Malware Authors Don’t Learn, and That’s Good!

Joan Calvet, Carlton R. Davis
Ecole Polytechnique de Montréal,

Montréal, QC, Canada

{joan.calvet, carlton.davis } @polymtl.ca

Abstract

The Waledac malware first appeared in November 2008,
shortly after the Storm botnet became inactive. This mal-
ware is currently quite prominent and active. Its main prop-
agation mechanism is via social engineering schemes which
entice or trick users into downloading and executing the
malware binaries. The Waledac malware differs signifi-
cantly from the Storm malware. For example, unlike Storm,
Waledac utilises strong cryptographic algorithms, such as
AES and RSA with 128 and 1024-bit keys, respectively.
There are however a number of design and implementation
errors and weaknesses in the malware which makes it rela-
tively easy to intercept, analyse and modify and even to re-
play Waledac’s communication traffic. Interestingly, some
of these design and implementation errors and weaknesses
were also present in the Storm malware.

In this paper, we present the results of our analysis on
Waledac. To facilitate our analysis, we captured several
versions of the malware binaries and reverse engineered
them. We also executed the binaries in secure environ-
ments and observed their communication traffic. Our anal-
ysis provides valuable insights into the inner working of
Waledac malware and the botnet it constitutes. In addition
to giving details of the mode of operation of Waledac, we
highlight some of the weakness of Waledac, outline some of
the differences and similarities between Waledac and Storm,
and suggest means by which Waledac botnet can be infil-
trated and disrupted.

1 Introduction

Waledac is recent prominent malware that first appeared
on the Internet in November 2008, shortly after Storm bot-
net became inactive. As is the case for the Storm malware,
the principal propagation mode for Waledac is social en-
gineering schemes which entice or trick Internet users to
download and execute the malware binaries. Additionally,
Waledac has also been reported [12] to be downloaded and

Pierre-Marc Bureau
ESET
San Diego, CA, U.S.A.
pbureau @eset.com

installed by other malware families, such as Conficker [9].

The functionalities in Waledac have remained fairly con-
stant over time. The main changes are related to the mal-
ware protection layer, i.e. the packaging of the binaries,
which is aimed at evading anti-malware detection software.
The first variants of Waledac binaries were packed using
the publicly available UPX packer [4]. This packer is well
known and it is used by a number of legitimate software
vendors; it offers very limited protection against reverse en-
gineering and detection by anti-malware softwares. In later
variants of the malware, the UPX packer was replaced with
custom made packers and various anti-debugging and anti-
emulation techniques incorporated into the binaries to slow
down or thwart reverse engineering analyses. Like most
modern malware families, Waledac is spread by waves or
campaigns. Before each campaign, the malware packer is
modified and apparently tested against known anti-malware
software solutions to ensure that, upon release, the majority
of the security software will not detect it. There are conse-
quently several versions of Waledac malware whose differ-
ence is mainly attributed to the packing characteristics.

In this paper, we present the results of our analysis of
Waledac. To facilitate our analysis, we captured several
Waledac binaries and unpacked and reverse engineered the
binaries. We also executed the binaries in secure environ-
ments and observed their mode of operations. The contri-
butions of the paper can be summarised as follows:

1. We provide details of the mode of operation of
Waledac. The information we present can be em-
ployed in the design of Waledac detection and miti-
gation schemes.

2. We identify weaknesses in the design and implemen-
tation of Waledac malware. These weaknesses can be
exploited in Waledac countermeasure schemes.

3. We outline methodologies for two attacks that can be
used to disrupt the Waledac botnet.

4. We highlight differences between Storm and Waledac.

The rest of the paper is structured as follows. In
Section 2, we review previous works that are related to
Waledac, and highlight how our work differs from these
works. We present Waledac’s technical features, in Sec-
tion 3. We provide details of Waledac’s communication
structure and message types, in Section 4. In Section 5, we
highlight some of Waledac communication weaknesses and
outline methodologies whereby Waledac botnet could be in-
filtrated and disrupted. We compare and contrast Storm and
Waledac, in Section 6. Finally, in Section 7, we summarise
our findings and share some ideas for future work.

2 Related work

At the time of writing, we have found only two published
works related to Waledac analysis. We indicate below, how
our work differs from these previous works.

Lasse [7] presented in his M.Sc. thesis the results of a
case study on Waledac. Some of the findings he presented
are similarly to ours. However, our work differs from his in
the following ways: (i) we provide greater details about the
technical characteristics and the inner working of Waledac,
(ii) we outline practical schemes for attacking and disrupt-
ing the Waledac botnet, and (iii) unlike Lasse’s thesis, our
work highlights differences between Waledac and Storm.

Wu, Kink and Molenkamp [12] presented a case study
of Waledac which gives a time-line of Waledac’s activities,
and provide details regarding the number of machines that
have been infected by Waledac, in selected countries. The
emphasis of their work is different from ours, in that it does
not involved reverse engineering analysis of the code.

3 Waledac technical features

Waledac malware binaries are coded in C++. Our
analysis of the compiled code suggests that the malware
codes were compiled with Microsoft Visual C++ com-
piler. The size of the binary files are over 860 KB;
this is larger than the average size of malware binaries.
When Waledac malware executes for the first time, it
modifies the Windows registry by adding an entry to the
HKEY_LOCAL_MACHINE\Software\Microsoft)
Windows\CurrentVersion\Run key. This ensures
that the malware code is executed every time the machine
starts.

Our reverse engineering analysis revealed that Waledac
malware has the following features.

Mail engine. The core binaries of Waledac all contain a
SMTP engine which is capable of communicating with a
SMTP server and sending emails. Thus, it appears that the
main objective of Waledac is to send spam messages.

Strong cryptography. Waledac binaries are statically
linked with a compiled version of the OpenSSL library

that has OpenSSL 0.9.8e 23 Feb 2007 as its ver-
sion tag. The malware also appears to utilise the CryptoLib
library for cryptographic services. The binaries are hard-
coded with two 128-bit AES keys and a X.509 certificate
with a 1024-bit RSA public key; an additional RSA public
key and a private key is generated at runtime when the bi-
naries first execute. We give details regarding the usage of
these keys in Section 4.

Basic HTTP proxying. Waledac binaries contain code to
proxy HTTP traffic. The malware can handle two types of
HTTP traffic: the control messages to the command and
control (C&C) servers and the “normal” HTTP traffic to or
from other Waledac peers.

Double fast flux DNS. Every Waledac domain name is at-
tached to a set of infected machines (which are in fact only
proxys for the real Waledac servers) and the DNS servers
for these domain names are also interchanged on different
machines. This technique is often utilised by malware to
hide the true identities of proxies and servers [11].
Peer-to-peer communications. Waledac uses a fairly sim-
ple custom-made peer-to-peer (P2P) communication pro-
tocol that involves locally maintained peer-lists which are
constantly updated.

Email addresses harvest. Certain versions of the Waledac
malware have a module which scans the hard drive of an
infected machine in attempts to harvest email addresses. A
list of file extensions is embedded within the binary (exam-
ple, .avi,.mp3,.mp4 and .7z7) and the malware scans every
file whose extension is not listed in the list, to find email ad-
dresses. To decrease the likehood of the scanning activities
being detected, the malware utilises the following simple
load balancing mechanism: it records the time it takes to
read 200,000 bytes, if this time is greater than a hardcoded
value, it waits for a specified time period before scanning
other bytes.

Password theft. Waledac uses the WinPCap library, which
is downloaded on a newly infected computer, to sniff all the
network traffic, in attempts to find HTTP, FTP and SMTP
passwords. As indicated in Section 4.2, the malware then
sends the information it harvests to the C&C servers.

4 Waledac communication infrastructure

Our analysis of Waledac malware reveals that Waledac
botnet involves at least 4 layers (see Figure 1). In the de-
scription below, we label the layers based on the role they
play.

Spammers. These are the worker machines: they do the ba-
sic jobs such as sending spams and performing DoS attacks.
They are typically Microsoft Windows machines with pri-
vate IP addresses. They do not know the identity informa-
tion of other spammers: they are only aware of Repeaters
that are in their peer lists. Spammers constantly query the

Figure 1. Architecture of the Waledac botnet

Repeaters that are in their peer lists to get orders for jobs
they are required to perform.

Repeaters. These are machines with public IP addresses.
Their purpose is to relay the C&C traffic between the spam-
mers and the Protector layer. They also serve as HTTP
proxies for the Waledac websites, and as DNS servers for
the Waledac double fast flux system. Repeaters commu-
nicate with Protectors and other Repeaters but they cannot
contact Spammers directly. If the Windows Firewall is run-
ning on an infected machine which is designated as a Re-
peater, the malware modifies the firewall setting to ensure
that it can perform its Repeater roles without hindrance.
Protectors. These are Linux servers running different ver-
sions of nginx, a light HTTP proxy. Through our analysis,
we have identified 5 machines in this layer. Interestingly,
the identities of these machines have not changed over the
pass several months. The location of these machines are as
follows: two are located in Germany, one in USA, one in
Russia and one in Netherlands. The IP addresses of these
Protectors are owned by classic web hosters; this suggests
that bullet-proof hosting may be involved. Initially, it ap-
peared as if these machines were the actual C&C servers.
However, during our analysis, we observed that the field
Date of their HTTP responses have the same value at the
same moment; which implies that the five servers (which
are located in two different continents) are either time syn-
chronised or they act as proxies for another server. We as-
sume that it is the latter.

C&C server. We believe that the servers in the Protector
layer act as proxies for the server(s) in this uppermost layer.

A newly infected machine is either designated as a

Spammer or as a Repeater, depending on whether it has a
public IP address or not. We have discovered that the mal-
ware binaries accept arguments to force the role: -r for Re-
peater and -s for Spammer. We have not observed this “role
forcing” in the wild though; consequently, we conclude that
it is perhaps a debug feature.

4.1 Peer-to-peer protocol

Waledac utilises a simple P2P protocol where each bot in
the botnet keeps what we termed as a Repeater-list (RList)
which contains the identification information of Repeaters
that the given bot is allowed to communicate with. In addi-
tion to a RList, a Repeater also keep a Protector-list which
contains identity information of Protectors. The RLists and
the Protector-lists are updated as indicated below.

4.1.1 Update of Repeater-lists

All Waledac binaries come with a hardcoded list that con-
tains approximately 200 Repeaters. The content of the list
is different for each binary we examined. The RList is
an XML file which is stored in a registry key. The file is
compressed using the bz2 algorithm, then encrypted using
a 128-bit AES key K, which is hardcoded in all Waledac
binaries. The file has the following form:

<lm>

<localtime>1244053204</localtime>

<nodes>

<node ip="a.b.c.d" port="80" time="124..204">
469abeal004710clac0022489¢cef03183

</node>

<node ip="e.f.g.h" port="80" time="124..532">
691775154c03424d9f12c17fdf4b640b

</node>

</nodes>
</1lm>

Each entry in the file contains an IP address, a port num-
ber (80), a global UNIX timestamp and a random 16-byte
ID, which is an unique identifier of the Repeater whose
identification information is contained in the entry. RLists
are ordered by timestamps: the entry with the most recent
timestamp is in the first position. Waledac uses TinyXML
(a C++ XML parser), which is embedded in the malware

binary, to process the XML file. RLists are updated in the
following two ways:

1. Constant sharing with other peers. All the bots reg-
ularly contact Repeaters that are in their Rlist, to get
updates. The choice of Repeaters to contact is cho-
sen randomly. The Repeaters that are selected are sent
a list containing the identity information of 100 Re-
peaters. This list is extracted from the given bot’s
RList. When a bot B receives an RList extract from

another bot S, B extracts the identity information of
100 Repeaters from its RList, randomly and sends the
sublist to the bot. If B is a Repeater it only extracts 99
and puts its identity information at the first position of
the sublist before sending the sublist to S. This pro-
vides a mean for bots to propagate their identity infor-
mation in the botnet. The bot B uses the information
it received from S to update its RList as follows. First,
B computes a timestamp 7SCurrent, and then, uses it
to assign new timestamps NewTS; for the entries in the
sublist it received from S, using the formula

NewTS; = TSCurrent — (UpdateTS — TS;)

where UPdateTSs is the global timestamp on the sub-
list received from S, and TS; is the current value in
the timestamp field of the ¢-th entry. The entries with
the newly assigned timestamps are then inserted in
the RList at the appropriated positions (recall that the
RLists are sorted by timestamps). Also, it should be
noted that the maximum number of entries in a RList
is 500; entries that are in excess of 500 are discarded.

2. Connection to a website. All the Waledac related do-
main names have a special page (for the domain we
observed, it is linked as index.php) which contains an
encrypted version of an RList, with approximately 180
Repeaters. The encryption is done with a 128-bit AES
key K5 which is hardcoded in each binary. This list
is automatically updated every 10 minutes; we believe
it contains the Repeaters that most recently contacted
the C&C servers. When a bot makes 10 consecutive
failed attempts to contact Repeaters, it attempts to con-
nect to one of the Waledac websites and gets updates.
The URLSs for a list of Waledac websites are hardcoded
in each binary. These websites have very good avail-
ability, owing to the double fast flux DNS techniques
the botnet employs. This mechanism therefore pro-
vides an effective mean through which old versions of
the Waledac malware can be updated. The updates the
bots receive have the same form as the RList. When
a bot receives an update, it assigns new timestamps to
the entries in the update using the formula above, and it
inserts the entries in its RList. It then prunes the RList
by removing entries that are at position 501 or greater.

4.1.2 Update of Protectors-lists

The Repeaters need to have a list of the Protectors so that
they can relay C&C traffic to and from the Protectors to
the other bots. Waledac binaries that are designated for Re-
peater bots therefore contain a base64 encoded Protector-
list, which is signed with the RSA private key that is associ-
ated with the public key embedded in the binary. Each entry

in the list contains a UNIX timestamp and the IP address of
a Protector. As is the case for RLists, Protector-lists are
also sorted by timestamps. Repeaters keep their Protector-
list updated by exchanging Protector information regularly.
A Repeater update process consists of two phases: in the
first phase, the Repeater updates its RList; and in the sec-
ond phase, it updates its Protector-list. The two types of up-
date messages are distinguishable by a custom field called
X-Request-Kind-Code in the HTTP header, which
takes the value “nodes” for the Repeaters update messages
and “servers” for Protectors update messages.

4.2 Message types

Waledac bots communicate using HTTP messages. The
data field of the messages are bz2 compressed, encrypted
with a 128-bit AES key, and base64 encoded. The messages
have the following format:

POST /jyl.png HTTP/1.1

Referer: Mozilla

Accept: */=*

Content-Type: application/x-www—form—urlencoded
User—-Agent: Mozilla

nHost: A.B.C.D

Content-Length: Y

Cache-Control: no-cache

a=BwAAC3Jrvsgwur_..... JBJI1P7cpO
NrERG-c7uHr-&b=AAAAAA

The image file name (jyl.png) appears to be randomly
selected; the Host field contains the IP address of the
destination bot. The data field is the block behind the a
parameter; and the block behind b parameter is the base64
encoded IP address of the sender of the message. Actually,
if the sender is a Spammer, we observed that the value of
this field is always AAAAAA. When a Repeater receives
a message from a Spammer, the Repeater adds the field
Client-Host to the message, fills it with the IP address
of the Spammer, and forward the message to a Protector.
Here is a brief description of the format of the data field for
different message types.

getkey: This is the first message a bot sends when it ini-
tiates a dialog with another bot. The message is encrypted
with AES key K. The plain text message has the following
format:

<lm>

<t>getkey</t>

<v>34</v>
<i>004aeeb5a614fc47617439d64bb42c01d</1i>
<r>0</r>

<props>

<p n="cert">

MIIBvjCCASegAwIBAgIBADANBgkghk. . .

.. .BAwAgelu3s68csfHQOSicrtvvEIMXt

</p>
</props>
</1lm>

The <v> tag contains the version of the Waledac binary
and <i> contains the ID of the bot that sends the message.
The <r> parameter is set to 0 if the bot sending the message
is a Spammer, and to 1 if it is a Repeater. The message
contains the X.509 certificate with a 1024-bit RSA public
key, which the bot (the sender) generated the first time it ran.
The certificate is set to expire one year after it is generated.
The response of the C&C server has the following form:

<lm>

<v>34</v>

<t>getkey</t>

<props>

<p n="key">UvqgIPaS..... TT5X5hfJINNLoac=
</p>

</props>

</lm>

The key contains a 128-bit AES key K3 that is en-
crypted and base64 encoded. The encryption is done with
the 1024-bit RSA public key sent in the getkey message.
It appears that K3 was meant to be a session key since all
messages that follow the getkey message are encrypted
with it. There appears to have been a programming error
on the part of Waledac malware developers, as the session
key K3 is always the same.

For the next three message types, we only describe the
<props> field because the other fields are the same as for
other message types.

first: This message is send just once by a newly infected
machine. The likely purpose of this message is to provide a
count of the number of Waledac bots. The <props> field
of this message has the following format:

<props>

<p n="label">mirabella_site</p>
<p n="winver">5.1.2600</p>
</props>

The variable 1abel indicates the origin of the infection.
Some of the values we have seen for this variable includes:
tty, tty2msn, twist, birdie3 and ub. Wu et al. [12] suggest
that the twist value indicates that the Waledac binary
was downloaded by the Conficker malware [10]. The
<winver> field contains the infected host’s Microsoft
Windows OS version.

The response to the first message is an acknowledge
from the server; it is essentially an empty first message.

When a bot receives the response, it creates a registry
key named FWDone with value set to true, indicating the
first message was sent and needs not to be sent it again.

notify: This message contains some timing information.

<props>

<p n="label">mirabella_site</p>

<p n="time_init">Tue May 05 20:28:35 2009</p>
<p n="time_now">Tue May 05 20:39:24 2009</p>
<p n="time_sys">Tue May 05 20:39:24 2009</p>
<p n="time_ticks">7097225</p>

</props>

The content of the response depends on the role of the
bot. We indicate below, the relevant fields of the response
message, starting with the portion of the message that is
present irrespective of the role of the bot.

<props>

<p n="ptr">abcd.domain.com</p>

<p n="ip">A.B.C.D</p>

<p n="dns_ip">E.F.G.H</p>

<p n="smtp_ip">I.J.K.L</p>

<p n="http_cache_timeout">3600</p>
<p n="sender_threads">13</p>

<p n="sender_queue">2000</p>

<p n="short_logs">true</p>

<p n="commands"><! [CDATA[
341|download|http://abcd.com/win. jpg
341 |downloadexe |http://xyz.com/nl.exe]]>
</p>

</props>

The value of the relevant fields are indicated below.

e ptr: Indicates the domain name that is assigned to the
IP address of the bot. It will appear in the header of the
spam messages send by the bot.

e ip: Shows the IP address of the bot.

e dns_ip: Indicates the IP address of a DNS server the
bot will use to, for example, determine the IP addresses
of target SMTP servers.

e smtp_ip: This is the IP address of a SMTP server
that will be used as a test server. This is often the ad-
dress of a Google server.

e some technical parameters, e.g. sender_threads,
that represents the number of threads the mail process
will use when sending spams. We observed values
which ranged from 13 to 50.

e commands: This contains commands to be executed
on the bot. The commands have the following form:
ID|action|URL, where:

— ID is a number associated with the com-
mand and it is stored in a registry key named
LastCommandID. When a bot receives a com-
mand, it only executes it if the ID received is
strictly greater than the value in the registry key.

— action can take several values: update, down-
load, downloadR, downloads, updateexe, down-
loadexe, downloadrexe, downloadsexe. We ob-
served that for the download command, the URL
often points to a JPG image which contains a hid-
den executable. The hidden executable is a mod-
ified installer for the WinPCap library, which is
used to steal passwords, as indicated in Section 3.

— URL points to the target of the action.

For a Repeater, the rest of the response to a notify message
has the following form:

<dns_zones>
<zone>" .xabc\.com$</zone>

<zone>" .xxyz\.com$</zone>
</dns_zones>

<dns_hosts>
<host>A.B.C.D</host>

<host>W.X.Y.Z</host>

</dns_hosts>

<socksb>

<allow max_conn="100">E.F.G.H</allow>

<allow max_conn="100">R.S.T.U</allow>
</socks5>

<dos></dos>

<filter>

<deny>I.J.K.L</deny>

<deny>M.N.O.P</deny>
</filter>

The important tags and their role are indicated below.

e zone: These are the domain names which will be used
in the spam messages. As indicated in Section 3, the
domain names are maintained with the double fast flux
DNS technique.

e host: This field contains the IP addresses of Re-
peaters which also play the role of HTTP proxy for
the visitors to the zone domain names.

e socksb5: These are Linux servers running nginx, they
appears to be “motherships” for the double fast flux
DNS technique. During our experimentation, we ob-
served that these Linux servers also sent DNS queries
on behalf of the zone domain names.

e deny: This tag contains thousands of IP addresses
(perhaps about 5,000). Requests for HTTP forward-
ing that originated from any of these IP addresses are
denied.

When a Repeater receives the response to a notify
message, it tests the connectivity with all the hosts in the
host field to ensure that they are “alive”. Then in the
future, when it receives a DNS query for one of the zone
domain names, the Repeater responds to the query with one
of the “live” hosts.

For a Spammer, the rest of response to a notify message
is only the closing of all the tags, unless the Spammer is
being requested to perform a DoS attack.

emails: This message is send regularly by both Repeaters
and Spammers, it contains all the emails addresses har-
vested from infected machines.

taskreq: This request is send by Spammers only if they
have contacted the SMTP server whose IP address is con-
tained in the smtp_ ip tag of the response to a notify mes-
sage. If the Spammer failed to contact the SMTP server,
until it receives an IP address of a SMTP server it is able to
contact, its main purpose is to harvest email addresses and
steal relevant information from the infected machine. The
response to a taskreq message has the following form:

<tasks>

<task id="4">
<body>UmV3ZW12ZWQ6IChxbWFpbCALX] . . .
.. ..2ZW0dawdwadhcmlhX2xpbmt zXiUvXiU
</body>

<a>abcd@abcd.com

<a>wxyzQ@wxyz.com
<w>charset</w>
<w>domains</w>
<w>mynames</w>

<w>outver.6</w>

<w>pharma_links</w>

</task>

</tasks>

<words>

<w name="domains" time="1241467326"/>
<w name="names" time="1241467203"/>
<w name="charset" time="1233919243"/>

<w name="mynames" time="1233919245"/>
</words>

This response contains the following parts:

e body: The template for the body tag is base64 en-
coded. An example of the plain text form is indicated
below.

From: "$ Fmynames”% $ Fsurnames %"
<% "Fnames %@% "Fdomains %>

To: <%"07%>

Subject: $ Fpharma”™%

Date: $°D"%
MIME-Version: 1.0
Content-Type: text/plain;
format=flowed;
charset="%"Fcharset"%";
reply-type=original
Content-Transfer-Encoding: 7bit
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express
$"C7% "Foutver.57%"%

%"J% "Fpharma % http://%$"P$"R2-6"%:..
.%"Fpharma_links"%/"%

This template contains many parameters, e.g. my-
names, surnames, pharma, which a bot will fill before
sending spams.

e a: This tag contains the target addresses.

e w and name=: The w tags contains the parameters of
the taskreq response template; the w and name= la-
bels contain the timestamps of the parameters. The
Spammer will save the values of these parameters if
the timestamps are more recent than those of the pre-
viously saved values.

e id: The id parameter of the task tag serves to
identify different spam campaigns. In one taskreq re-
sponse, a Spammer can be instructed to participate in
several campaigns, each of them having its own body
and targets.

Once a Spammer receives the complete response to a
taskreq message, it begins sending spam.

taskrep: When a spammer completes it’s spamming task,
the Spammer sends a report that contains all the email ad-
dresses it spammed, indicating also which email adddresses
are functional and which are not. The report is encapsu-
lated in a taskrep message. The message has the following
format:

<reports>
<rep 1d="4" rcpt="YXJub...l4LmNvbQ==">
RVJS</rep>
<rep 1d="4" rcpt="bib5uY...UBtZWRpY==">
TO0s=</rep>

</reports>

The rcpt parameter contains a target email address;
RVJS and TOs= are base64 encoding of “ERR” and “OK”,
respectively.

httpstats: When a Repeater forwards a HTTP request for
the Waledac web servers, the Repeater logs relevant infor-
mation about the visitor and encapsulate the logs in httpstats

messages and sends the messages to the top servers at regu-
lar intervals. An example of a httpstats message is indicated
below.

<http_stats>

<stat time="1242929383" ip="a.b.c.d">

<! [CDATA[GET /index.php HTTP/1.1 Mozilla]]>
</stat>

<stat time="1242929397" ip="w.x.y.z">

<! [CDATA[GET /index.php HTTP/1.0 Mozilla]]>
</stat>

</http_stats>

creds: When a bot captures passwords and lo-
gin information on a network, the bot sends the
information in a form directly usable, such as,
ftp://login:password@ftp.vulnerableHost.com, to a top
level server.

5 Communication weaknesses

Some of the weaknesses of Waledac communication
schemes we present in this section have already been iden-
tified by Lasse in his M.Sc. thesis [7]; however, we pro-
vide greater details on how the weaknesses can be exploited.
We commence by describing a man-in-the-middle attack we
launched against Waledec botnet, which allowed us to read
the plain text form of Waledac communications and inject
relevant messages in the communication traffic. Next, we
outline how Sybil attacks can be launched against Waledac.

5.1 Man-in-the-middle attacks

As indicated previously, Waledac uses three 128-bit AES
keys. K7 and K are hardcoded in the binary, and K3 is the
“session” key that always the same value! We found the
value for all three keys; therefore it was easy for us to de-
crypt the Waledac communication traffic. It should be noted
that there is a Waledac decoder available on the Internet [8]
that allows one to compute the plain text form of an en-
crypted message. However, owing to our knowledge of the
internals of Waledac, we were able to code a fake Repeater
in Python that performs two of the main functions of a real
Repeater, namely the following:

e Send and receive update messages: As indicated in
Section 4.1.1, bots update their RLists by sending and
receiving update messages that contain identification
information for 100 Repeaters. Our fake Repeater suc-
ceeded in pushing update messages —with its own ad-
dress in first position— to real Waledac bots. This
allows the identification information of our fake Re-
peater to be propagated in the botnet.

e Proxying the C&C traffic: We succeeded in using our
fake Repeater to proxy C&C traffic to the Protectors;
and we were also able to log the plain text form of the
traffic “on the fly”.

With our fake Repeater bot, we were able to easily
monitor the Waledac botnet. Consequently, each time the
Waledac C&C servers launched a new order, our fake Re-
peater informed us and we are able to quickly analyse the
order. For example, when bots are instructed to download
new binaries, as the bots download the new binaries us-
ing the Repeaters as proxy for the Waledac webserver, and
as the Repeaters send HTTP reports, our fake Repeater is
asked to proxy some of the reports to the Protectors. This
provides us with instant access to a wealth of “sensitive”
Waledac information.

In addition to spying on the botnet and gathering relevant
information, another possible use of the man-in-the-middle
attack we illustrated above, is to inject traffic into the botnet
which can be used to alert the owner of the machine that
the machine is infected. It is conceivable that the bots could
also be instructed to download code to disinfect them or just
to deactivate the malware code.

5.2 Vulnerability to Sybil attacks

Waledac bots are identified by a 16-byte ID and an IP
address. The IP address does not have to be unique. Con-
sequently, thousands of sybils (fake nodes) with unique IDs
can be generated from a single machine and used to infil-
trate the botnet.

A methodology through which Sybil attacks could be
mounted against Waledac is as follows. One could run the
sybils as super Repeaters which can infiltrate the botnet by
means of the man-in-the-middle attack we outlined above.
The aim is to get the identity information of the super
Repeaters into as many RLists as possible. The process
can be facilitated relatively easy owing to design flaws in
the Waledac P2P protocol. For example, we indicated in
Section 4.1.1 that bots update their RList by sending and
receiving update messages which contain identity informa-
tion of subsets of 100 Repeaters. We discovered that when
a bot receives an update message, it does not check to deter-
mine the number of records that are in the update message.
It is therefore possible that when the super Repeater gains
access to the botnet, it can send updates messages that
contain identity information of 500 other super-Repeaters,
with the timestamps of the entries selected such that they
are guaranteed to be more recently than the timespam
of any entry in the RLists of the bots. Note that 500 is
chosen because that is maximum number of entries that
are allowed in a RList. Consider the sample message below.

<lm>

<localtime>600</localtime>

<nodes>

<node ip="ourIPaddress" port="80"time="599">
00000000000000000000000000000001</node>

<node ip="ourIPaddress" port="80" time="599">
00000000000000000000000000000002</node>

<node ip="ourIPaddress" port="80" time="599">
00000000000000000000000000000500</node>
</nodes>

</1lm>

When a bot receives this message, it is likely that all the
entries in the bot’s RList will be replaced by the entries in
the update message, since the difference of 1 between the
local timestamp (599) and the global one (600) ensures that
sybil entries will be assigned more recent timestamps than
the entries that are currently in the bot’s RList, as described
in Section 4.1.1.

The extent to which a bot can be controlled and be iso-
lated from other bots when the bot receives such an update
message from a sybil, depends on the type of bot.

e [f the bot is a Repeater, after it receives the message
from the sybil, there is a race condition situation, since
the Repeater’s identity information is most likely to
also be in other bots’ RLists. Consequently, other bots
will likely send the Repeater update messages, whose
entries can replace some of the sybil entries in the Re-
peater’s RList. To maximize the chance that a Repeater
will eventually be isolated from other bots after it re-
ceived update messages from sybils, the sybils need to
continue to send the Repeater update messages at short
time intervals, for a given period of time, i.e. until the
Repeater’s identity information is flushed from all the
other bots’ RLists.

o [fthe bot is a Spammer, the result of the Sybil attack is
more effective: since Spammers cannot be contacted
directly, when a Spammer receives an update from a
sybil, and the entries in its RList are consequently re-
placed by identity information of sybils, the Spammer
will be completely isolated from other bots. It should
be noted though, that in order to infiltrate a Spammer’s
RList, the sybils first need to infiltrate the RLists of
Repeaters whose identity information are in the RList
of the Spammer.

6 Storm and Waledac, Same Operation?

The Storm botnet is one of the most studied and well
known botnets. The Storm malware (also known as Nuwar,
Peacomm, and Zhelatin) infected tens of thousands of com-
puters on the Internet [3,5]. Storm became inactive in Oc-
tober 2008 after the California-based ISP which apparently

hosted most of Storm’s principal bot servers was shutdown
[6]. Storm’s main propagation scheme was through links
to malicious files embedded in emails. It used themes like
Valentine’s day, Christmas greetings cards, video codecs
and news about nuclear attacks [1].

It is hard to establish a link between Waledac and other
malware families (such as Storm), by only examining the
malwares binary files. On the other hand, if we take a high
level view of the events, we quickly realize that the follow-
ing characteristics are very similar in both:

1. The spreading mechanisms show a common preva-
lence of social engineering techniques and download-
ing by other malware families, probably on a pay-per-
install business model. Moreover, the social engineer-
ing schemes which are used to entice users into down-
loading and executing the malicious files, uses almost
the same themes.

2. Both Storm and Waledac use P2P communication to
distribute information in the botnet.

3. Both malware families use fast flux infrastructure to
spread new binaries and attract victims.

4. Both Storm and Waledac adopted information theft op-
erations, but not immediately after their initial release
on the Internet.

On the other hand, we have noted the following differ-
ences between the Storm and the Waledac family:

1. Storm used a separate spam engine, while Waledac al-
ways carries an embedded engine to send spam.

2. Storm used an existing C library implementing the
well known Kademlia P2P protocol, while Waledac
created and used its own P2P protocol.

3. The cryptographic library found in Waledac is very
robust and it is compiled from publicly available
code; while Storm’s cryptographic functionalities were
home made.

4. Multiple variants of Storm had a system driver with
rootkit capabilities to hide its presence on an infected
machine. To the best of our knowledge, Waledac does
not have such functionalities.

5. Waledac’s architecture includes more counter-
measures for protecting the C&C and proxy servers,
such as double vs. single fast flux and an extra layer of
protector proxies.

7 Conclusions and future work

By looking at the differences and similarities between
the Waledac and Storm malware families, it seems obvious
that their operation is very similar while the malware files
are different. This observation leads us to believe that these
two malware operations may have been sponsored and or-
ganized by the same individuals. On the other hand, the
difference in programming language, the similarity in the
design flaws and errors in the code of both malware, and
the different approaches to similar problems, leads us to be-
lieve that the programmers were different. Furthermore, it
appears that the programmers did not study Storm’s code
or learned from Storm’s design and implementation flaws,
since Waledac’s codes contains errors similar to those that
appeared in Storm’s codes.

Nonetheless, the C&C architecture of Waledac does
show some signs of increased sophistication and care about
stealth and redundancy. Such signs include the additional
layers of protection in the network architecture and the use
of double vs. single fast flux DNS. These changes might
have indeed been triggered by lessons learned from the
Storm botnet and its demise.

The use of custom-made P2P network instead of Kadem-
lia also raises an interesting point. The design and imple-
mentation errors mentioned illustrate that designing and im-
plementing good P2P protocols is not a trivial thing. In
fact we observe a similar phenomenon to that found for
proprietary cryptograpy: the software industry (including
Waledac programmers) has mostly learned that correctly
designing and implementing such protocols is best left to
experts and should not be attempted in-house.

This realisation is even more significant in the light of
what we discovered in previous work [2]: it would seem that
structured P2P protocols such as Kademlia offer the best
balance of robustness and efficiency vs. resilience against
attack. Either the botnet operators have not read our pa-
pers (!) and were not conscious of this fact, or, their perfor-
mance objectives have shifted and are different than what
we had anticipated. For example, a botnet operator out to
make a quick profit might not be so concerned about long-
term resilience of the network, since they know that ulti-
mately their very visible botnet will be found out, studied
to death and eventually shut down because of its visibility.
In that case, they might have consciously traded survivabil-
ity against attacks for shorter-term goals such as efficiency,
i.e. the ability to quickly reach and give commands to as
many bots as possible. In that sense, the Waledac P2P pro-
tocol should not be completely discarded and considered
as a mere failed attempt at building a “proprietary” P2P
protocol. Once the obvious implementation errors fixed,
e.g. trusting foreign timestamps blindly, the protocol shows
characteristics that resemble other unstructured P2P proto-

cols such as Gnutella. This might have been a coincidence
or not.

On the other hand, this same tradeoff of resilience vs.
efficiency might not be of interest for botnets used for es-
pionnage, subversive activities or other political or longer-
term economical agendas. Hence, we contend that inde-
pendently of the immediate evolution of the more visible
and common crime-oriented botnets, we should continue to
comparatively study the various P2P protocols, in order to
try to determine which of their characteristics affect botnet
resilience and efficiency. This knowledge will prepare us
for the time when botnet operators and their programmers
do finally start to learn... Furthermore, it will put us in a po-
sition to start understanding which attacks against botnets
work best against this ultimate, optimised botnet threat.

References

[1] P.-M. Bureau. Les changements climatiques et les logiciels
malicieux. MISC Magazine, June 2008.

[2] C. Davis, S. Neville, J. Fernandez, J.-M. Robert, and
J. McHugh. Structured peer-to-peer overlay networks: Ideal
botnets command and control infrastructures? In Proceed-
ings of the 13" European Symposium on Research in Com-
puter Security (ESORICS’08), October 2008.

[3] D. Fisher. Storm, nugache lead dangerous new botnet bar-

rage. SearchSecurity.com, December 2007.

M. EX.J., Oberhumer, L. Molnr, and J. F. Reiser. Ultimate

packer for executables. http://upx.sourceforge.

net, 2008.

T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling.

Measurements and mitigation of peer-to-peer-based botnets:

A case study on storm worm. In Proceedings of the 1%

USENIX Workshop on Large-Scale Exploits and Emergent

Threats (LEET’08), April 2008.

[6] B. Krebs. Atrivo shutdown hastened demise of storm
worm. http://voices.washingtonpost.com/
securityfix/2008/10, October 2008.

[7] T. B. Lasse. Peer-to-peer botnets: A case study on waledac.
M.Sc. thesis, April 2009.

[8] F. Leder and T. Werner. Waledac traffic decoder. http:
//oslo.cs.uni-bonn.de.

[9] I. Macalintal. DOWNAD/Conficker watch: New vari-
ant in the mix? http://blog.trendmicro.com/
downadconficker-watch—-new-variant-in-the-mix%,
April 2009.

[10] P. Porras, H. Saidi, and V. Yagneswaran. A foray into con-
ficker’s logic and rendezvous points. In Proceedings of the
ond USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats (LEET’09), April 2009.

[11] The Honeynet Project. Know your enemy: Fast-flux service
networks. http://www.honeynet.org/papers/
ff.

[12] S. Wu, T. Zink, and S. Molenkamp. Where is Waledac?
Virus Bulletin, pages S1-5, June 2009.

[4

—_

[5

—

