
a∈Zn

(a − â)T Q−1
â

(a − â). (1)

Although (1) is in the form of a quadratic optimization
problem, it is easy to show that it can be rewritten in
the form of a LS problem. So we refer to (1) as an ILS
problem.

For the validation purpose, in addition to the optimal
estimate ǎ, one often also requires the second opti-
mal estimate, which gives the second smallest value of
the objective function in (1). The LAMBDA package
developed by Delft University of Technology gives an
option to find a number of optimal estimates.

In the following we will introduce the two stages of
the LAMBDA method: reduction and search. See De
Jonge and Tiberius (1996) for more details.
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2.1 Reduction process

The reduction process is to change the original
ILS problem (1) to a new one by the so-called Z-
transformations. Its purpose is to make the search
process more efficient.

Let Z ∈ Z
n×n be unimodular, i.e., |det(Z)| = 1. Ob-

viously Z−1 is also an integer matrix. Define the fol-
lowing Z-transformations:

z = ZT a, ẑ = ZT â, Qẑ = ZT Q
â
Z. (2)

Notice that if a is an integer vector, then z is too,
and vice versa. Then by the above transformations,
the ILS problem (1) is transformed to the new ILS
problem

min
z∈Zn

(z − ẑ)T Q−1
ẑ

(z − ẑ). (3)

Let the LTDL factorizations of Qâ and Qẑ , respec-
tively, be

Q
â

= LT DL, Q
ẑ

= ZT LT DLZ = L̄
T
D̄L̄, (4)

where L and L̄ are unit lower triangular, and
D = diag(d1, . . . , dn) and D̄ = diag(d̄1, . . . , d̄n) with
di, d̄i > 0. These factors have statistical meaning.
For example, di is the conditional variance of âi when
ai+1, . . . , an are fixed. The reduction process starts
with the LTDL factorization of Q

â
and updates the

factors to give the LTDL factorization of Qẑ. In this
process one tries to find a unimodular integer matrix
Z to reach two goals which are crucial for the search
process: (i) Qẑ is as diagonal as possible (i.e., the off-
diagonal entries of L̄ are as small as possible)—this
is decorrelation; (ii) the diagonal entries of D̄ are dis-
tributed in nondecreasing order if possible, i.e., one
strives for

d̄n ≤ d̄n−1 ≤ · · · ≤ d̄1. (5)

Thus this reduction stage does more than decorrela-
tion. In the LAMBDA method the unimodular matrix
Z in (2) is constructed by a sequence of integer Gauss
transformations and permutations. The integer Gauss
transformations are used to make the off-diagonal en-
tries of L̄ as small as possible, while permutations are
used to strive for (5).

2.1.1 Integer Gauss transformations

An integer Gauss transformation Zij has the following
form:

Zij = I − µeie
T
j , µ is an integer.

It is easy to show that Z−1
ij = I + µeie

T
j . Applying

Zij (i > j) to L from the right gives

L̄ = LZij = L − µLeie
T
j .



Thus L̄ is the same as L, except that

l̄kj = lkj − µlki, k = i, . . . , n.

To make l̄ij as small as possible, one takes µ = ⌊lij⌉,
ensuring |l̄ij | ≤ 1/2.

When Zij is applied to L from the right, ZT
ij should

be applied to â from the left simultaneously (cf. Eqn.
(2)). All transformations also need to be accumulated.

The following algorithm gives the process of applying
the integer Gaussian transformation Zij to L.

Algorithm 2.1 (Integer Gauss Transformations).
Given a unit lower triangular L ∈ R

n×n, index pair
(i, j), â ∈ R

n and Z ∈ Z
n×n. This algorithm applies

the integer Gauss transformation Zij to L such that
|(LZ)(i, j)| ≤ 1/2, then computes ZT

ijâ and ZZij ,
which overwrite â and Z, respectively.

function: [L, â, Z] = GAUSS(L, i, j, â, Z)
µ = ⌊L(i, j)⌉
if µ 6= 0

L(i : n, j) = L(i : n, j) − µL(i : n, i)
Z(1 : n, j) = Z(1 : n, j) − µZ(1 : n, i)
â(j) = â(j) − µâ(i)

end

2.1.2 Permutations

In order to strive for the order (5), symmetric permu-
tations of the covariance matrix Q

â
are needed in the

reduction process. When two diagonal elements of Qâ

are interchanged, the factors L and D of its LTDL
factorization have to be updated.

Suppose we partition the LTDL factorization of Qâ as
follows

Q
â

= LT DL,

D =





D1

D2

D3



 , L =





L11

L21 L22

L31 L32 L33





k−1 2 n−k−1

k−1

2

n−k−1

.

Let

P =

[

0 1
1 0

]

, P k,k+1 =





Ik−1

P

In−k−1



 .

It can be shown that P T
k,k+1Qâ

P k,k+1 has the LTDL
factorization

P T
k,k+1Qâ

P k,k+1 = L̄
T
D̄L̄

where

L̄ =





L11

L̄21 L̄22

L31 L̄32 L33



 , D̄ =





D1

D̄2

D3



 , (6)
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D̄2 =

[

d̄k

d̄k+1

]

,

d̄k+1 = dk + l2k+1,kdk+1, d̄k =
dk

d̄k+1
dk+1, (7)

L̄22 ≡

[

1
l̄k+1,k 1

]

, l̄k+1,k =
dk+1lk+1,k

d̄k+1
, (8)

L̄21 =

[

−lk+1,k 1
dk

d̄k+1
l̄k+1,k

]

L21

=

[

−lk+1,k 1
dk

d̄k+1
l̄k+1,k

]

L(k :k + 1, 1:k − 1), (9)

L̄32 = L32P

=
[

L(k + 2:n, k + 1) L(k + 2:n, 1:k)
]

. (10)

If we have

d̄k+1 < dk+1 (11)

(this implies that dk < dk+1), the permutation is per-
formed. This does not guarantee that d̄k+1 ≤ d̄k, but
it at least makes the gap between d̄k and d̄k+1 smaller
than that between dk and dk+1. Note that if the ab-
solute values of the elements below lkk and lk+1,k+1 in
L are bounded above by 1/2, after the permutation
the bounds still hold, except that l̄k+1,k (see Eqn. (8))
may not be bounded by 1/2 any more.

Now we write the above operations as an algorithm.

Algorithm 2.2 (Permutations). Given the L and D

factors of the LTDL factorization of Qâ ∈ R
n×n, index

k, scalar δ which is equal to d̄k+1 in Eqn. (7), â ∈ R
n,

and Z ∈ Z
n×n. This algorithm computes the updated

L and D factors in (6) after Qâ’s two rows k and k+1
and two columns k and k +1 are interchanged. It also
interchanges the kth element and the (k+1)th element
of â and Z’s two columns k and k + 1.

function: [L, D, â, Z] = PERMUTE(L, D, k, δ, â, Z)
η = D(k, k)/δ // see Eqn. (7)
λ = D(k + 1, k + 1)L(k + 1, k)/δ // see Eqn. (8)
D(k, k) = ηD(k + 1, k + 1) // see Eqn. (7)
D(k + 1, k + 1) = δ
L(k :k + 1, 1:k − 1) // see Eqn. (9)

=

[

−L(k + 1, k) 1
η λ

]

L(k :k + 1, 1:k − 1)

L(k + 1, k) = λ
swap columns L(k + 2:n, k) and L(k + 2:n, k + 1)
swap columns Z(1 :n, k) and Z(1 :n, k + 1)
swap entries â(k) and â(k + 1)
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2.1.3 The reduction algorithm

The reduction process starts with the second to th
last column of L and the last pair of the diagonal en
tries of D and tries to reach the first column of L an
the first pair of the diagonal entries of D. For simpli
ity, later we just say that order of this process is from
right to left. When the algorithm encounters an inde
k in the first time, the algorithm first performs an int
ger Gauss transformation on L such that the absolu
values of the elements below lkk are bounded above b
1/2 and then a permutation takes place for the pa
(k, k + 1) if the condition (11) is satisfied. After
permutation, the algorithm restarts, i.e., it goes bac
to the initial position. The algorithm uses a variab
(k1 in Algorithm 2.3) to track down those column
whose off-diagonal entries in magnitude are alread
bounded above by 1/2 due to previous integer Gau
transformations so that no new transformations w
be performed any more for those columns in a resta
process.

Here is the complete reduction process of th
LAMBDA method:

Algorithm 2.3 (Reduction). Given the varianc
covariance matrix Qâ and real-valued LS estimate
of a. This algorithm computes an integer unimodula
matrix Z and the LTDL factorization of the covarianc
matrix Qẑ = ZT QâZ = LT DL, where L and D ar
updated from the factors of the LTDL factorization
Q

â
. This algorithm also computes ẑ = ZT â, whic

overwrites â.

function: [Z, L, D, â] = REDUCTION(Qâ, â)
Compute the LTDL factorization of Qâ

Z = I

k = n − 1; k1 = n − 1
while k > 0

if k ≤ k1
for i = k + 1 : n

[L, â, Z] = GAUSS(L, i, k, â, Z)
end

end

D̄(k + 1, k + 1)
= D(k, k) + L(k + 1, k)2D(k + 1, k + 1)
if D̄(k + 1, k + 1) < D(k + 1, k + 1)

[L, D, â, Z] =
PERMUTE(L, D, k, D̄(k + 1, k + 1), â, Z)
k1 = k; k = n − 1

else

k = k − 1
end

end
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2.2 Discrete search process

After the reduction process, one starts the discrete
search process. To solve the ILS problem (3), a dis-
crete search strategy is used to enumerate a subspace
in Z

n which contains the solution. Suppose one has
the following bound on the objective function in Eqn.
(3):

f(z)
def
= (z − ẑ)T Q−1

ẑ
(z − ẑ) ≤ χ2. (12)

Notice that this is a hyper-ellipsoid. The solution will
be searched over this hyper-ellipsoid.

Substituting the LTDL factorization of Qẑ in Eqn. (4)
into Eqn. (12) gives

f(z) = (z − ẑ)T L̄
−1

D̄
−1

L̄
−T

(z − ẑ) ≤ χ2. (13)

Define

z̄ = z − L̄
−T

(z − ẑ), (14)

giving

L̄
T
(z − z̄) = z − ẑ,

or equivalently

z̄n = ẑn, z̄i = ẑi+
n

∑

j=i+1

(zj−z̄j)l̄ji, i = n−1, n−2, . . . , 1,

(15)
where we observe that z̄i depends on zi+1, · · · , zn and
the former is determined when the latter are fixed.
Then it follows from Eqn. (13) with Eqn. (14) that

f(z) = (z − z̄)T D̄
−1

(z − z̄) ≤ χ2,

or equivalently

f(z) =
(z1 − z̄1)

2

d̄1
+

(z2 − z̄2)
2

d̄2
+· · ·+

(zn − z̄n)2

d̄n
≤ χ2.

(16)
Obviously any z satisfying this bound must also satisfy
the following individual bounds:

lb(zn) ≤ zn ≤ ub(zn), (17)

...

lb(zi) ≤ zi ≤ ub(zi), (18)

...

lb(z1) ≤ z1 ≤ ub(z1) (19)
089



where

lb(zn) = z̄n − d̄1/2
n χ,

ub(zn) = z̄n + d̄1/2
n χ,

lb(zi) = z̄i − d̄
1/2
i

[

χ2 −

n
∑

j=i+1

(zj − z̄j)
2/d̄j

]1/2

,

ub(zi) = z̄i + d̄
1/2
i

[

χ2 −
n

∑

j=i+1

(zj − z̄j)
2/d̄j

]1/2

,

for i = n− 1, n− 2, . . . , 1. Note that (19) is equivalent
to (16).

Based on these bounds, a search procedure can be de-
rived. The lower and upper bounds on zi define an
interval, which we call level i. The integers at this
level are searched through in a straightforward man-
ner from the smallest to the largest. Each valid integer
at this level will be tried, one at a time. Once zi is de-
termined at level i, one proceeds with level i − 1 to
determine zi−1. If no integer can be found at level i,
one returns to the previous level i+1 to take the next
valid integer for zi+1, and then moves to level i again.
Once z1 is determined at level 1, a full integer vector z

is found. Then we start to search new integer vectors.
The new process starts at level 1 to search through all
other valid integers from the smallest to the largest.
The whole search process terminates when all valid
integer encountered have been treated. To save space,
we will not give a detailed description of a search al-
gorithm here. But we will give it in section 3.2.

One important issue in the search process is setting the
positive constant χ2 which controls the size of the el-
lipsoidal region. In the LAMBDA package, during the
search process the size of the ellipsoidal region stays
the same. Therefore, the performance of the search
process will highly depend on the value of χ2. A small
value for χ2 may result in an ellipsoidal region that
fails to contain the minimizer of (1), while a too large
value for χ2 may result in a region for which the search
for the minimizer becomes too time-consuming. The
LAMBDA package sets the value of χ2 in the following
way. Suppose p optimal ILS estimates are required. If
p is not greater than n + 1, one takes zi = ⌊z̄i⌉ for
i = n, n − 1, . . . , 1 (i.e., rounding each z̄i to its near-
est integer) in (15), producing the first integer vector
z(1). Then for each i (i = 1, . . . , n), one rounds the
obtained z̄i to the next-nearest integer while keeping
all other entries of z(1) unchanged, producing a new
integer vector. Based on these n+1 integer vectors, χ2

is set to be the pth smallest value of the objective func-
tion f(z), which will guarantee at least p candidates
in the ellipsoidal region. If p > n + 1, the volume of
the ellipsoid is set to be p and then χ2 is determined.
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Before the end of the section, let us make two re-
marks. The implementation of the search process
in the LAMBDA package is actually based on the
LDLT factorization of Q−1

â
, which is computed from

the LTDL factorization of Qâ, i.e., the lower triangu-
lar factor of the former is obtained by inverting the
lower triangular factor of the latter. When the opti-
mal estimate of z denoted by ž is found, a back trans-
formation, ǎ = Z−1ẑ (cf. Eqn. (2)) is needed. For
the details about this computation, see De Jonge and
Tiberius (1996), sections 3.9 and 4.13.

3 MODIFYING THE LAMBDA

METHOD

In this section we present several strategies to ef-
fectively reduce the computational complexity of the
LAMBDA method. In section 3.1 we show how to im-
prove the reduction process and in section 3.2 we show
how to improve the search process. The combined two
new processes forms our modified LAMBDA method—
MLAMBDA.

3.1 Modified reduction process

3.1.1 Symmetric pivoting strategy

In order to strive for (5), the reduction algorithm (Al-
gorithm 2.3) in section 2.1 performs the permutations.
In general the computation caused by the permuta-
tions is likely to dominate the cost of the whole reduc-
tion process. The less the number of permutations, the
less the cost of Algorithm 2.3. Motivated by this, we
propose to incorporate a symmetric pivoting strategy
in computing the LTDL factorization of the covariance
matrix Qâ at the beginning of the reduction process.

We first look at the derivation of the algorithm for
the LTDL factorization without pivoting. Suppose
Q ∈ R

n×n is symmetric positive definite. We parti-
tion Q = LT DL as follows

[

Q̃ q

qT qnn

]

=

[

L̃
T

l

1

]

[

D̃

dn

] [

L̃

lT 1

]

.

Therefor

dn = qnn, l = q/dn, Q̃ − ldnlT = L̃
T
D̃L̃

T
.

These equations shows clearly how to find dn, l, L̃ and
D̃.

Since we strive for the inequalities in Eqn. (5), we first
symmetrically permutate the smallest diagonal entry
of Q to the (n, n) position and then find dn, l and
apply the same approach to Q̃ − ldnlT . Finally we
0



obtain the LTDL factorization of a permutated Q. In
fact, suppose after the first symmetric permutation P 1

we have

P T
1 QP 1 =

[

Q̃ q

qT qnn

]

.

Define dn = qnn and l = q/dn. Let Q̃−ldnlT have the
following LTDL factorization with symmetric pivoting

P̃
T
(Q̃ − ldnlT )P̃ = L̃

T
D̃L̃,

where P̃ is the product of permutation matrices. Then
it is easy to verify that

P T QP = LT DL, P = P 1

[

P̃

1

]

,

L =

[

L̃

lT P̃ 1

]

, D =

[

D̃

dn

]

,

giving the LTDL factorization of Q with symmetric
pivoting. Note that the LTDL factorization with sym-
metric pivoting is similar to the Cholesky factorization
of a symmetric nonnegative definite matrix with sym-
metric pivoting, see, e.g., Golub and Van Loan (1996),
section 4.2.9. But in the latter, the pivot element is
chosen to be the largest element, rather than the small-
est one.

Algorithm 3.1 (LTDL factorization with symmetric
pivoting). Suppose Q ∈ R

n×n is symmetric positive
definite. This algorithm computes a permutation P , a
unit lower triangular matrix L and a diagonal D such
that P T QP = LT DL. The strict lower triangular
part of Q is overwritten by that of L and the diagonal
part of Q is overwritten by that of D.

P = In

for k = n :−1:1
q = argmin1≤j≤k Q(j, j)
swap P (:, k) and P (:, q)
swap Q(k, :) and Q(q, :)
swap Q(:, k) and Q(:, q)
Q(k, 1:k − 1) = Q(k, 1:k − 1)/Q(k, k)
Tmp = Q(k, 1:k−1)T ∗ Q(k, k) ∗ Q(k, 1:k−1)
Q(1 :k−1, 1:k−1) = Q(1 :k−1, 1:k−1)− Tmp

end

The above algorithm can be made more efficient. In
fact, we need only to compute the lower triangular
part of Q(1 : k−1, 1 : k−1) in the kth step, since it is
symmetric.

3.1.2 Greedy selection strategy

After the LTDL factorization with symmetric pivoting,
we start reduction. In order to make reduction more
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efficient, we would like to further reduce the number of
permutations. As we have seen in section 2.1, the re-
duction process in the LAMBDA method is done in a
sequential order (from right to left). When the condi-
tion d̄k+1 < dk+1 (see Eqn. (11)) is met, a permutation
for the pair (k, k + 1) takes place and then we go back
to the initial position, i.e., k = n − 1. Intuitively, it
is unlikely very efficient to do reduction in this way.
When we reach a critical index k, i.e., dk+1 ≫ dk

and d̄k+1 < dk+1, a permutation is then performed at
this position, but it is likely that we will end up with
dk+2 ≫ dk+1 and d̄k+2 < dk+2, thus k + 1 becomes a
critical index and so on. Therefore the permutations
which had been performed before we reached the index
k are likely wasted.

One solution for this problem is to apply what we call
a greedy selection strategy. Instead of looping k from
n − 1 to 1 in Algorithm 2.3, we always choose the
index k such that dk+1 will decrease most when a per-
mutation for the pair (k, k + 1) is performed, i.e., k is
defined by

k = arg min
1≤j≤n−1

{d̄j+1/dj+1 : d̄j+1 < dj+1}. (20)

If no such k is found, no any permutation can be done.

Here is a simple example, for which a reader can check
that the LAMBDA’s reduction method will perform 4
permutations, while the above greedy selection method
will perform only 2:

Qâ =





1 0 0.04
1 0.04

1









1
999

1001









1
0 1

0.04 0.04 1



 .

3.1.3 Lazy transformation strategy

The permutations in the reduction process of the
LAMBDA method may change the magnitudes of the
off-diagonal elements of L. So it may happen that inte-
ger Gauss transformations are applied to the same el-
ements in L many times due to permutations. Specif-
ically, if a permutation for the pair (k, k + 1) is per-
formed, L(k :k+1, 1:k−1) (see Eqn. (9)) are changed
and the two columns of L(k + 1 : n, k : k + 1) (see
Eqn. (10)) are swaped. If the absolute values of the
elements of L(k : k + 1, 1 : k − 1) are bounded above
by 1/2 before this permutation, then after permuting,
these bounds are not guaranteed to hold any more.
Thus for those elements of L(k :k + 1, 1 :k − 1) which
are now larger than 1/2 in magnitude, the correspond-
ing integer Gauss transformations which were applied
to make these elements bounded above by 1/2 before
this permutation are wasted. The permutation also
affects lk+1,k (see Eqn. (8)), whose absolute value may
not be bounded above by 1/2 any more either. But
91



any integer Gauss transformation which was applied
to ensure |lk+1,k| ≤ 1/2 before the permutation is not
wasted, since it is necessary to do this transformation
for doing this permutation. The reason is as follows.
Note that d̄k+1 = dk + l2k+1,kdk+1 (see Eqn. (7)). The

goal of a permutation is to make d̄k+1 smaller, so lk+1,k

should be as small as possible, which is realized by an
integer Gauss transformation.

We propose to apply integer Gauss transformations
only to some of the subdiagonal elements of L first,
then do permutations. During the permutation pro-
cess, integer Gauss transformations will be applied
only to some of the changed subdiagonal elements of
L. When no permutation takes place, we will apply
the transformations to the off-diagonal elements of L.
We call this strategy a “lazy” transformation strategy.
Specifically, at the beginning of the reduction process,
an integer Gauss transformation is applied to lk+1,k

when the following criterion is satisfied:

Criterion 1:
dk

dk+1
< 1.

When this criterion is not satisfied, dk and dk+1 have
been in the correct order, so we do not need to do a
permutation for the pair (k, k + 1). Later an integer
Gauss transformation is applied to lk+1,k when both
Criterion 1 and the following Criterion 2 are satisfied:

Criterion 2: lk+1,k is changed by last permutation.

This criterion is used to skip the unchanged subdiag-
onal elements of L. After a permutation takes place
for the pair (k, k + 1), three elements in sub-diagonal
of L are changed. They are lk,k−1, lk+1,k, lk+2,k+1 .
So after a permutation, at most three integer Gauss
transformations are applied to these elements. Fi-
nally when no permutation will be performed, integer
Gauss transformations are applied to all elements in
the strictly lower triangular part of L.

3.1.4 Modified reduction algorithm

Now we can combine the three strategies given in
sections 3.1.1-3.1.3 together, leading to the following
modified reduction algorithm.

Algorithm 3.2 (Modified reduction). Given the
variance-covariance matrix Q

â
∈ R

n×n and real-
valued LS estimate â ∈ R

n of a. This algorithm com-
putes an integer unimodular matrix Z and the LTDL
factorization Q

ẑ
= ZT Q

â
Z = LT DL, where L and

D are updated from the factors of the LTDL factoriza-
tion of Q

â
with symmetric pivoting. This algorithm

also computes ẑ = ZT â, which overwrites â.
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function: [Z, L, D, â] = MREDUCTION(Q
â
, â)

Compute the LTDL factorization of Qâ with

symmetric pivoting: P T QâP = LT DL

Z = P

Set all elements of ChangeFlag(1:n+1) to ones
while true

minratio = 1
for k = 1 : n − 1

//Check if Criterion 1 is satisfied

if
D(k,k)

D(k+1,k+1) < 1

//Check if Criterion 2 is satisfied
if ChangeFlag(k + 1) = 1

[L, â, Z]
= GAUSS(L, k + 1, k, â, Z)
D̄(k + 1, k + 1) = D(k, k)
+L(k + 1, k)2D(k + 1, k + 1)
ChangeFlag(k + 1) = 0

end

tmp = D̄(k+1,k+1)
D(k+1,k+1)

if tmp < minratio
i = k // see Eqn. (20)
minratio = tmp

end

end

end

if minratio = 1
break while loop

end

[L, D, â, Z]
= PERMUTE(L, D, i, D̄(k + 1, k + 1), â, Z)
Set ChangeFlag(i:i+2) to ones

end

//Apply integer Gauss transformation to L’s
//strictly lower triangular entries
for k = 1 : n − 1

for i = k + 1 : n
[L, â, Z] = GAUSS(L, i, k, â, Z)

end
end

The number of subdiagonal entries of L is n − 1, but
in this algorithm we set ChangeFlag to be an n+1 di-
mensional vector in order to easily handle two extreme
cases: k = 1 and k = n − 1.

3.2 Modified search process

In section 2.2 we describe the search process of the
LAMBDA method. As we know, χ2, which controls
the volume of the search region, plays an important
role in the search process. For finding the (single)
optimal ILS estimate, Teunissen (1993) proposed to
use a shrinking strategy to reduce the search region.
As soon as a candidate integer vector z in the ellip-
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soidal region is found, the corresponding f(z) in (13)
is taken as a new value for χ2. So the ellipsoidal region
is shrunk. As De Jonge and Tiberius (1996) point out,
the shrinking strategy can greatly benefit the search
process. However, this strategy is not used in the
LAMBDA package, which can find several optimal ILS
estimates. To make the search process more efficient,
we propose to extend the shrinking strategy to the case
where more than one optimal estimates are required.

Before proceeding, we describe an alternative ((Teu-
nissen, 1995b, section 2.4) and (De Jonge and Tiberius,
1996, section 4.7)) to the straightforward search from
the smallest to the largest at a level given in section
2.2. We search for integers according to nondecreasing
distance to z̄i in the interval defined by (18) at level
i. Specifically, if z̄i ≤ ⌊z̄i⌉, we use the following search
order:

⌊z̄i⌉, ⌊z̄i⌉ − 1, ⌊z̄i⌉ + 1, ⌊z̄i⌉ − 2, · · · , (21)

otherwise, we use

⌊z̄i⌉, ⌊z̄i⌉ + 1, ⌊z̄i⌉ − 1, ⌊z̄i⌉ + 2, · · · . (22)

Now we describe how to apply a shrinking strategy to
the search process when more than one optimal ILS
estimates are required. Suppose we require p optimal
ILS estimates. At the beginning we set χ2 to be in-
finity. Obviously the first candidate obtained by the
search process is

z(1) =
[

⌊z̄1⌉, ⌊z̄2⌉, · · · , ⌊z̄n⌉
]T

.

Note that z(1) here is obtained by the search process,
rather than by a separate process as the LAMBDA
package does (cf. section 2.2, paragraph 4). We take
the second candidate z(2) identical to z(1) except that
the first entry in z(2) is taken as the second nearest
integer to z̄1. And the third z(3) is the same as z(1)

except that its first entry is taken as the third near-
est integer to z̄1, and so on. In this way we obtain
p candidates z(1), z(2), · · · , z(p). Obviously we have
f(z(1)) ≤ f(z(2)) · · · ≤ f(z(p)) (cf. (16)). Then the el-
lipsoidal region is shrunk by setting χ2 = f(z(p)). This
is an alterative to the method used by the LAMBDA
method for setting χ2 and its main advantage is that it
is simpler to determine χ2. Also if p = 2, it is likely the
value of χ2 determined by this method is smaller than
that determined by the LAMBDA method since d1 is
likely larger than other di after the reduction process
(cf. (16)). Then we start to search a new candidate.
We return to level 2 and take the next valid integer
for z2. Continue the search process until we find a
new candidate at level 1. Now we replace the can-
didate z(j) which satisfies f(z(j)) = χ2 with the new
one. Again we shrink the ellipsoidal region. The newer
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χ2 is taken as max1≤i≤p f(z(i)). Then we continue the
above process until we cannot find a new candidate.
Finally we end up with the p optimal ILS estimates.

The above modified search process is described by Al-
gorithm 3.3.

Algorithm 3.3 (Modified search). Given the unit
lower triangular matrix L ∈ R

n×n, the diagonal ma-
trix D ∈ R

n×n, and the real vector ẑ ∈ R
n obtained

from the reduction process. This algorithm finds the
p optimal ILS estimates of (3), which are stored in an
n×p array Optis. (Note: the operation sgn(x) returns
−1 if x ≤ 0 and 1 if x > 0)

function: Optis = MSEARCH(L, D, ẑ, p)
k = n; dist(k) = 0
endSearch = false
maxDist = +∞ // maxDist: current χ2

count = 0 // count: the number of candidates
Initialize an n × n zero matrix S for computing z̄(k)
z̄(n) = ẑ(n) // see Eqn. (15)
z(n) = ⌊z̄(n)⌉; y = z̄(n) − z(n)
step(n) = sgn(y); imax = p
while endSearch = false

//newDist =
∑n

j=k(zj − z̄j)
2/dj

newDist = dist(k) + y2/D(k, k)
if newDist < maxDist

if k 6= 1
// Case 1: move down
k = k − 1
// dist(k) =

∑n
j=k+1(zj − z̄j)

2/dj

dist(k) = newDist
T = (z(k + 1) − z̄(k + 1))L(k + 1, 1:k)
//S(k, 1:k) =

∑n
j=k+1(zj − z̄j)L(j, 1 : k)

S(k, 1:k) = S(k + 1, 1:k) + T
z̄(k) = ẑ(k) + S(k, k) // see Eqn. (15)
z(k) = ⌊z̄(k)⌉; y = z̄(k) − z(k)
step(k) = sgn(y)

else

// Case 2: store the found candidate
// and try next valid integer
if count < p − 1

// Store the first p − 1 initial points
count = count + 1
Optis(:, count) = z(1 : n)
// Store f(z)
fun(count) = newDist

else

Optis(:, imax) = z(1 : n)
fun(imax) = newDist
imax = arg max1≤i≤pfun(i)
maxDist = fun(imax)

end

z(1) = z(1) + step(1) //next valid integer
y = z̄(1) − z(1)



step(1) = −step(1) − sgn(step(1))
//cf. Eqs (21) and (22)

end

else

// Case 3: exit or move up
if k = n

endSearch = true
else

k = k + 1 //move up
//next valid integer
z(k) = z(k) + step(k) //next valid integer
y = z̄(k) − z(k)
step(k) = −step(k) − sgn(step(k))
//cf. Eqs (21) and (22)

end

end

end

In this algorithm, suppose k is the current level. When
newDist is less than the current χ2, i.e., the value of
the objective function f at the “worst” candidate, the
algorithm moves down to level k − 1. This is done
in Case 1. On the other hand, as soon as newDist
is greater than the current χ2, the algorithm moves
up to level k + 1, which is done in Case 3. Case 2
is invoked when the algorithm has successfully moved
through all the levels to level 1 without exceeding the
current χ2. Then this found candidate is stored as
a potential optimal candidate and the χ2 is updated
and the algorithm tries the next valid integer for level
1. To some extent, the description of the algorithm is
similar to the one given in Agrell et al. (2002), which
finds only the (single) optimal estimate.

4 NUMERICAL SIMULATIONS

We implemented the MLAMBDA method given in
section 3 and did numerical simulations to com-
pare its running time with that of the orig-
inal LAMBDA package (MATLAB version 2.0),
which is available from the Mathematical Geodesy
and Positioning of Delft University of Technology
(http://enterprise.lr.tudelft.nl/mgp/). All our compu-
tations were performed in MATLAB 7.0.1 on a Pen-
tium 4, 3.20GHz PC with 1GB memory running Win-
dows XP Professional.

The real vector â and the symmetric positive definite
matrix Qâ were constructed as follows:

â = randn(n, 1), Qâ = LT DL, lij = randn, i > j,
(23)

where randn(n, 1) is a MATLAB built-in function to
generate a vector of n random entries which are nor-
mally distributed, L is a unit lower triangular matrix,
and D is generated in four different ways:
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• Case 1 : D = diag(di), di = |randn|

• Case 2 : D = diag(n−1, (n − 1)−1, . . . , 1−1)

• Case 3 : D = diag(1−1, 2−1, . . . , n−1)

• Case 4 : D = diag(100, 100, 100, 0.1, 0.1, . . . , 0.1)

We took dimension n = 5 : 40. For each n, we gave
20 runs and in each run we computed two optimal
ILS estimates by both the LAMBDA package and our
MLAMBDA method. The results about average run-
ning time (in seconds) are given in Figure 1–Figure 4.
For each case we give three plots, corresponding aver-
age reduction time, average search time, and average
time (i.e., total time including both reduction time and
search time), respectively. In the figures which show
the average running time for the search process, there
are no values for some lower dimensional cases. The
reason is as follows. For these cases, the running time
of each of the 20 runs is lower than 1 millisecond and
MATLAB just counts it as zero, and so the value of
the average running time is zero, but the logarithm of
zero is not defined. For clarity, we also give the average
running time for dimension n = 40 in Table 1.

In Case 1 (see Figure 1), each D is random. We
see that MLAMBDA is faster than LAMBDA except
for a few lower dimensional cases where both meth-
ods are very fast. When the dimension n reaches 40,
MLAMBDA is about seven times as fast as LAMBDA.
In Case 2 (see Figure 2), D are in the order opposite to
that we strive for (see Eqn. (5)). We see that the search
process of each method takes extremely longer time
than that in Case 1 and dominates the total compu-
tational cost when n > 20. But MLAMBDA is faster
than LAMBDA and when n = 40 the former is more
than 20 times faster than the latter. In Case 3 (see
Figure 3), D are in the right order, and both methods
take much less time than in Case 2. When n = 40,
MLAMBDA is about 15 times as fast as LAMBDA.
In Case 4 (see Figure 4), D has a big gap between
the third and the fourth element. We observe that
MLAMBDA is much faster than LAMBDA even for
lower dimensional cases. When n = 40, the former is
about 18 times as fast as the latter.

We observed in our simulations that usually both
the reduction process and the search process of
MLAMBDA are faster than those of LAMBDA ex-
cept in some lower dimensional cases where the cost
of either method is small. As the dimension increases,
usually the search time becomes more and more dom-
inant of the total time, and the improvement of search
process becomes more obvious. It appears that the
search time increases exponentially while the reduc-
tion time increases linearly.
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Figure 1: Running time for Case 1

LAMBD
reduction searc

Case 1 0.0313 2.262
Case 2 0.0422 2419
Case 3 0.0313 0.433
Case 4 0.0195 3.582

Table 1: Average r
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Figure 2: Running time for Case 2

MLAMBDA
l reduction search total
8 0.0164 0.3164 0.3328
8 0.0203 112.6 112.62
9 0.0125 0.0203 0.0328
6 0.0102 0.2055 0.2157

e for dimension n = 40
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Figure 3: Running time for Case 3

SUMMARY

he well-known LAMBDA method has been widely
sed for integer least-squares estimation problems in
ositioning and navigation. It consists of two stages,
duction and search. In this paper we presented a
odified LAMBDA method—MLAMBA, which im-
roves both of those two stages. The keys to our al-
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Figure 4: Running time for Case 4

gorithm are to compute the LTDL factorization with
symmetric pivoting, do the reduction by greedy selec-
tion and lazy transformation strategies, and shrink the
ellipsoidal region during the search process. Numeri-
cal simulation showed that the MLAMBDA method
is usually faster than the LAMBDA method imple-
mented in Delft’s LAMBDA package (MATLAB ver-
sion 2.0), and in the high dimensional cases, the former



is much faster than the latter. This will be particu-
larly useful to integer ambiguity determination when
there are more GNSS satellites visible simultaneously,
with carrier phase observations on three frequencies in
the future.

We gave complete computational details for our new
method. Hopefully a reader can implement the algo-
rithms without difficulty.
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