XTW, a parallel and distributed logic simulator

Qing XU
School of Computer Science
McGill University
Montreal, Quebec H3A 2A7
Email: gqxu2@cs.mcgill.ca

Abstract—In this paper, a new event scheduling mechanism
XEQ and a new rollback procedure rb-messages are proposed
for use in optimistic logic simulation. We incorporate both of
these techniques in a simulator XTW. XTW groups LPs into
clusters, and makes use of a multi-level queue,XEQ, to schedule
events in the cluster. XEQ has an O(1) event scheduling time
complexity. Our new rollback mechanism replaces the use of
anti-messages by an rb-message, and eliminates the need for an
output queue at each LP. Experimental comparisons to Time
Warp reveal a superior performance on the part of XTW, while
experimental results over large circuits (5-million-gate to 25-
million-gate) shows XTW scales well with both the size of circuits
and the number of processors.

1 INTRODUCTION

In the competitive arena of VLSI design, the size of circuits
has increased as Moore’s law predicted -the transistor density
on integrated circuits doubles every couple of years. One result
of this is the steadily increasing computational requirements
for circuit simulation and verification. Parallel and distributed
simulation has the potential to provide a solution to this
problem.

The fundamental problem in distributed simulation is one
of synchronizing the processes involved in the simulation.
The two major approaches to synchronization are referred to
as conservative and optimistic. We focus upon the optimistic
algorithms in this paper, of which Time Warp [1] is the most
visible. In Time Warp (TW) causality errors are corrected by
rolling back the state of the simulation to a previous correct
state and eliminating erroneously sent messages and their
effects by the sending of anti-messages.

Logic and behavioral simulation is a low granularity and
tightly coupled computational task which poses a significant
challenge to the development of a distributed simulator. Clus-
tered Time Warp (CTW) [2], [3] was developed with these
problems in mind. As the name implies, in CTW LPs (rep-
resenting gates) are gathered into clusters. Several techniques
were developed for use to obtain checkpoints and to roll back
the LPs in a cluster. The algorithms described in this paper are
intended for use with clusters of gates and are an outgrowth
of CTW.

A number of other efforts have been directed at logic
simulation including [4] which employs optimistic algorithms
and [5], which employs conservative algorithms. [5] contains
a good survey of work before 1995.

Carl Tropper
School of Computer Science
McGill University
Montreal, Quebec H3A 2A7
Email: carl@cs.mcgill.ca

In this paper, a new optimistic synchronization mechanism,
XTW, is proposed to improve the performance of Time Warp.
XTW was inspired by several characteristics of discrete event
logic simulation. XTW consists of a new event scheduling
algorithm, XEQ, and a new rollback mechanism, rb-message.
XEQ has an O(1) cost bounded on the number of simulated
entities (not on the number of events). Rb-message not only
reduces the computing cost of annihilating previously sent
messages, but also dramatically reduces the memory cost by
eliminating the output queue in each LP.

The remaining sections of the paper are organized as
follows. Section2 describes the motivation for XTW. Section 3
contains a detailed description of XEQ and rb-messages along
with an analysis of their complexity. Section 4 contains our
experimental work, in which XTW is compared to CTW as
well as to a sequential version of XTW. The concluding section
of the paper follows.

2 MOTIVATION FOR XTW

Discrete event simulations of circuits, whether at the logic,
behavioral or register-transfer level, share certain characteris-
tics, among which are:

1) Events generated by an LP are produced in chronological
order(See figure 1).

2) An LP receives events from another LP in chronological
order(See figure 1).

3) In a parallel discrete event simulation which uses a
communication facility guaranteeing FIFO order, the
messages(events) from a specific LP(source) arrive at
the destination LP in chronological order.

4) LPs are sparsely connected.

5) The LP topology is static during the simulation.

Observations 1, 2 and 3 show that events are naturally sorted
with “zero-cost” when they are generated and propagated.
These observations are the keys to our approach and inspire
us to create a new event scheduling algorithm, XEQ, which
utilizes these “zero-cost” sorted events. We make use of XEQ
to create the rb-message mechanism in order to reduce the
rollback cost in TW. Observations 4 and 5 make it feasible to
implement XEQ and rb-message in large circuit simulations.

2.1 Utilizing “zero-cost” sorted events

In this section, we will explore how to utilize “zero-cost”
sorted events in discrete event circuit simulation. [6] has

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE



a good analysis on the same phenomena and proposed an
append-queues input queue sturcture.

First, we examine a simple situation— a parallel discrete
event circuit logic simulation which has two components
residing on two simulation nodes. One component is an event-
generator and resides on Nodel, while another component is
a NOT gate residing on Node2. Each component is modeled
as an LP and communicates with each other via FIFO order
communication facility.(See figure 1). In figure 1, we can see

Nodel Node2
input-queue

input-queue

event-generator LP [Lp1

outpurQueue HE

Fig. 1.

NOT gate LP

DE ourpurQuens

a single LP, single InCh model in PDES

that the event scheduling cost at Nodel is O(1), consisting of
the cost to append the generated events into the input queue
and to de-queue the head event from input-queue. At Node2,
the event scheduling cost is also O(1), consisting of the cost
to append the events coming from Nodel to the input-queue
and to de-queue the head event from the input-queue. In this
example, observations 1, 2 and 3 are made use of to give an
O(1) cost event scheduling algorithm.

When there are a large number of LPs residing in one node
and multiple input sources at one LP, the situation is totally
different. Events generated by different LPs and coming from
different sources have to compete with other to be inserted into
the input-queue.(see figure 2) The naturally occurring “zero-
cost” sorted events are lost by this competition. In TW, an LP
can be rolled back and generate out of order events, further
complicating matters. In the next section we describe a data
structure, XEQ, which makes it is possible to preserve the
“zero-cost” sorted events and has an O(1) event-scheduling
cost. A new rollback mechanism, rb-message, is proposed to
make it possible to utilize “zero-cost” events to reduce the
rollback overhead. We call the Time-Warp simulation system
which implements XEQ and rb-messages XTW.

Nodel Node
input-queue

[

input -queue

v [ T |

Fig. 2.

DE oucputuene

a multiple LPs, multiple InChs model in PDES

3 XTW

XTW makes use of clusters of LPs. The clusters are
intended to represent the grouping of gates according to the
functional units to which they belong. Each cluster has a multi-
level event queue, XEQ, associated with it whose purpose is
event scheduling. A cluster level event queue (CLEQ) is part

of XEQ and stores events which are sent to other clusters.
XTW is an outgrowth of CTW [2]. Three techniques for
checkpointing and rolling back in CTW are described in [2],
each occupying a different point in a memory vs. execution
time trade-off. XTW makes use of one of these techniques,
local rollback,local checkpoint. Local checkpoint means that
an LP saves its state only if it receives a message from an
LP in another cluster. Local rollback refers to each LP rolling
back individually, as opposed to requiring all of the LPs in a
cluster to roll back (one of the techniques in CTW).

This section contains a detailed description of XEQ and
the rb-message mechanism, along with an analysis of their
complexity. We organize the section as follows. Section 3.1
introduces the Input-Channel structure. Section 3.2 presents
the structure of XEQ. Section 3.4 presents the XTW event
scheduling mechanism and its cost analysis. Section 3.5
presents the rb-messages mechanism.

3.1 Input-Channel

In XTW, a new structure,the input-channel(InCh) is added
to LPs. Each InCh models an unique input of a circuit
component and is subject to Rule 1 as follows:

Rule 1: Each InCh can only have one unique incoming source.

Figure 3 shows how the Input-Channel models the connec-
tion edge of gates. In figure 3, G1 has two inputs from G2
and G3. G2 has one input. G3 has one input from itself and
another from others. Each input is modeled as an InCh.

Gl
G2 G3
Ic3 Ic4 ICS

Fig. 3.

Input Channel Model

Input Channel

Processed Event Queue Input Event Queue

e3 e10 es0 e63
rei3 | peio re:so | reies
st:2 stis st:as | st:s3

Fig. 4. The Structure of Input Channel

Figure 4 shows the structure of InCh. Each InCh con-
tains one input event queue(ICEQ) and one processed event
queue(ICPQ). Newly arrived events are put in the ICEQ. After
an event is processed, it is put in the ICPQ. Each event has two
timestamps: a)receive-time stamp is the time stamp indicating
when the event occurs(conventional definition of time stamp)
b)the send-time stamp is the Local Virtual Time(LVT) of the

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE



LP when it scheduled E . LVT is equal to the receive-time of
the latest processed event.

As a result of observations 1, 2, and 3 (the FIFO commu-
nication assumption) and Rule I, all of the events must arrive
at each ICEQ in chronological order and be naturally sorted
in the ICEQs(see Figure 4).

3.2 The Structure of XEQ

Cluster 1

Fig. 5. The Structure of XEQ

Figure 5 shows the structure of XEQ. In XEQ, there are
event queues at the Input-Channel level, the LP level and the
Cluster level.

o At the Input-Channel level, the event queue is called the
ICEQ and is implemented as a list of events sorted in
increasing timestamp order.

o At the LP level, the event queue is called the LPEQ and
is implemented as a list of events sorted in increasing
timestamp order.

« At the cluster level, the event queue is called the CLEQ
and is implemented as a list of time-buckets sorted in
increasing timestamp order. A time-bucket is a list of
events which have the same time-stamp.

In addition, the following two event pointers are added respec-
tively for each Input-Channel and each LP.

o CIE: At each Input-Channel, a CIE(current-IC-event)
pointer points to the event which is de-queued from its
ICEQ and is currently stored in the LPEQ or the CLEQ.
This pointer is used to remove the (pointed-to) event from
the LPEQ or the CLEQ in the event of rollback.

o CLE: At each LP, a CLE(current-LP-event) pointer points
to the event which is de-queued from its LPEQ and
is currently stored in the CLEQ. This pointer is used
to move the (pointed-to) event from the CLEQ back to
LPEQ in the event of a rollback at the LP.

3.2.1 Rules for XEQ: The following rules are enforced in

XEQ:

e Rule 2: An InCh can submit only one event to its hosting
LP’s LPEQ if and only if the ICEQ is not empty. This
event has the lowest time-stamp in the ICEQ and is called
the current IC event. Its pointer value is assigned to CIE.

o Rule 3: An LP can submit only one event to its hosting
cluster’s CLEQ if and only if the LPEQ is not empty. This
event has the lowest time-stamp in the LPEQ, It is called

the current LP event and its pointer value is assigned to
CLE.

3.3 Event Node Structure, Space Cost of XEQ

Figure 6 shows the structure of an event node and how
an event node moves around among the different levels of the
event queue.

LR R

RNl ==1
MAL‘ level processed event queue

Fig. 6.

an event node structure and its movement

Moving an event node from one event queue to another
event queue is accomplished by changing the values of the
next and the prev pointer of the event node. No copying is
necessary and as a consequence, extra memory is not required
at each of the event queues. An example is depicted in figure
6. When el is moved from the ICEQ to the LPEQ, the only
operation necessary is changing the next and prev pointer of
el from I1,12 to L1, L2. Similarly, moving el to the CLEQ or
ICPQ just involves changing the next and prev pointer value
to C1, C2 or PI1, P2.

XEQ can be viewed as a Time Warp input queue broken into
small pieces. The total space cost of XEQ is approximately
the same as that of the Time Warp input queue structure.

3.4 XTW O(1) Event Scheduling Mechanism

XEQ is used to implement a smallest timestamp first event
scheduling mechanism within clusters which has an O(1) time
complexity.

An event is scheduled and processed in XTW via the
following steps:

1) After an event is generated, it is propagated to its
destination InCh and is appended into the respective
ICEQ.

2) According to Rule 2, if the ICEQ is not empty, it will
submit the smallest receive-time event to its LPEQ.
Since the ICEQ is naturally sorted, the smallest times-
tamp event is just the head event of ICEQ. Thus, we can
simply de-queue the head event at a cost of 1.

3) The event from the ICEQ is inserted into the LPEQ. The
cost of finding the correct position into which to insert
the event is V.. N, is the number of events stored in
LPEQ. Based on Rule 2, in the worst case, the maximum
value of N, is C;., where C;. is the number of InChs
at an LP.

4) According to Rule 3, if the LPEQ is not empty, it will
submit the head event to its CLEQ. The cost of finding
the correct position in the CLEQ is Ny, where Ny, is
the number of time-buckets in the CLEQ. Based on Rule
3, in the worst case, the maximum value of Ny, is Cjp,
where Cy), is the constant number of LPs in a cluster.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE



Putting the above observations together, the cost of scheduling
an event in XTW, SC, is:

SC =1+ N, + Ny ey
In the worst case the cost of scheduling an event is :

Since both (. and Cj, are constant, the complexity of
scheduling an event is O(1). In reality, C;. is far less than
Cip in most discrete event circuit models and making use of
an O(IgN) data structure in the CLEQ, results in an event
scheduling cost of O(log Cjp).

Comparing XEQ other event-list data structures we first
note that their time complexity is bounded by the number
of events in the queue. Standard event list structures and
their time complexities include the calendar queue O(1), the
splay-tree(O(logn)), the red-black tree(O(logn)), the skip-
list(O(logn)) and the heap(O(logn))r. XEQ has more stable
performance because it is bounded by the number of LPs,
which is static during the simulation. It is not sensitive to
the distribution of events as is the calendar queue. Moreover,
XEQ can be used in both parallel and sequential discrete event
circuit simulation and is easily implemented.

3.5 Rollback with Rb-messages

3.5.1 Motivation for the Rb-messages Mechanism: We be-
gin with the 2-LP example shown in figure 1. This time, we
assume that a rollback occurs in LP1- event e8 is generated
after el2 in LP1 and is sent to LP2. In Time-Warp, anti-
messages for €9, €10 and el2 will be sent out one by one to
annihilate the events in LP2. However, in this example, LP2,
upon the arrival of e8 can annihilate €9, e10 and el2 without
the necessity of anti-messages. Consequently, the output-queue
can be eliminated from each LP, since no anti-messages are
required to annihilate the previous sent messages.

The advantage of above scenario is obvious — we can
not only can reduce rollback overhead by eliminating anti-
messages, but can also save memory by not saving any output-
events. We extend the simple 2-LP scenario to the general case
via the use of rb-messages, described in the following section.

3.5.2 The Rb-messages Mechanism : In XTW, each event
has two timestamps: a)receive-time stamp is the time stamp in-
dicating when the event occurs(conventional definition of time
stamp) b)the send-time stamp is the Local Virtual Time(LVT)
of the LP when it scheduled E. All events in ICEQs and ICPQs
are maintained in receive-time chronological order. According
to Observations 1, 2 and 3, all events are also in the send-time
chronological order. The event which has the smallest receive-
time in an event-queue is called as the head event. The event
which has the largest receive-time in an event-queue is called
as the tail event. We do not distinguish between “messages”
and “events” in the rest of the paper.

In Time-Warp, an event causing rollback is called a strag-
gler. After receiving a straggler, an LP must be rolled back
to a previous time point. We call the time point that the LP
is rolled back to as the rollback-time and call the first event

submitted by an LP after rolling back as a rollback event. In
XTW the following “Propagation Rule” is enforced in addition
to the normal propagation rule:

o Rule 4: If a rollback event is processed, the output events
must be propagated.

The output-events, which are generated by the rollback event
and forced to propagate, are mainly used to propagate the
rollback and thus called as rb-messages in this paper.

In the following, we describe how the rb-messages mecha-
nism works in the XTW rollback procedure:

When a new event, F,,.,,, arrives at an LP, it is checked
if its receive-time is smaller than LVT. If the receive-time of
E,. is larger than or equal to LVT, it is a normal event and
will be scheduled in the way described in section 3.4. If the
receive-time of E,¢,, is smaller than LVT, it is a straggler(e.g.
E6 at LP1 in fig 8). Then, the LP which receives the straggler
is rolled back as follows:

1) Step 1: The rollback-time is set equal to the receive time
of Fpew-

2) Step 2: The current LP event which is pointed by CLE
is moved from CLEQ to the LPEQ.

3) Step 3: The current InCh events pointed by respective
CIEs are moved from LPEQ to the head of respective
ICEQs.

4) Step 4: Every Input-Channel is rolled back. There are
two cases to be considered:

a) Case 1: The Input-Channel is the one which re-
ceives the straggler. This Input-Channel erases all
events in its ICEQ if any, and all ICPQ events
which have receive-time larger than the rollback-
time.

b) Case 2: The Input-Channel is not the one receiving
the straggler. This Input-Channel is rolled back by
moving all ICPQ events which have receive-time
larger than the rollback-time from ICPQ to ICEQ.

5) Step 5: The LP restores the states to the first state that
has time-stamp smaller than or equal to the rollback-
time.

6) Step 6: E,.y is en-queued at the head of its arriving
ICEQ.

7) Step 7: Every input-channel submits one event to LPEQ
if its ICEQ is not empty. LP submits one event to CLEQ.
This event is the rollback-event.

8) Step 8: After the rollback-event is processed, according
to Rule 4, the output events(rb-messages) must be propa-
gate to subordinate LPs. There are five cases to consider
when an LP receives a rb-message. Fig 7 states all five
cases. Fig 8 depicts concrete examples of these five
cases.

In fig 8, LP3 has two input-channels, InChl receives
events from LP1, InCh2 receives events from LP2. We
assume LP1 has two different service-time, 1 and 10.
So if LP1 processes an event at LVT 6 using service
time 1, the output event will be E7 with receive-time
at 7(rt:7) and send-time at 6(st:6); if LP1 processes an

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE



Fig. 7. five rb-message arriving cases

event at LVT 6 using service time 10, the output event

will be E16 with receiver-time at 16(rt:16) and send-time
at 6(st:6).

Each of five cases is handled respectively as follows:

a) Case 1: In this case, the rb-message is not a

straggler. The input-channel which receives the rb-
message erases all events which have send-time
larger than that of the rb-message from its ICEQ.
In fig 8, rb23 is in this case. Rb23 is propagated

from LP1 to LP3 after the rollback event €23 is
processed with service time 1 in LP1.

b) Case 2: In this case, the rb-message is a straggler.
The send time of the rb-message is used to find the

cut-point in ICPQ, such that all events with send-

time larger than the send-time of the rb-message Fig. 8. concrete examples of five rb-message arriving cases

is after the cut-point. The LP sets the rollback-
time equal to the receive-time of the first event
after the cut-point. Then the LP recusively applies
the rollback procedure following Step2-Step8 as
described above.

In fig 8, rbl6 is in this case. Rb16 is propagated
from LP1 to LP3 after the rollback event e6 is
processed with service time 10 in LP1. Using the
send-time of Rbl6, st:6, the cut-point is found
before E10 in ICPQ. The LP3 rollback-time is then
set to the receive-time of E10 at 10. Fig 9 shows
the LP3 after rolled back by rb16.

c) Case 3: In this case, the rb-message is a straggler.
The LP sets the rollback-time equal to the receive-
time of the rb-message. Then the LP recusively
applies the rollback procedure following Step2-
Step8 as described above.

In fig 8, rbll is in this case. Rbl11 is propagated

from LP1 to LP3 after the rollback event el0 is e)
processed with service time 1 in LP1. In this case,

the LP3 rollback-time is set to 11 after receiving

rbl1.

d) Case 4: In this case, the rb-message is a straggler.
The send time of the rb-message is used to find
the cut-point in ICPQ. The LP sets the rollback-
time equal to the receive-time of the first event

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE

after the cut-point. Then the LP recusively applies
the rollback procedure following Step2-Step8 as
described above.

In fig 8, we assume following activities happened:
1) E33 in LP3 has been processed and LP3 is at
LVT 33. 2) The rollback-event €7 is processed in
LP1 with service time 10, and a rb-message, rb17,
is generated with receive-time at 17 and send-time
at 7. 3) rbl7 is propagated to LP3.

When rbl17 arrives at InChl of LP3, its receive-
time(rt:17) is smaller than the LVT(33). Rb17 is a
straggler. Using the send-time of tb17, st:7, the cut-
point is found before E10 which has the send-time
at 9. Since the receive-time of rb17(rt:17) is larger
than that of E10(rt:10), LP3 sets the rollback-time
to the receive-time of E10, at 10.

Case 5: In this case, the rb-message is a straggler.
The LP sets the rollback-time equal to the receive-
time of the rb-message. Then the LP recusively
applies the rollback procedure following Step2-
Step8 as described above.

In fig 8, rb9 is in this case. Rb9 is propagated from
LP1 to LP3 after the rollback event e8 is processed
with service time 1 in LP1. In this case, the LP3



rollback-time is set to 9 after receiving rb9.
Recursively applying the above “roll back, send rb-
messages” procedure will eventually erase all incorrect com-
putations resulting from the original incorrect message send.

Fig. 9. rb-messages, an LP receives a straggler rb-message

3.5.3 Eliminating the Output Queue and the anti-messages:
From the above description, we can see that the anti-messages
mechanism is eliminated in XTW, and therefore the output
queue, which is used to store all of the anti-messages, can be
obviated in XTW as well. Since an anti-message is saved for
every output event, considerable time and space are expected
to be saved with the elimination of the output queue. This is
one of the fundamental virtues of the rb-messages mechanism.

4 EXPERIMENTAL EVALUATION OF XTW

In this section, two sets of experiments are presented. In
subsection 4.1, a set of experiments is described which
compares CTW and XTW, while in subsection 4.2, a set of
experiments examines the scalability of XTW.

All of the results reported in this paper are the average
values of 10-100 runs. XTW employs MPI as the software
communication platform, thereby guaranteeing a FIFO order
of message communication.

4.1 XTW vs. Time Warp(CTW)

In this subsection, we present results comparing the per-
formance of XTW and CTW [2] [3]. We compare XTW to
CTW because CTW is oriented towards logic simulation, and
exhibits a superior performance to Time Warp [2] in this
domain.

The XTW-CTW experiments were conducted on a Myrinet
network of seven personal computers. Each computer is
equipped with dual Pentium IIT 450 processors and 256
Megabytes of internal memory.

In our experiments, the local roll back, local checkpoint
mechanism is made use of in CTW. Local checkpoint means
that an LP saves its state only if it receives a message from an
LP in another cluster. Local rollback refers to each LP rolling
back individually, i.e. the same technique used in Time Warp.

We conducted experiments on various benchmark circuits.
The results show that CTW has the best performance on
the circuit s90k — a combination circuit which consists of
ISCAS89 benchmark circuits s38584 and s38417, and has

around 90,000 gates. In the following, we present the XTW-
CTW comparisons making use of s90k.

The following metrics are used for the performance com-
parison:

o Simulation Time: Simulation Time is defined as the
elapsed real time for the simulation.

o Speedup: Speedup is defined as the ratio of the simulation
time of a simulator using one processor to the simulation
time of the same simulator using more than one processor.

o Throughput: Throughput is defined as the number of
processed events per second.

e Goodput: Goodput is defined as the number of committed
processed events per second.

o Committed Rate: Committed Rate is defined as the ratio
of the Goodput and the Throughput.

Both CTW and XTW use the same partitioning algorithm.
The time to perform the partitioning is not included in the
simulation time.

Since CTW crashes when more than 3 processors are used
in a simulation, all of the CTW results are presented with up
to 3 processors.

4.1.1 Simulation Time: Figure 10 shows the simulation
time vs. the number of processors. The results demonstrate
that XTW outperforms CTW in all parallel simulations with
any number of processors.

Simulation Time vs. the number of processors(circuit s90k)
T

T T
200 \\j

501

T
~& XTW(15 input vectors)
—6~ XTW(50 input vectors)
—— CTW(15 input vectors)
-8~ CTW(50 input vectors)

00

Simulation Time (seconds)

3 4
number of processors

Fig. 10. simulation time vs. number of processors

4.1.2 Goodput and Committed Rate: Figure 11 depicts the
good-put vs. the number of processors. Figure 12 shows the
committed rate vs. the number of processors. Figure 11 shows
that XTW has an almost linear increase in the good-put, while
CTW has a relatively flat one. Figure 12 reveals the reason
behind this phenomenon- XTW has a higher committed event
rate than CTW. Moreover, XTW has an almost flat reduction
in committed event rate when more processors are used, while
CTW has a relatively steep reduction in its committed event
rate. These results indicate that XTW has a more efficient
rollback mechanism.

4.1.3 Speedup: Figure 13 shows speedup vs. the number
of processors. It should be noted that the larger the throughput
of a simulator, the harder it is to obtain a good speedup.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE



x10° Goodput vs. the number of processors(circuit s90k)
T T T

—5= XTW(15 input vectors)
—o— XTW(50 input vectors)
6L | = CTW(15 input vectors)

—&- CTW(50 input vectors)

~ o
T T

Goodput(events/sec)
w
:

o & ] L L

3 4
the number of processors

Fig. 11. goodput vs. the number of processors

the percentage of committed events vs. the number of processors(circuit s90k)
T T T

;
~&- XTW(15 input vectors)
—o— XTW(50 input vectors)
098 — CTW(15 input vectors) ||

-8~ CTW(50 input vectors)

o

Q@

8
T

percentage of committed events
o
@
3
T

3
the number of processors

Fig. 12. committed events rate vs. the number of processors

Although XTW has a much larger goodput than CTW, the
results indicate that XTW still has a bigger speedup than CTW
in all the cases. Moreover, XTW has an almost linear increase
in speedup while CTW has a relatively flat one. This clearly
demonstrates that XTW has a smaller overhead than CTW.

4.2 XTW Scalability Experiments

In this section we explore the scalability of XTW with
respect to the size of the circuit and the number of processors.
Three circuits(5-million-gate, 10-million-gate and 25-million-
gate) are simulated on CLUMEQ [7], a Beowulf cluster with
128 Appro 1100i 1U nodes connected by a Myrinet. Each
CLUMEQ node has dual Athlon 1900+ processors and 3G
memory. Because CLUMEQ is a shared platform, the number
of compute nodes which we used was limited to 40.

4.3 A Hierarchical Synthetic Benchmark Circuit Generation

There is an absence of large benchmark circuits described
as gate-level netlists in the public domain. Consequently, we
developed a hierarchical mechanism to generate the synthetic
circuits which we used in the experiments described in this
section.

The benchmark circuits were generated as follows:

Speedup vs. the number of processors(circuit 90k)
T T

~& XTW(15 input vectors)
~6~ XTW(50 input vectors)
— CTW(15 input vectors)
350 | -5 CTW(50 input vectors)

3 4
the number of processors

Fig. 13. speedup vs. the number of processors

1) A modular-level netlist, consisting of real world circuits
(which can be described in Verilog or VHDL) is cre-
ated. This modular-level netlist is used to describe the
connections among modules of the benchmark circuit.

2) Each node(module) of the modular-level netlist is in-
stantiated into a gate-level netlist.

By making use of this hierarchical approach, we can gen-
erate a synthetic benchmark circuit of any size.

4.4 A modular-level partition algorithm

The design of a large circuit follows a “’divide and conquer”
approach, in which the design is broken into a collection
of individual modules and in which the interfaces between
individual modules are clearly defined. As a consequence of
this approach, most communication occurs within (as opposed
to between) the modules.

Based upon this observation, we made use of a straightfor-
ward DFS-modular partitioning algorithm in our experiments-
the algorithm partitions the modules of the circuit design.
One shortcoming of this approach is that it can result in an
unbalanced partition, i.e. different numbers of gates can be
assigned to different computers.

Table Ishows the simulation time of three circuits simulated
over 8 to 40 CLUMEQ nodes. The simulations of 25-million-
gate over 12 and 8 nodes did not complete because of
swapping. From the data in Table I, we see a consistent trend
of a decrease in simulation time as the number of processors
increases.

Figure 14 shows the speedup vs. the number of processors.
In Figure 14, we see that XTW scales almost linearly with
the number of processors and scales well with the size of the
circuits.

5 CONCLUSION

In this paper, two new mechanisms for improving the
efficiency of distributed logic simulation were introduced. The
first, XEQ is a a multi-level input queue, which lies behind an
O(1) event scheduling algorithm. The second, rb-messages,
reduces the rollback costs. It also reduces the cost of saving
events by eliminating the output queue at each LP. Both of

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE



ber of nodes -Million-gat 10-Million-gat 25-Million-gat
num er48 noces > 281(())[411 gate 1671(;?) gate 4;5132 gate [6] J.Dahl, M. Chetlur, and P. Wilsey, “Event list management in distributed
36 51'92 117.67 606.30 simulation,” in European Parallel Computing Conference, 2001.
: : . [71 www.clumeq.mcgill.ca, “Clumeq infrastructure,” 2003.

32 58.98 142.46 756.52

28 64.62 161.24 832.09

24 78.12 207.76 1058.69

20 106.36 261.49 1264.55

16 134.98 422.07 2187.50

12 200.59 1120.54 N/A

8 403.00 1324.84 N/A

TABLE I

SIMULATION TIME(SECONDS) VS. PROCESSOR NODES

Speedup vs. number of processors
T T T T

—6— 5M circuit
45- —&— 10M circuit 3
—k— 25M circuit

I I I I I
8 12 16 20 24 28 32 36 40
number of processors

Fig. 14. Speedup vs. the number of processors

these mechanisms presume the use of clusters of LPs. These
mechanisms were combined with a version of Clustered Time
Warp to produce a simulation framework which we call XTW.

The cost of these algorithms were analyzed in theory.
Comparisons to CTW revealed that XTW has a far superior
performance. Experimental comparisons to a sequential ver-
sion of XTW suggested that it is scalable, while experiments
with large, synthetic circuits further support this claim.

It is certainly desirable to make use of XTW on large, real
circuits and to modify it for use in behavioral and mixed
behavioral/logic simulations. In addition, the development of
efficient partitioning and/or load balancing algorithms is vital
for the further development of XTW. We hope to continue our
work in these directions.

REFERENCES

[1] D. Jefferson, “Virtual time,” Programming Languages and Systems, 1985.

[2] H. Avril and C.Tropper, “On rolling back and checkpointing in time
warp,” IEEE Trans. on Par. and Distr. Systems, vol.12, no.11, Nov.2001,
pp. 1105-1122, 2001.

[3] H.Avril and C.Tropper, “Scalable clustered time warp and logic sim-
ulation,” VLSI Design, Special Issue on Current Advances in Logic
Simulation, Gordon-Breach, vol.19, no.3, Ipp.291-313, 1999.

[4] D.Martin and et al, “Analysis and simulation of mixed technology vlsi
systems,” JPDC, Slpecial Issue Parallel and Distributed Discrete Event
Simulation, pp. 468-493, 2002.

[5] M. J. R.Chamberlain, “Parallel logic simulation of vlsi systems,” ACM
Computing Surveys, vol.26, no.3, Sept. 1994, pp. 255-295, 1994.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)
1087-4097/05 $20.00 © 2005 IEEE



