
Toward High-Level Reuse of Statechart-based
AI in Computer Games

Christopher Dragert, Jörg Kienzle, Clark Verbrugge
McGill University
Montréal, Québec

christopher.dragert@mail.mcgill.ca, {joerg.kienzle, clark.verbrugge}@mcgill.ca

ABSTRACT
Designing an interesting AI for a computer game is a com-
plex undertaking, providing motivation to reuse portions of
successful AIs. Here we advocate a layered Statechart-based
AI as a modular approach that simplifies reuse. We analyze
Statechart interactions and communications with respect to
AI design, and propose an interface for Statechart-based AI-
modules that summarizes interactions.

Reuse is accomplished by adding and removing modules
to a new AI, largely enabled through event-renaming to en-
sure coherence with the interfaces. We describe an approach
to module composition using functional groups, which allow
for the encapsulation of high level behaviours (e.g., fleeing or
exploring). This enables a designer to compose new AIs by
assigning high-level behaviours. Additionally, the interface
describes interactions with the game at-large, leading natu-
rally to portability between games and even implementation
languages. Finally, we look ahead to the requirements for a
tool that would implement these ideas.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—State diagrams; D.2.13 [Software Engineering]:
Reusable Software—Reuse Models

General Terms
Software Reuse

Keywords
AI, Computer Games, Reuse, Statecharts

1. INTRODUCTION
In modern computer games, non-player controlled charac-

ters (NPCs) provide interaction, competition, and immer-
sion for the player. Powering NPCs with a complex AI
can increase player fun and lead to increased sales. While
some game components, such as graphics engines, are highly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GAS ’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0578-5/11/05 ...$10.00.

reused, AIs are often written from scratch, wasting develop-
ment time on reimplementing basic behaviours. Reusing AI
is thus an appealing option, since it allows effort to spent on
interesting behaviours rather than basic ones.

The ease of AI reuse is largely dependent on the underly-
ing formalism. Unlike the texture mapped triangle in graph-
ics, there is no generally accepted basic unit of AI. Current
industry practice involves little AI reuse in part due to this
lack of an agreed upon AI format. Akin to software reuse, a
formalism that is modular and free of cross-cutting concerns
is clearly superior to the alternative. Untangling behaviours
in a non-modular approach runs counter to the goal of reduc-
ing development time. Ideally, an AI can be made modular
at the behaviour level, raising the level of abstraction at
which a designer can work.

Behaviour trees [5] are one popular AI formalism. Here
each branch performs a specific task, suggesting a reuse
model based on pruning and reusing branches. Unfortu-
nately, individual branches do not possess a clear task-based
abstraction. If a task being performed by a branch must be
interrupted, the branch itself must be aware of interrupting
game events and how to return to the appropriate branch.
Interrupting events therefore act as a cross-cutting concern,
complicating the separation and reuse of branches.

A more appealing alternative is offered by Kienzle et al.
[4], who introduce an AI based on an abstract layering of
Statecharts. Here each Statechart acts as a modular com-
ponent by implementing a single behavioural concern, such
as sensing the game-state, memorizing data, making high-
level decisions, and so on. Due to the clear demarcation of
duties, the components are ideal for reuse.

Accordingly, this work explores reusing Statechart-based
AIs, detailing the practical concerns. In section 2, we give
a brief primer on Statecharts along with an overview of the
layered model. Section 3 examines the interactions of both
Statecharts and their associated classes under this model.
Next we delve into reuse in section 4, introducing a reuse
interface for AI-modules. This includes grouping behaviours
for high-level reuse and porting AI into new games. Section
5 provides some concluding thoughts.

2. BACKGROUND

2.1 Statecharts
Statecharts were introduced by David Harel in 1987 [2]

as a formalism for visually modelling the behaviour of reac-
tive systems. With the introduction of UML 2.0 came the
Rhapsody semantics [3], which are more in tune with mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GAS’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0578-5/11/05 ...$10.00

25

Sensors

Analyzers

Memorizers

Strategic Deciders

Tactical Deciders

Executors

Coordinators

Actuators

G
eneral Event Flow

Low
 H

igh Low

Le
ve

l o
f A

bs
tra

ct
io

n

Figure 1: The Layered AI Model Architecture

elling software systems. Since the main purpose of the AI
models is to define reactions to game events, the event-based
formalism of Statecharts is a natural choice.

Statecharts are comprised of a set of states with tran-
sitions between them. Transition labels are in the form
“m[c]/a”, where m is the event name, [c] is a guard con-
dition, and a is an action. Upon receiving event e, if there is
a transition from the current state on e with [c] evaluating to
true, then the transition is triggered, executing a and moving
the Statechart to the target state. States can have OnEntry
and OnExit blocks where more actions reside. The current
state is considered a modal property of the Statechart. The
Rhapsody semantics additionally allow for sub-states, inner
and outer transitions, history states (when returning to a
state with sub-states), and orthogonal components. Read-
ers interested in the full semantics are referred to [3].

Statecharts exist within their own execution environment
and cannot directly interact with a game at-large. Instead,
Statecharts may have associated classes that are free to in-
teract. Statechart actions access the associated class by call-
ing methods or reading and writing parameters. Transition
guards can also be comprised of calls to the associated class,
so long as the result is boolean in nature. These can be
referenced in the transition labels and both OnEntry and
OnExit blocks, thus linking the graphical Statechart to the
program at-large. The members of the associated class are
the non-modal properties of the Statechart.

2.2 Layered Statechart-based AI
Developing complex AI benefits greatly from a separation

of concerns. In [4], a complete Statechart-based AI is de-
signed using the layer-based separation of behavioural tasks
shown in Fig. 1. Independent behaviours are implemented
in separate Statecharts that interact with layers above and
below to form a complete AI. Communication takes place
via event broadcasting and synchronous method calls.

At the lowest layer lie sensors. These read the game state,
typically through listeners or observers that generate events
when a change is detected. Events are passed up to analyzers
that interpret and combine sensing data to form a coherent
picture of the game state. The next layer contains memo-
rizers, which store analyzed data and complex state infor-
mation for later reference. The highest layer is the strategic
decider1, which interprets analyzed and memorized data to
decide upon a high level goal. The high level goal is passed
down to the tactical deciders to determine how it will be
executed. Becoming less abstract, the next layer provides

1Typically, there is only one strategic decider, but an AI
that needs to perform orthogonal tasks could have a strategic
decider for each of them.

rememberFood(GameEntity g)
removeFood(GameEntity g)

position[] placesWithFood
FoodMemorizer NoFoodSighted

RememberFood
itemSighted(i)[i.isEdible()] / this.rememberFood(i)

<<behavior>>

FoodSighted

itemPickedUp(i)[i.isEdible()] /
 this.removeFood(i)

Eyes

[placesWithFood.getSize() = 0]

[else]

itemSighted(i)[i.isEdible()] /
this.rememberFood(i)

Figure 2: A Sample AI Statechart

executors that enact execution decisions, translating goals
into actions. Depending on the current state of the actua-
tors, certain commands can cause conflicts or sub-optimal
courses of action. Conflicts of this type are resolved by the
coordinators. The final layer contains actuators, which exe-
cute actions by modifying the game-state.

Together, the various Statecharts form an AI where low-
level sensing data gradually transforms into high-level goals
that filter down to become actions. Each Statechart is mod-
ular and placed in the appropriate layer. In Fig. 2, a sam-
ple FoodMemorizer is presented. It reacts to itemSighted

events by memorizing the item if it is food. Other Stat-
echarts access this information by calling the FoodMemo-
rizer’s associated class.

2.3 Generics
Similar to package-level parameters in UML, Statecharts

can be parameterized to yield generic Statecharts. Typically,
non-modal properties in the associated class would be set
when the Statechart is initialized/instantiated.

A simple example comes in the form of a KeyItemMemo-
rizer, where the key item is a type parameter set at runtime.
A game implementing several items (such as flowers, shirts,
and boxes), could have a KeyItemMemorizer for each item.
When a KeyItemMemorizer receives an ItemSpotted event,
the payload would be inspected and compared against the
key item parameter. Only if it matches the parameter would
the item be memorized. Other items would be ignored.

3. AI-MODULE INTERACTION
Reusing Statechart modules in a layered AI requires a

solid understanding of how modules communicate. For this
discussion, the term AI-module is defined as the pair con-
sisting of a Statechart and its associated class. AI-modules
permit three types of communication: message passing be-
tween Statecharts, calls between associated classes, and calls
from associated classes to the game at-large.

3.1 Message Passing
In an abstract layering of Statecharts, generated events

are broadcast asynchronously to all Statecharts. An event
is received by a Statechart when it has a transition on that
event from the current state. Typically, events are largely ig-
nored except by one or two receiving Statecharts. Under this
asynchronous model, the send is the end of the communi-
cation. The sending Statechart continues normal operation,
and receiving Statecharts are free to proceed as they will.

In some implementations, events can carry payload. For
instance, if an event item_spotted is generated by a sen-
sor, the event could include a reference to the item for fur-
ther processing at higher levels of abstraction. Analogous
to a method signature, an event signature is the event name
plus the payload type. Thus, the event ItemSpotted is dif-
ferent than the event ItemSpotted(Item), despite sharing
the event name. Resolving overloaded event names can be
dealt with at the modelling level by using event renaming to

26

eliminate name duplication, or at the implementation level
through type-checking of payloads.

Synchronous communication is also employed in the lay-
ered model. AI-modules can offer methods in their associ-
ated classes for other AI-modules to call. By design, these
methods are primarily getters, and do not change modal
or non-modal properties of the offering AI-module. As an
example, a memorizer stores obstacle positions; other Stat-
echarts requiring that data obtain it by calling a method in
the memorizer’s associated class.2

Message passing is unintended when unrelated Statecharts
use duplicate event names and begin to send and receive
with each other. While not inherently problematic, there
are many situations where a bug could result. For instance,
if a sensor transmits all player sightings, and a combat mod-
ule which accepts all player sightings is introduced, then the
AI might act as though all players are enemies. The player
sighted message is intended only for the PlayerAnalyzer to
determine friend or enemy status and pass a new event ac-
cordingly. Naming issues are addressed in detail in §4.2.

3.2 Game Interaction
The range of calls and syntax employed is dependent on

the execution environment employed. Most provide either
direct access to the associated class, or a way to furnish the
execution environment with a context where calls can be
made. Either way, Statechart actions found in transitions, as
well as entry and exit blocks for states, access the associate
class, which in turn can access the game at-large.

In the layered model, most calls that travel from a Stat-
echart to the game at-large occur in an actuator or a sen-
sor. Calls from the actuators’ associated classes attempt to
change the game-state, and calls from the sensors’ associated
classes attempt to read the game-state.

4. AI-MODULE REUSE
Designing a new AI through the reuse of existing AI-

modules is a process of selecting behaviours described by
existing modules, and then linking them together to form
a working system. By clearly detailing Statechart interac-
tions in an interface, the process reduces to satisfying the
interface for the selected components. Additionally, a spec-
ified interface enables the development of tools to aid and
simplify the process.

4.1 The AI-Module Interface
Like an API, the interface for an AI-module needs to de-

note the possible interactions. We build such an interface
by addressing the interactions highlighted in §3.

Primarily, communication comes in the form of event-
based message passing. By classifying events, the designer
can communicate the intended interaction. Input events
originate outside of the Statechart and act as notification
of an event occurrence. Output events are generated by the
current Statechart with the intent to trigger events in other
Statecharts. It is possible for there to be events generated

2Synchronous communication can occur through events. A
requester sends out an event, then transitions into a blocking
state where the only transition out is a callback event. The
receiving Statechart responds with the callback to complete
the communication. However, this introduces the potential
for deadlock if Statecharts are mismatched, and thus is not
considered good practice in the context of reuse

Figure 3: A sample AI-module interface for a hypo-
thetical KeyItemMemorizer

by a Statechart with a matching transition in the same Stat-
echart. If no other Statecharts are meant to send or receive
these events, they should be classified as internal. While
event classification is done manually by the designer, a tool
could suggest likely classifications to streamline the process.

Next, the interface must detail linkages formed through
the associated class. Synchronous communications must be
presented in terms of outgoing calls and synchronous calls
made available. For reasons of portability (as detailed in
§4.4), a similar treatment needs to be given to all game
linkages in the associated class. This includes imports along
with calls to the game-state (including the methods these
calls reside within). Finally, any generic parameters should
be noted along with a description.

The actual interface is thus a listing of event and call infor-
mation, along with a description of the Statechart including
parameters. An example interface for a KeyItemMemorizer
is given in Fig. 3. While the arrangement of information is
arbitrary, the information shown fully describes the interac-
tions of the AI-module.

4.2 Renaming
Statechart communication requires event signature coher-

ence, where the output of one Statechart matches the ex-
pected input of another. In a non-reuse scenarios, this is
ensured by construction. In a reuse scenario, event name
coherence cannot be assumed; we must actively create it by
renaming events. This is done to enable message passing, or
to prevent unintended message passing. Essentially, renam-
ing connects AI-modules together.

Consider an NPC with a PlayerSensor that senses player
movement and outputs a player_spotted event. We wish to
reuse this Statechart by adding it into a new NPC. However,
the higher level PlayerMemorizer has player_seen as an
input event. The simplest solution is to rename one of the
events (e.g., rename player_spotted to player_seen) so
that a send-receive pairing is established.

The other scenario is the prevention of unintended mes-
sage passing. Renaming in this case correctly severs unin-
tended communications between unrelated Statecharts. This
is usually necessary to protect internal events. By definition
an internal event should never be sent or received by another
Statechart. In case of conflict, the internal event can be re-
named as this poses little risk of affecting existing message
passing relationships.

All renaming must take into account existing event names,
since there could be additional relations using the old or new
event name. Largely, this can be managed through tools
that warn of potential conflicts. This is somewhat analogous
to the use of global variable names in programming, because
the broadcast model lacks a concept of scoping.

27

Figure 4: The interface for a functional group.

4.3 Behaviour Reuse
When building a new AI, the most intuitive approach is

to consider what the AI will do. Ideas like “I want the NPC
to flee from enemies”, or “I want the AI to collect flowers”
should be primary design goals. A designer wants their AI
to carry out these goals, and is not as concerned with the
events and Statecharts involved. To permit design at this
level, we need to first isolate behaviours.

To track how high level goals traverse the hierarchy, we
introduce event chains, defined as a series of events cover-
ing more than one Statechart that together effect a goal.
An event chain “spotting an enemy” may have the follow-
ing steps: at the PlayerSensor, seeing another player in-
game and generating a person_spotted event; at the Play-
erAnalyzer, receiving the person_spotted event, analyzing
the player to determine their threat, and generating an en-

emy_spotted event; at the EnemyMemorizer, storing a ref-
erence to the enemy; and at the StrategicDecider, receiving
the enemy_spotted event and determining a response. The
event chain is thus {person_spotted, enemy_spotted}.

Event chains trivially support nesting. Since an event
chain is a series of events, nesting an event chain is short-
hand for including all events from the nested chain in the
outer chain. For instance, the event chain for “see an enemy
and decide to flee” could be constructed as {“spotting an
enemy”, flee}, where flee is the high level goal chosen by
the StrategicDecider.

Ultimately, behaviours are expressed by the series of events
in an event chain. Accordingly, we define a functional group
as the set of Statecharts that together contain all senders
and receivers used in an event chain. The most interesting
result is that a functional group can be given a composite in-
terface. All inputs paired with outputs and all synchronous
events that are both offered and called are reclassified as
internal. Parameters and game calls from all constituent
interfaces are combined. The resulting group interface sub-
sumes all member interfaces. The result is a tremendous
simplification to design at the behavioural level.

Looking at the “see an enemy and decide to flee” event
chain, the Statecharts involved are the PlayerSensor, the
PlayerAnalyzer, the EnemyMemorizer, and the Strategic
Decider. Note that the flee event does not have a receiver.
This is the output event for this event chain, and anything
building onto this functional group would need to have a re-
ceiver for the flee event. In Fig. 4, the combined interface
for this functional group is shown.

4.4 Portability
Portability depends on the Statechart implementation that

is employed. To easily port an AI from one game to an-
other, there must be a Statechart execution environment in

the target language that can use the existing Statecharts.
One candidate for Statechart representation is SCXML [1],
which defines a standardized representation of Statecharts
in a human-readable XML format. Execution environments
for SCXML are available for Java, C++, Python, and sev-
eral other languages. Another workable standard is the XMI
format [6], commonly employed by UML tools.

Porting the associated class is more complicated and may
require re-coding, especially in situations where the tar-
get game is in a different language than the source game.
The process is aided by the interface, since it details game
calls and synchronous methods. Rewriting associated classes
could also be simplified through the introduction of a wrap-
per class to manage game calls.

5. CONCLUSIONS AND FUTURE WORK
When developing an AI, working at a high level of ab-

straction is valuable. Our notion of functional groups allows
a customizable encapsulation of behaviour with a simple in-
terface. Over time, a developer can build a library of be-
haviours, and develop new AIs largely by adding and piecing
together existing components. New development would be
limited to the subset of novel behaviours needed.

The default broadcast model is responsible for most of the
renaming issues. As an alternative, narrow-casting would
allow Statecharts to communicate directly, eliminating unin-
tended message passing but introducing event targets. While
this creates extra work for designers, a tool could support
this by leveraging event-chains.

The next step in this work is the development of a tool
that realizes these notions. AI-module interfaces would need
to represented in a standardized format such as XML, or
could even be inlined with the actual Statechart represen-
tation (e.g., SCXML comments). Importantly, good tool
support would manage both message sending and the use
of functional groups. Such a tool could then be thoroughly
tested to quantify any improvement in development time
resulting from these reuse techniques.

6. REFERENCES
[1] J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. C.

Burnett, J. Carter, S. McGlashan, T. Lager,
M. Helbing, R. Hosn, T. Raman, K. Reifenrath, and
N. Rosenthal. State chart XML (SCXML): State
machine notation for control abstraction. W3C working
draft, W3C, May 2010.

[2] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. of Comp. Programming, 8:231–274, 1987.

[3] D. Harel and H. Kugler. The Rhapsody semantics of
Statecharts (or, on the executable core of the UML).
LNCS, 3147:325 – 354, 2004.

[4] J. Kienzle, A. Denault, and H. Vangheluwe.
Model-based design of computer-controlled game
character behavior. In MODELS, volume 4735 of
LNCS, pages 650–665. Springer, 2007.

[5] C.-U. Lim, R. Baumgarten, and S. Colton. Evolving
behaviour trees for the commercial game DEFCON. In
Applications of Evolutionary Computation, volume 6024
of LNCS, pages 100–110. Springer, 2010.

[6] Object Modeling Group. XML metadata interchange
(XMI), 2003. http://www.omg.org/technology/
documents/modeling_spec_catalog.htm#XMI.

28

