
On Rolling Back and
Checkpointing in Time Warp
HerveÂ Avril, Member, IEEE, and Carl Tropper, Member, IEEE

AbstractÐIn this paper, we present a family of three algorithms which serve to perform checkpoints and to roll back Time Warp.

These algorithms are primarily intended for use in simulations in which there are a large number of LPs and in which events have a

small computational granularity. Important representatives of this class are VLSI and computer network simulations. In each of our

algorithms, LPs are gathered into clusters via algorithms which are application dependent. In order to examine the performance of our

algorithms and to compare them to Time Warp, we made use of two of the largest digital logic circuits available from the ISCAS89

benchmark series of combinational circuits. The execution time, number of states saved, and maximal memory consumption were

compared to the same quantities for Time Warp. Our results indicated that each of the algorithms occupies a different point in the

spectrum of possible trade-offs between memory usage and execution time, ranging from substantial memory savings (at a

comparable cost in speed) to memory savings and a comparable speed to Time Warp. Hence, an important benefit of our

algorithms is the ability to trade off memory requirements with execution time.

Index TermsÐParallel simulation, distributed simulation, distributed processing.

æ

1 INTRODUCTION

THE underlying structure of a parallel discrete event
simulation is that of a collection of processes (termed

Logical Processes or LPs), each of which simulates a
physical process. The LPs send one another messages
containing events which the recipient LP proceeds to
simulate. The two major approaches to the synchronization
of a parallel simulation are the conservative and optimistic
classes of algorithms.

Conservative algorithms rely upon blocking at the logical

process (LP) level in order to maintain event causality. As a

consequence of this blocking behavior, the formation of
deadlocks becomes possible [6]. The two approaches to

dealing with this eventuality are avoiding deadlocks [9] and
detecting and breaking deadlocks [16]. Either of these two

approaches can have a negative impact upon the execution

time of a conservative simulation. In general, conservative
algorithms rely upon the existence of lookahead to achieve

good performance [14]. On the positive side of the ledger,
conservative algorithms are also known to make modest

demands upon memory.
Optimistic simulations [17], by contrast, do not make use

of blocking at the LPs and, as a result, causality violations
can occur. Such a violation would consist of a message

(referred to as a straggler) arriving at an LP with a smaller
time stamp than that of one which has already been

processed. In order to deal with these causality violations,

Time Warp reinstantiates (rolls back to) the most recent
correct state of the simulation and restarts the simulation

from that point. This necessitates the periodic saving of

simulation states (or checkpoints) and the use of special
messages, called antimessages, to eliminate the effects of
incorrectly sent messages. The reader should consult [14]
for a description of some of the mechanisms used in
optimistic simulations. Surveys of each of these categories
of synchronization may be found in [14] and [21].

Optimistic algorithms are very attractive for the category
of simulations in which we are interested since they have
the potential to extract a great deal of parallelism from the
model and they are deadlock free. On the other hand, Time
Warp can make use of an inordinate amount of memory [27]
and can be subject to instability, i.e., a simulation governed
by Time Warp might not complete its execution [20]. Given
these problems, we focus on the techniques used for
rolling back and checkpointing Time Warp in a distributed
memory environment. We present a family of three
algorithms for use in checkpointing and rolling back
Time Warp.

The algorithms are primarily intended for use in a
simulation environment characterized by a large number of
LPs and by events which have a small computational
granularity. Simulations of VLSI systems and of computer
systems and networks fall into this important category. In
keeping with these examples, the experimental work which
we relate in this paper centers around logic-level VLSI
simulation.

In our algorithms, we first group LPs into clusters [1], [2],
associating an input queue and an output queue with each
such cluster. The formation of clusters is determined by
clustering algorithms which are application dependent. The
intuition behind our use of clustering is that large systems
can often be viewed as a collection of functional blocks
connected to one another. For example, a common design
for sequential circuits is to connect together blocks of
combinational logic via clocked registers or latches.
Similarly, the topology of a large computer network can
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be described as consisting of local access networks
connected by a backbone network. Hence, in order to
extract parallelism from the simulation model, it would
appear reasonable to group the LPs which simulate the
same functional unit together. Our checkpointing/rollback
policies depend in a fundamental way on the existence of
these clusters. They also facilitate the use of dynamic load-
balancing algorithms, such as the ones described in [2], [3].

In the following, we examine their performance in the
context of digital logic simulations. We make use of two of
the largest circuits available in the ISCAS89 set of bench-
marks, examining both the memory requirements and the
execution time of the simulations. We compare their
performance to that of Time Warp with and without
periodic state saving. In periodic state saving, the state of
an LP is saved after a fixed number of events (larger than
one), referred to as the checkpoint interval. The motivation
is clearly to save on the memory expended if checkpoints
are performed after every event. In our experiments, we
make use of a checkpoint interval of three as [24] found this
interval to be good for a number of different simulation
applications. We also examine the question of how many
clusters to use for our algorithms.

Our experimental results indicate that each of the
algorithms occupies a different point in the spectrum of
possible trade-offs between memory usage and execution
time, ranging from substantial memory savings (at a
substantial cost in speed) to decent memory savings and a
small loss in speed compared to Time Warp. Hence, an
important benefit of our algorithms is the ability to trade off
memory requirements for execution time.

The remainder of this paper is organized as follows:
Section 2 describes the cluster structure and our first
algorithm for checkpointing and rolling back Time Warp.
Section 3 describes the remaining algorithms, emphasizing
the inherent memory versus execution time trade-off.
Section 4 contains experimental results in which we
compare the effectiveness of our algorithms to Time Warp
with and without periodic state saving while Section 5
describes related work. Finally, Section 6 contains our
conclusions.

2 CLUSTERS, CHECKPOINTS, AND ROLLING BACK

This section contains a description of a cluster along with a
decription of one of our algorithms. The next section
contains other algorithms which are related to this one.

2.1 Clusters

In our approach, the model is partitioned into clusters of
LPs prior to the simulation. The motivation behind this idea
is that the logical processes which belong to the same
functional unit in simulations of VLSI systems and
computer networks can be grouped together. The
partitioning algorithm which is used to group LPs into
clusters should reflect this intuition in order to maximize
the amount of parallelism which is extracted from the
model.

There is no restriction put on the size and on the number
of clusters except that one cluster must reside on a single
processor and cannot be split among processors. Each

cluster is associated with a Cluster Environment (CE) which
is in charge of scheduling the LPs. The Cluster Environment
also takes care of all the communication with the other
clusters and, as a consequence, the CE manages an
input queue and an output queue, called the Cluster
Input Queue (CIQ) and the Cluster Output Queue (COQ),
respectively.

2.2 Events

When an LP sends an event to another LP located in a
different cluster, it gives that event to the Cluster Environ-
ment, which keeps a copy of it in its Cluster Output Queue
as an antimessage, just like an LP in a Time Warp
environment. The CE then sends the event to the
appropriate cluster which hosts the destination LP of the
event. When the receiving cluster gets the event, its CE
simply enqueues it in the CIQ. Such events which cross the
cluster boundaries are referred to as external events. If an LP
sends an event to another LP which is located in the same
cluster, then it enqueues the event directly into the input
queue of the receiving LP. Events whose sending and
receiving processes are located in the same cluster are
referred to as internal events.

Events in the CIQ are sorted in increasing order of their
receive time, whereas events in the COQ are sorted by
decreasing order of their send time. The reason different
ordering strategies are used is simple. In a pure conserva-
tive approach, an event contains only one timestamp that
represents the moment at which that event occurred in the
physical system. Processes sort the received events in
increasing order of their timestamps so as to be able to
easily retrieve the event with the smallest timestamp value.
In an optimistic approach, a process has two types of
queues. An input queue which stores received events in a
similar way to a conservative system and an output queue
which stores copies of events sent to other processes. When
a straggler is received, the process rolls back by restoring an
earlier state and sends antimessages. During this last
operation, the process goes through its output queue to
locate copies of events which were caused by messages
whose receive time was larger than that of the straggler. In
order to make this operation efficient, events stored in the
output queues need to be sorted in decreasing order of
send time.

A message contains the identification of the sending LP
and that of the receiving LP, a sign to differentiate messages
from antimessages, a send time and a receive time, and the
data needed for model evaluation. There is, however, a
difference in the way in which logical processes are
identified. Instead of an LP using a single name, we make
use of two names: one that identifies the cluster and one
that identifies the LP in the cluster. This naming
methodology makes the implementation of a dynamic
load-balancing algorithm much simpler. Instead of keep-
ing a routing table in each processor containing all of the
logical processes in the system, all that is needed is to
keep the location of the cluster, which will then be in
charge of forwarding the event to the appropriate LP. If
the cluster happens to have been moved to another
processor, only one entry needs to be changed in the
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routing table instead of changing the entries of all of the
LPs contained in that cluster.

There are three different types of messages in our
simulation system: 1) normal messages, which contain the
events generated by the simulation itself, 2) antimessages,
which are necessary to cancel incorrect computations, and
3) control messages, which are needed to perform dis-
tributed computations such as the calculation of the GVT
estimate, termination detection, or collection of statistics.

In a system working under proper conditions, normal
messages are the dominant source of communication
overhead. There are fewer antimessages and control
messages, but their transmission delay is far more critical
than that of normal messages. The longer an antimessage
takes to reach its destination, the more useless work the
system is likely to perform, therefore the longer it will take
to cancel that work. Similarly, the longer a GVT token takes
to be passed around, the less accurate is the GVT estimate,
hence making the fossil collection mechanism less efficient.
It is therefore necessary for antimessages and control
messages to be given a higher priority than other messages
in order to ensure their fast delivery, especially when the
traffic is heavy. Our simulation system is assumed to rest
upon a network layer which provides reliable communica-
tion channels between the processors and in which
messages can have different priority. However, our
approach does not assume a communication system with
FIFO properties.

2.3 Scheduling

The Cluster Environment is responsible for scheduling the
LPs in the cluster and each processor schedules all of its
CEs. A smallest timestamp first scheduling policy is used
since it reduces the number of rollbacks. Lin and
Lazowska [19] do a thorough study of the scheduling
problem in which they confirm the advantage of the
smallest timestamp first policy and even suggest making
it preemptive. As a consequence, all the events stored in the
CIQ and in the LP's input queues are also put in a priority
scheduling heap. The event at the top of the scheduling
heap is the one which has the smallest timestamp; hence,
the destination LP of that event will be the next process to
be scheduled in the cluster.

2.4 Timezones

A straggler1 may arrive at a cluster at any time. Therefore, a
mechanism must be created in order for the Cluster
Environment to determine which LPs to roll back and
which antimessages to send to cancel incorrect computa-
tions. This task is achieved through the use of timezones.

From the cluster's point of view, the simulation is
decomposed into a series of adjacent and nonoverlapping
time intervals called timezones. When the simulation starts,
each cluster has only one timezone with interval �0;�1�.
Each time a cluster receives a message from another cluster
whose receive time is t, it finds the timezone interval
�ti; ti�1� into which t fits (i.e., ti < t < ti�1) and splits it into
two new timezones with intervals �ti; t� and �t; ti�1�.

Timezones are then stored in a table in increasing order
of time.

2.5 Logical Processes

Logical processes have a single input queue and no output
queue. They also maintain their own logical clock whose
value is called the Local Simulation Time (or LST). The
behavior of the clock is similar to that of a process' clock in a
pure conservative system. If a process LPi with clock LSTi
is about to consume message mp with timestamp t�mp�,
then the following operations are performed:

1. LSTi  max�LSTi; t�mp��.
2. LPi processes mp.
3. LSTi  LSTi � service time.
Furthermore, the LP also keeps track of the Timestamp2 of

the Last Event it processed (or TLE). The TLE is different
from the LVT (Local Virtual Time) introduced by
Jefferson [17]. In Time Warp, the LVT corresponds to
the timestamp of the next event the logical process is
going to consume, whereas, in our version, the TLE value
corresponds to the timestamp of the last event the LP
processed.

When an LP is scheduled for processing, it first checks
into which timezone the receive time of the event it is going
to consume fits. If that timezone is different from that of the
last event the LP processed, then the LP performs a
checkpoint by saving its state. Otherwise, it directly
consumes the event. In short, the LP creates a checkpoint
each time it changes timezones.

Each LP consists of a process in charge of the actual
event evaluation, a Local Simulation Time (LST), the Time
of the Last Event it processed (TLE), a message input queue,
and a state queue.

Fig. 1 shows the structure of a cluster.

2.6 Rolling Back

Suppose the cluster receives a straggler with receive time ts.
As we have just seen, the Cluster Environment creates a
new timezone for the straggler. It then rolls back all of the
LPs in the cluster which have a TLE greater than ts to a
checkpoint prior to ts. In addition, the CE will send all the
necessary antimessages stored in the COQ whose sending
time is greater than ts. The Cluster Environment proceeds
similarly when the cluster receives an antimessage time-
stamped ta, with the difference that, instead of creating a
new timezone, the CE merges timezones �ti; ta� and �ta; ti�1�
into a single one whose interval is �ti; ti�1�.

Since LPs do not perform a checkpoint every time they
process an event, they might have to roll back to a state well
before the receive time of the straggler or the antimessage
received by the cluster. Therefore, LPs need to coast
forward as in Time Warp, reprocessing all events whose
receive time is prior to ts, and not resending messages
already produced before ts. The major difference with Time
Warp is that LPs can remove from their input queue all of
the internal messages which have a send time greater than
the timestamp of the straggler or the antimessage which
caused the rollback. This does not affect the correctness of
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the simulation as all the LPs in the cluster are rolled back.

Hence, all of the necessary internal messages will be

regenerated. Note that the external messages stored in the

Cluster Input Queue are not removed since their sending

processes are located in different clusters and, as a

consequence, such messages are not regenerated.
Because the events in the cluster are processed in

strict timestamp order (i.e., lowest timestamp first), the

descendants of the straggler will be placed correctly in

the scheduling heap and events at all of the LPs in the

cluster will be processed in the correct order. It is

important to note that individual LPs never send

antimessages.

2.7 Example

2.7.1 Receiving Messages

Fig. 2a shows the space-time graph at a cluster composed of

three logical processes. The x-axis represents the virtual

time and the y-axis represents the location of the three LPs.

Fig. 2b shows the arrival of message m1, whose receive time

is 7 and whose destination process is LP1. Since m1 has been

sent by an LP located in a different cluster, the Cluster

Environment creates a new timezone starting at 7, which is

indicated by the vertical line. Initially, a cluster has one

timezone with interval �0;�1�. Hence, prior to the arrival of

m1, this is the only timezone at LP1. When m1 is received by

the cluster, two new timezones are formed with intervals

�0; 7� and �7;�1�.

2.7.2 Processing Messages

Now, LP1 is scheduled to process m1. Since m1 is located in

timezone �7;�1� and LP1 is in timezone �0; 7�, the process

performs a checkpoint and saves its state. The checkpoint is

represented by the circle in Fig. 3. Then, the process

advances its local clock to the value of the receive time of m1

(indicated by the bold horizontal bar) and LP1 processes

m1. A black triangle indicates that the message has been

consumed while a white triangle shows an unprocessed

message. LP1 is now in timezone �7;�1�. The processing of

m1 triggers the sending by LP1 of messages m2 and m3 with
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receive times 9 and 11 and whose destination processes are
LP2 and LP3, respectively. Since these two messages were
generated within the cluster, no new timezone is created.
LP2 is now scheduled to process m2 since the receive

time of this message is smaller than that of m3. Like LP1,
LP2 saves its state before entering a new timezone,
advances its local clock, and processes m2. Similarly, LP3

is scheduled in its turn, its state is saved, and m3 is
consumed. This triggers the sending of a new message m4

whose destination process is LP2 and receive time is 13. All
of the LPs are now in timezone �7;�1�. Note that message
m4, generated by LP3, did not create a new timezone
because both the sending and the receiving processes are
located in the same cluster. Such messages are referred to as
internal messages. Similarly, messages sent between clusters
are referred to as external messages. LP2 is now scheduled
to process m4, but, since m4 is located in the same timezone
�7;�1� as LP2, the process does not save its state and
directly consumes m4 (Fig. 3b).

2.7.3 Rolling Back

Suppose now that the cluster receives message m5 with
receive time 10 and whose destination process is LP1. Since
m5 is an external message, the cluster splits timezone
�7;�1� into two new timezones with intervals �7; 10� and
�10;�1�. As Fig. 4a indicates, LP2 and LP3 have already
processed messages with a timestamp larger than that of m5

(which makes m5 a straggler). In order to preserve the
correctness of the system, LP2 and LP3 are both rolled back
to a state prior to the receive time of m5. Note that LP1 does
not need to be rolled back since it did not process a message
with a timestamp larger than that of straggler m5. After

rolling back the processes, all the internal messages with a
sending time larger than the receive time of the straggler are
discarded since they will be regenerated, if necessary, by
the rolled back LPs. Fig. 4b shows the state of the cluster
once the straggler m5 has been received, LP2 and LP3 are
rolled back, and m4 has been discarded. Note that messages
m2 and m3 have now been marked as not having been
processed. The cluster now contains three timezones with
intervals �0; 7�, �7; 10�, and �10;�1�.
LP2 can now coast forward, resaving its state and

reprocessing m2. As for LP3, it does not need to coast
forward since it does not have any event to process with a
timestamp smaller than that of the straggler m5. Fig. 5a
shows the state of the cluster once LP2 has completed the
coast forward operation. The cluster can now resume its
normal behavior by scheduling LP1 to process m5. Since LP1

is going to enter a new timezone, its state is saved (Fig. 5b).
LP3 is then scheduled next, saves its state before entering

the new timezone �10;�1�, processes m3, and sends m6 to
LP2. Note that LP3 skipped timezone �7; 10� directly and did
not perform a second checkpoint since it would have been
useless as no messages are being processed by LP3 in that
timezone. Finally, LP2 processes m6 after saving its state
before entering timezone �10;�1�.
2.7.4 Antimessages

Consider that the cluster is in a state as depicted by Fig. 5b
and receives m5, the antimessage of m5. All LPs which have
processed a message with a timestamp larger than or equal
to the timestamp of m5 are then rolled back to a state prior
to m5. Message m5 is now removed from the input queue
and the two timezones �7; 10� and �10;�1� are merged into
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one single timezone �7;�1� as there are no more external

input messages located in that interval. Fig. 6a shows the

state of the cluster once all LPs have been rolled back and

message m5 has been annihilated. The cluster resumes and

LP3 is now scheduled to process m3, which causes m7 to be

generated and sent toLP2. Finally,LP2 processesm7 (Fig. 6b).

2.8 Estimating the GVT

In our current implementation, a token-ring passing

algorithm [23] is used since the architecture used to develop

the system (the BBN Butterfly) does not contain a large

number of nodes (maximum of 32 nodes). Furthermore,

even though the memory of the machine is physically

distributed, the shared-memory paradigm guarantees

atomic message delivery. Had the system been implemen-

ted on the top of a communication network, an extra

mechanism should have been developed to ensure that no

message is hidden in a communication channel during the

GVT calculation.
We did not make use of a GVT algorithm oriented

toward a shared-memory implementation of Time Warp

such as [11], because our implementation of Time Warp was

oriented toward a distributed memory architecture.

3 CHECKPOINTING AND ROLLBACK ALGORITHMS

In this section, we describe algorithms for checkpointing

and rolling back the LPs in a cluster. As we shall see, the

nature of each of these algorithms depends in a funda-

mental way upon the existence of clusters.

3.1 Clustered Rollback, Clustered Checkpoint

Our first algorithm was described in the preceeding section.
In this algorithm, when a straggler or an antimessage
arrives at a cluster, all of the LPs which have processed an
event with a receive time larger than that of the straggler or
of the antimessage are rolled back. The decision to roll back
is therefore taken at the cluster level, thus we call this
technique clustered rollback.

Checkpointing is performed each time an LP changes
timezone. Since timezones are dynamically created by the
Cluster Environment (depending upon the arrival of
messages coming from other clusters), we call this
mechanism clustered checkpoint.

Clustered Rollback-Clustered Checkpoint (CRCC) is
the rollback and checkpointing technique that naturally
results from our clustering LPs.

This technique has the advantage of reducing memory
consumption by discarding all of the messages in invali-
dated timezones as they will be regenerated. However, the
expense of forcing these LPs to roll back each time an
antimessage or a straggler arrives at the cluster is not
negligible, especially if most of the events generated by the
LPs within that cluster are not causally related to the event
which caused the rollback. In such a case, only a few LPs
actually need to be rolled back.

3.2 Local Rollback, Clustered Checkpoint

Since there is a risk of wasting computational resources in
CRCC due to the fact that all the LPs in a cluster are rolled
back, even if it is not necessary for them to do so, a
compromise was sought in which the decision of rolling
back is made by the logical process itself.
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In this new scheme, when a straggler or an antimessage
is received by the cluster, the Cluster Environment updates
the timezone table accordingly and places the event into the
input queue of the receiving LP. LPs now behave much as
they do in a pure Time Warp system: rolling back when
they detect the arrival of a straggler in their input queue
and sending antimessages when needed. Hence, logical
processes also need an output queue to keep track of the
messages they send in order to cancel wrong computations
in case they have to roll back. As a direct consequence, the
cluster does not need to have an input queue or an output
queue, therefore, the CIQ and the COQ can be discarded
and the Cluster Environment ends up only taking care of
updating the timezone table when external events come
into the cluster.

This technique is called Local Rollback-Clustered

Checkpoint (LRCC) since the decision to roll back is made
at the LP level and checkpointing is still performed at the
cluster level via the timezone table.

Although this scheme might offer less overhead in terms
of computation, it is more expensive in terms of memory
since all the events in the LP input queue, as well as those in
the LP output queue, have to be kept as they will not be
regenerated.

3.3 Local Rollback, Local Checkpoint

In this variant, an LP checkpoints only if it receives an
external message, in other words, a message that has been
generated by another LP located in a different cluster. This
scheme is simpler in the sense that LPs no longer need to
check whether they are entering a new timezone. Further-
more, the Cluster Environment does not need to maintain a
timezone table anymore. Hence, compared to the other
techniques described above, this scheme requires the least
computational overhead.

The essential difference between local and periodic
checkpointing is that a checkpoint is taken when events
arrive from other clusters, not from LPs in the same cluster.
Hence, the amount of intercluster communication deter-
mines the frequency of taking checkpoints. In Time Warp,
periodic checkpointing is a function of the number of events
which arrive at an individual LP from other LPs; the
membership of an LP in a cluster is not taken into account.

Because the decisions of rolling back and checkpointing
are both performed at the LP level, this technique is called
Local Rollback-Local Checkpoint (LRLC).

Even though it is evident that an LP will have fewer
checkpoints compared to the schemes described earlier, it is
not obvious that it will save more memory. On the contrary,
although it appears counterintuitive, this scheme can be
more greedy. Since the distance between checkpoints is
greater, the number of events an LP needs to keep (in order
to coast forward if it rolls back to a state prior to the GVT)
tends to grow. Therefore, there is a trade-off: The fewer
states an LP saves, the more events it needs to keep. In the
case of logic simulation, the size of an event is far from
being negligible compared to that of a state. Therefore, the
distance between checkpoints should not grow excessively
if we want to keep memory usage to a minimum.

4 EXPERIMENTS AND RESULTS

4.1 The Multiprocessor Environment

In this section, we evaluate the performance of the
algorithms introduced in the preceding section. Our
algorithms are compared to pure Time Warp and to Time
Warp using periodic state saving. The Time Warp system
was derived from the Time Warp with clusters and
checkpointing/rollback algorithms; we simply omitted the
clusters and used conventional rollback and checkpointing
policies.

We used a BBN Butterfly GP1000 shared-memory
multiprocessor for our experiments. The Butterfly is an
MIMD machine composed of 32 processor nodes. Each
node has MC68020 and MC68881 processors with
four megabytes of memory and a high-speed multi-
stage crossbar switch which interconnects the processors.
From a processor point of view, remote and local memory
references are identical, thus creating a global virtually
shared memory space. The crossbar switch is a banyan
network composed of 4� 4 switch elements and is
interfaced with each node by an AM2901 microprocessor
whose purpose is to ensure the atomicity of memory
operations performed on remote references.

It is important to note that our implementation of

Time Warp is essentially a distributed memory imple-

mentation, in spite of the fact that it was executed on the

BBN Butterfly.3 An asynchronous message passing layer

was implemented on top of the shared memory so that the

results obtained from running the different algorithms are

not dependent on the presence of shared variables, hence

making any comparisons unfair.
The message passing layer provides two nonblocking

communication primitives: send�� and receive��. Messages
can either have a low or a high priority. If a high priority
message is waiting, it is delivered to the processor before a
low priority message, regardless of its arrival time.
Otherwise, if no high priority message is waiting, low
priority messages are delivered to the processor in the order
in which they were received.

4.2 Simulation System

Our logic simulation model uses three discrete logic values:
1, 0, and undefined. To model the propagation delay, each
gate has a constant service time. All of the common logic
gates were implemented: AND, NAND, OR, NOR, XOR,
XNOR, NOT, and D-type flip-flops.

The circuits used in our study are digital sequential
circuits selected from the ISCAS'89 Benchmarks. We
present the results obtained from simulations of two of
the largest circuits (Table 1) since they are both representa-
tive of the results we obtained with the other circuits and
have different characteristics. For example, circuit s38584
has a relative asynchronous parallelism nearly twice as high
as that found in circuit s35932. The relative asynchronous
parallelism is defined as the average number of events an
asynchronous algorithm can process concurrently divided
by the total number of gates in the simulated circuit.
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A program was written to read the netlist of the ISCAS
benchmark circuits and to partition them into clusters. We
used a string partitioning algorithm because of its simplicity
and especially because results have shown that it favors
concurrency over cone partitioning; see, for example, [8].
The algorithm is similar to an order tree walk. A gate
connected to a primary input is first selected and assigned
to a cluster. Its output is then followed and the same
procedure is applied for each succeeding gate. When the
cluster contains the desired number of gates, a new cluster
is created and the algorithm resumes.

A simulation run can be decomposed into three phases.
First, each processor starts up by loading the gates assigned
to it and by creating their corresponding LPs. Then, each
gate, which has an initialized state, produces an event for
the gates connected to it. Some of these gates will be
triggered and will propagate their changes throughout the
circuit. After a while, the system becomes stable and events
stop being generated. During the third phase, input vectors
(randomly generated) are read and the simulation is run.
Once the termination of the system is detected, statistics are
collected.

4.3 Experiments

We conducted two categories of experiments: One was to
determine the effects of cluster size on the performance of
each algorithm and a second set of experiments to compare
the performance (memory and execution time) of the
algorithms with that of Time Warp. Because previous
studies [7], [26] have shown that lazy cancellation does not
perform better then aggressive cancellation, we used an
aggressive cancellation strategy in all our experiments. For
each simulation run, three metrics were used to evaluate the
performance of the algorithms: the simulation time, the peak
number of states, and the peak memory usage.

4.3.1 Simulation Time

We define � to be the simulation time such that � � tn ÿ t0,
where t0 and tn are the real time at which, respectively, the
first and the last event were processed by the system. � is
expressed in seconds.

4.3.2 Peak Number of States

During a simulation run, process LPi constantly monitors
the size of its state queue 	LPi . Let  LPi�t� �j 	LPi�t� j be
the size of 	LPi at real time t such that t0 � t � tn. We define
the number of states of processor Pk at real time t to be
 Pk�t� �

P
 LPi�t� 8LPi 2 Pk. Let the peak number of states

of processor Pk be b Pk �Max� Pk�t��, where t0 � t � tn.
We define the peak number of states of a simulation as:

b �Max� Pk� 8Pk 2 �;

where � is the set of processors involved in the simulation.
The peak number of states is, therefore, the maximum
number of states required by any host during the entire
simulation.

4.3.3 Peak Memory Usage

In addition to 	LPi , LPi also monitors the size of both its

input event queue 
in
LPi

and its output event queue 
out
LPi

. Let

!LPi�t� �j 
in
LPi
�t� j � j 
out

LPi
�t� j be the number of events

stored in 
in
LPi

and 
out
LPi

at real time t. Furthermore, each

cluster Cj monitors the size of both its input queue 
in
Cj

and

its output queue 
out
Cj

. Let !Cj�t� �j 
in
Cj
�t� j � j 
out

Cj
�t� j . Let

�s be the size of a state and �e the size of an event. We

define the memory usage of a processor Pk at real time t as:

�Pk�t� �
X
8LPi2Pk

�s: LPi�t� � �e:!LPi�t�� �

� �e:
X
8Cj2Pk

!Cj�t�:

Note that, when the CRCC checkpointing technique is
used, 
out

LPi
� ; since LPs do not need an output queue.

Similarly, 
in
Cj
� 
out

Cj
� ; for the other techniques since

there is no cluster output queue and no cluster input queue.
Let the peak memory usage of processor Pk beb�Pk �Max��Pk�t��, where t0 � t � tn. We define the

peak memory usage of a simulation as:

b� �Max��Pk� 8Pk 2 �;

where � is the set of processors involved in the simulation.
The peak memory usage is, therefore, the maximum
memory required by any host during the entire simulation
and is only dependent on the number of states and the
number of events stored in memory.

4.4 Varying the Cluster Size

In this category of experiments, we ran a series of circuit
simulations for each algorithm on a fixed number of
processors (20). The only parameter that was changed
during the tests was the size of the clusters. In the first run,
the size was such that all of the processors hosted only one
cluster. In the second run, there were two clusters per
processor, four in the third test, and so on until a maximum
of 256 clusters per processor was reached.

4.4.1 Peak Memory Usage

Fig. 7 shows the peak memory usage in kilobytes vs. the
number of clusters per processor for circuit s35932. The
graph indicates a rather stable behavior on the part of LRCC
and LRLC with a minimal memory usage occurring at
two clusters per processor. At this point, LRCC needs
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38 percent less memory than pure Time Warp to run the
simulation and LRLC needs 22 percent less memory.

As for CRCC, we observe a rather high memory usage
when each processor contains only one cluster. This is the
result of CRCC's rollback policy. When a straggler is
received by a cluster, all of the LPs whose TLE is greater
than the receive time of that straggler have to be rolled back.
This operation is expensive since one straggler can roll back
several hundred LPs, even though most of these LPs are not
causally related to that straggler. This will have the effect of
desynchronizing the LPs, thus increasing the risk of
rollbacks in other processors. This problem suddenly
disappears when two clusters per processor are used. In
this case, the cluster size is halved and the effect of a
straggler becomes less pronounced. The memory usage for
the CRCC checkpointing technique decreases until
four clusters per processor, at which point it becomes
constant. The data show up to a 40 percent difference in
maximal memory usage between CRCC and Time Warp.

Fig. 8 shows the peak memory usage for circuit s38584.
On the whole, all of the checkpointing techniques do not
perform as well as in the previous case. For example, LRLC
requires between 5 to 10 percent less memory than
Time Warp and LRCC needs about 4 to 15 percent less

memory. As for CRCC, the memory consumption is rather
high, from one to four clusters per processor. After that
point, the memory usage drops down to reach a minimal
value at 128 clusters per processor, where the memory
requirements are about 43 percent smaller than Time Warp.

The difference in the peak memory consumption
between the two circuits is due to to the fact that circuit
s38584 has a relative asynchronous parallelism nearly half
that of circuit s35932 (see Table 1). This characteristic of
circuit s38584 has two consequences. First, because fewer
events are being processed in parallel, there is less
possibility of taking advantage of the sparse checkpointing
techniques. Take, for example, an LP that receives only one
event between two GVT computations. In such a case, it
does not really matter what the checkpoint interval is since
the LP will have to perform at least one checkpoint anyway.
Thus, if we consider a simulation in which LPs process very
few events, the overall memory usage of any checkpointing
technique will not be very important.

In addition, when a circuit having a small parallelism is
simulated, the event population in the system is likely to be
relatively small, too, hence reducing the number of process
states that have to be saved. Because fewer objects are being
manipulated by the system, the estimated GVT tends to be
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Fig. 7. Memory vs. number of clusters per processor (circuit s35932).

Fig. 8. Memory vs. number of clusters per processor (circuit s38584).



closer to the actual GVT; therefore, the fossil collection
mechanism is able to remove most of the useless states and
events. As a direct consequence, the memory usage
reduction that can be achieved by our approach is
attenuated.

4.4.2 Simulation Time

Fig. 9 and Fig. 10 show the simulation time vs. the number
of clusters per host. We observe that CRCC has a significant
overhead when compared to Time Warp. This is mainly due
to the fact that some LPs are unnecessarily rolled back.
Also, each time a cluster receives a straggler or an
antimessage, the cluster has to check all of its LPs to find
out whether or not they have to be rolled back. This
overhead becomes more pronounced when the cluster size
is large. From 64 clusters per processor and onward, the
simulation time for CRCC becomes approximately constant
and is about 34 percent higher than that obtained with pure
Time Warp.

For both LRCC and LRLC, the simulation time is
approximately constant for any cluster size. LRCC is about
10 percent slower than pure Time Warp since clusters need
to update their timezone table regularly and because LPs
check the table each time they are about to process an event.

As for LRLC, it is about 5 to 15 percent faster than Time Warp
because fewer states are saved. In addition, the fossil
collection mechanism has less work to do.

Relative to Time Warp, the fact that LRCC performs
slightly better for circuit s38584 and LRLC performs better
for circuit s35932 is again a direct consequence of the
parallelism available in the circuit. LRCC is slower than
Time Warp because of the overhead created by the
timezone management. A smaller parallelism implies a
smaller overhead, thus better performance. Similarly, LRLC
is faster than Time Warp because the checkpoint interval is
sparse and the overhead due to the garbage collection
mechanism is reduced. However, if the parallelism gets
small, the event population becomes small, too, and fewer
fossil objects have to be collected. Therefore, the reduction
of the garbage collection overhead is less significant.

4.4.3 Summary

Based on these results, we chose the cluster size for each
algorithm which gave the best performance in order to use
them in our second set of experiments. For LRCC and
LRLC, we chose one cluster per processor. In the case of
CRCC, we chose 32 and 128 clusters per processor for
circuits s35932 and s38584, respectively.
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Fig. 9. Simulation time vs. number of clusters per processor (circuit s35932).

Fig. 10. Simulation time vs. number of clusters per processor (circuit s38584).



4.5 Varying the Number of Processors

In the second set of experiments, we observed the behavior
of the algorithms, varying the number of processors from
eight to 24. In addition, we also show the performance of a
Periodic State Saving mechanism (PSS), which is a modified
version of pure Time Warp in which the checkpoint interval
is constant and larger than one. In our study, we chose a
checkpoint interval of three as it was observed to be an
optimal value for a wide range of simulation models with
different characteristics [24]. We did not compare our
algorithms to Time Warp with incremental state saving [5]
because the small size of our LPs makes incremental state
saving virtually identical to copy state saving.

4.5.1 Peak Number of States

The main reason different checkpointing techniques are

used is for a reduction of memory usage. Nevertheless, no

study has, to date, demonstrated that a larger checkpoint

interval always results in smaller memory usage. Fig. 11

shows an example of two logical processes, LP1 and LP2,

whose checkpoint intervals are three and two, respectively.

Triangles represent events and circles represent check-

points. Suppose that a new GVT estimate is calculated and

both LPs are about to collect their fossil objects. In addition

to the state prior to the GVT, LPs need to keep all of the

succeeding events in order to be able to restore their state

during the coast forward phase of rollback recovery. For

this reason, LP1 does not actually have any fossil object,

whereas LP2 can delete two fossil events and one fossil

state. Consequently, even though LP1 has a larger check-

point interval, its memory usage is larger than that of LP2.
This problem is important in the case of logic simulation

because the event size is of the same order of the state size.

If the distance between checkpoints becomes too large, the

memory used to keep events (needed for the coast-forward
phase) could become larger than the memory saved by

skipping checkpoints, in which case, the overall space

performance of the algorithm might not be improved.
To illustrate this problem, we measured the peak

memory usage used by each algorithm as well as the peak

number of states.
In Fig. 12 and Fig. 13, we show the peak number of states

for each algorithm vs. the number of processors for the

circuits s35932 and s38584, respectively. For both circuits,

and regardless of the number of processors, all algorithms

require less state saving than Time Warp. The LRLC

checkpointing technique stores the fewest states of all the

algorithms, up to 70 percent fewer states than Time Warp in

some instances. CRCC, LRCC, and PSS all use approximately

30 to 40 percent fewer states than Time Warp.

4.5.2 Peak Memory Usage

In Fig. 14 and Fig. 15, we show the peak memory usage of

each algorithm vs. the number of processors for circuits
s35932 and s38584, respectively. In all cases, the proposed

algorithms consume less memory than Time Warp.
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Fig. 11. Larger checkpoint interval does not always imply smaller memory usage.

Fig. 12. Number of states vs. number of processors (circuit s35932).



The phenomenon which we previously described can
now be observed. For circuit s35932, when compared to
Time Warp, the CRCC checkpoint protocol, which saved
half as many states as LRLC (see Fig. 12), actually performs
much better than LRLC when all the memory usage is
considered (see Fig. 14). Similarly, when compared to
Time Warp, the periodic state saving technique with a

checkpoint interval of three (PSS) saves only between

9 and 16 percent of the memory usage whereas it

saved between 30 and 35 percent of the states.
These results show the importance of taking events into

consideration for the design of checkpointing techniques for

optimistic algorithms.
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Fig. 13. Number of states vs. number of processors (circuit s38584).

Fig. 14. Memory usage vs. number of processors (circuit s35932).

Fig. 15. Memory usage vs. number of processors (circuit s38584).



The same phenomenon is observed for circuit s38584

(Fig. 15). In this case, even though the activity of the circuit

is much smaller than circuit s35932, the CRCC checkpoint

protocol uses between 15 and 40 percent less memory than

Time Warp depending on the number of processors being

used. Also, despite the fact that the PSS protocol saved

between 28 and 37 percent of the states, the total memory

usage was actually reduced only by about 10 to 13 percent.

4.5.3 Simulation Time

In Fig. 16 and Fig. 17, we present the simulation time of

each algorithm vs. the number of processors. We

observe that both LRCC and LRLC perform comparably

to Time Warp. CRCC is from 30 to 60 percent slower

than pure Time Warp in these examples. We note that

this difference becomes less significant as the number of

processors increases (since the memory is distributed

among a larger number of processors).

4.6 Speedup

In order to measure the speedup obtained with the parallel

simulation system, we have developed a sequential

simulator. In this case, since the simulation is performed

on a single processor, there is no need for synchronization,

therefore no checkpointing is performed and events are

deleted as soon as they are processed. As a consequence, no

GVT algorithm is needed and the fossil collection

mechanism is simply switched off. The scheduling of the

processes is performed with a single heap and a minimum

message timestamp first policy is used. The sequential

simulation for circuits s35932 and s38584 took 283 and

291 seconds, respectively.
Results are shown in Fig. 18 and Fig. 19. As we have seen

in Table 1, the parallelism available in circuit s35932 is

much higher than that available in circuit s38584 (the

relative parallelism is twice as high) and, as a consequence,

the speedup obtained from the parallel simulation of circuit

s35932 is higher than circuit s38584. When the number of

processors is small, the overhead of the synchronization

algorithm becomes more significant and we observe that the

speedup is actually better for a circuit with less concur-

rency. This clearly shows that the performance of asyn-

chronous algorithms depends a good deal upon the

intrinsic parallelism available in the simulated circuits and

also on the ability of these algorithms to keep their

overhead (relatively) small.
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Fig. 16. Simulation time vs. number of processors (circuit s35932).

Fig. 17. Simulation time vs. number of processors (circuit s38584).



4.7 Summary

Fig. 20 and Fig. 21 summarize the results by comparing

each algorithm with pure Time Warp for circuits s35932 and

s38584, respectively. For each algorithm, we give the

minimum, the maximum, and the average percentage

difference from pure Time Warp for the maximum number

of states, the peak memory usage, and the simulation time.
We first observe that each algorithm saves a substantial

number of states, especially LRLC. However, these results

do not necessarily directly translate into memory savings.

When a clustered checkpointing mechanism is employed

(i.e., LRCC and CRCC), the performance is better in terms of

memory consumption. These results underline the fact that,

in simulation models such as logic simulation in which the

size of the state of the LPs is approximately the same as the

size of the events, it is important to consider the increase of

memory needed to store the supplementary events due to

the checkpoint interval.
As to the simulation time, only CRCC is much slower

than pure Time Warp, whereas the other algorithms

exhibited a speed comparable to that of Time Warp.
Our results also point out a stable behavior of the

algorithms with respect to the number of clusters

employed. With this range of choices among checkpoint-
ing algorithms, it is possible to choose an algorithm
depending upon the memory requirements of the simulation.

5 RELATED RESULTS

The areas most closely related to our results are checkpoint-
ing and rollback policies for optimistic simulations.

A number of algorithms for computing checkpoints in
optimistic simulations have appeared in the literature.
These algorithms may be categorized as being either
incremental or periodic state saving algorithms. Periodic
algorithms save the state of an LP after a number of events;
this number may be fixed [24] or it may be determined via
an adaptive algorithm [12]. Since the activity of an LP
changes throughout the course of a simulation, adaptive
algorithms are a better choice for most realistic simulations.
Incremental algorithms [5] save changes in the state of an
LP. While this approach is appealing for large states, if it
transpires that a large portion of an LP's state changes, this
approach becomes less efficient then periodic state saving.

To date, periodic checkpointing algorithms have been
directed toward individual LPs as they seek to determine
the ºoptimalº checkpoint interval for an individual LP. The
trade-off involved in this computation is that, by reducing
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Fig. 19. Speedup observed for circuit s38584.
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the number of checkpoints taken at an LP, memory is saved
(fewer states are saved) and time is saved (time to save the
states) at the expense of an increase in the length of the
coasting forward phase of a rollback.

In our algorithms, the LPs are grouped into clusters and
the checkpoints are based on the interarrival times of
messages to the clusters. No attempt is made to seek
checkpoint intervals for individual LPs. As we have seen,
substantial memory savings were realized in our experi-
ments.

In a similar vein, the authors are unaware of any rollback
policy which is directed toward a group of LPs, as is the
case in CRCC. The only work related to rollback policy
following Jefferson's original suggestion of aggressive
cancellation was the suggestion of a lazy cancellation policy
by Gafni [15].

In CRCC, the cluster is responsible for sending out
antimessages, thus relieving the individual LPs of this
responsibility as well as the necessity of having an output
queue. As pointed out in the previous section, this approach
saves memory and speeds up the arrival of antimessages. In
LRLC and LRCC, the LPs roll back as they do in Time Warp,
i.e., on an individual basis.

6 CONCLUSION

We have introduced, in this paper, a family of three
algorithms for the checkpointing and rolling back of
Time Warp. The algorithms are:

. CRCC Clustered Rollback, Clustered Checkpoint,

. LRCC Local Rollback, Clustered Checkpoint, and

. LRLC Local Rollback, Local Checkpoint.

The algorithms rely upon the existence of clusters of LPs
which are created by application specific clustering
algorithms. They are oriented toward models which are
comprised of a large number of LPs having low
computational granularity, such as VLSI or computer
network models. Our Time Warp implementation is
oriented toward a distributed memory architecture, i.e.,
it relies upon message passing.

The performance of the algorithms was examined by
making use of gate level circuit simulation models. The
logic simulations investigating the memory requirements
and the execution time of the three algorithms were
compared to that of Time Warp and to Time Warp with
periodic state saving. Two circuits were used in these
experiments, an 18,000 gate circuit and a 20,000 gate circuit.
The 18,000 gate circuit had an activity level nearly
three times that of the 20,000 gate circuit. Our results
showed that each of the algorithms decreased the maximal
memory usage of Time Warp. In the more active of the
two circuits, these decreases were CRCC by 40 percent,
LRCC by 22 percent, and LRLC by 15 percent. CRCC was
60 percent slower, while LRCC was 10 percent slower
than Time Warp, and LRLC had a speed comparable to
that of Time Warp. In the less active of the two circuits,
the figures for maximal memory usage were CRCC by
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Fig. 21. Space-time performance results for circuit s38584.

Fig. 20. Space-time performance results for circuit s35932.



30 percent, LRCC by 30 percent, and LRLC by 10 percent.
CRCC was 30 percent slower, LRCC was 18 percent
slower, and LRLC was 5 percent faster.

As we can see, each of these algorithms occupies a
different point on an execution time versus memory trade-
off continuum. With this behavior, it is possible to chose an
algorithm depending upon the memory and execution time
requirements of the simulation.

There are several important issues which could not be
discussed in this paper due to lack of space. Model
partitioning and load balancing have an important effect
on performance. In [2] and [18], dynamic load balancing
algorithms for use with Time Warp (presuming the
existence of clusters) are described. LRCC was used in
each of these studies. A related issue is that of flow control
between clusters. Choe and Tropper [10] describe an
integrated dynamic load balancing and flow control
algorithm which significantly improves the performance
of Time Warp in a distributed memory environment. We
should note in passing that each of these algorithms
resulted in significant performance gains. However, a
systematic investigation of this area in a distributed
memory environment is still lacking.

We note several other areas in which further work is
desirable. One area is determining the best clustering
algorithm and the appropriate size of a cluster. We
employed a very simple algorithm in our experiments,
but a systematic study of possible algorithms remains to be
done. Likewise, we determined an appropriate cluster size
experimentally and developing an algorithm to determine
appropriate cluster sizes would be desireable. Determining
the extent to which our approach improves the scalability of
Time Warp is important. We have some preliminary results
on queuing network models [2], but more exhaustive
experimentation is required.

Another topic is the issue of state size. Our experiments
addressed small states; if we increase the size of the state,
the performance of our algorithms might well change. It
would be interesting to discover how this happens.

Finally, and most important, it is important to evaluate
the performance of our algorithms in realistic simulations,
for example, register level VLSI simulations of circuits with
250-500,000 gates. Each of these questions is the focus of
on-going research efforts.

We remain optimistic.
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