
Event History Based Sparse State Saving in Time Warp*

Francesco Quaglia
Dipartimento di Informatica e Sistemistica

UniversitB di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

e-mail: quaglia@dis.uniromal.it

Abstract

This paper presents a sparse state saving scheme
for Time Warp parallel discrete event simulation. The
scheme bases the selection of the states to be recorded
on the event history of the logical processes. To this
purpose, statistics on the virtual time advancement of
the processes are collected for the prediction of virtual
time intervals that are likely to contain rollback points;
the states corresponding to the starting point of those
intervals are recorded as checkpoints in order to reduce
the average coasting forward. The percentage of states
to be recorded is defined by a parameter whose value
is dynamically recalculated on the basis of the on-line
observation of the variation of a checkpointing-rollback
cost function. Simulation results of synthetic workloads
are presented for a performance comparison with pre-
vious schemes.

1 Introduction

In parallel discrete event simulation, concurrent log-
ical processes (LPs) model the parts of the system to
be simulated [7]. The interaction between LPs takes
place through the exchange of timestamped messages,
and the scheduling of an event for an LP at virtual time
t is realized by sending to the LP a message with times-
tamp t. An underlying synchronization protocol guar-
antees causality by ensuring that each LP processes
input messages in non-decreasing timestamp order.

The Time Warp synchronization protocol [ll, 121
lets the LPs schedule simulation events whenever they
are available (by optimistically assuming that the
schedule does not violate causality) and uses rollback
to recover from out of order computations. In partic-
ular, when an LP detects an out of order computation
at virtual time t, it rolls back to its state immediately
prior t, and resumes execution from that state.

*Work partially supported by grant No. ERB4050PL932483
from the Scientific Cooperation Network of the European Com-
munity “OLOS”.

In order to guarantee the reconstructability of past
states, Time Warp simulators are provided with well
known checkpointing schemes such as copy, sparse and
incremental state saving (recently schemes that mix
features of both sparse and incremental approaches
have been proposed in [6, 181).

When copy state saving is adopted, the state of an
LP is recorded as a checkpoint before processing each
event [ll]. In this case, a state to be restored due to
rollback is always available, but, unless special hard-
ware is employed to accelerate the state saving oper-
ation [9], the checkpointing overhead can reach unac-
ceptable levels. Sparse and incremental state saving
aim at reducing such an overhead. The first scheme
records as checkpoints only a subset of states [l, 131.
The latter records the inverses of all the incremental
changes of an LP state [22, 231. The cost incurred in
both solutions is a time penalty added to rollback. In
the first case, the reconstruction of an unrecorded state
(missing state) . is realized by starting from a previous
recorded one and by re-processing intermediate events
(coasting forward). In the second, the state to be re-
stored is regenerated by starting from the current LP
state and by backward applying inverse changes.

Although each scheme is suitable for a given class of
simulationsl, the most interesting, from a performance
study point of view, is sparse state saving, due to the
multiplicity of approaches that can be adopted for the
selection of the states to be recorded. To the best of
our knowledge, two approaches have been envisaged.
One [l] records the state of the LP after it consumes
a save period amount of CPU time. The other [13],
also known as periodic state saving, selects the states
to be recorded on the basis of simulation events (the
state of an LP is periodically recorded each x event
executions, x being the checkpoint interval of the LP).
Both solutions do not take the event history of the LP
into account. As a consequence, no correlation comes
out between checkpoints and rollback points, thus lead-

‘In [15] it has been proved that incremental state saving im-
proves performance over the other schemes when both thefrac-
tion of the state updated at each event execution and the rollback
length are minimal.

72
1087-4097198 $10.00 0 1998 IEEE

ing to a rollback cost proportional to the average dis-
tance between checkpoints. In these approaches the
tradeoff between the checkpointing frequency and the
checkpointing-rollback overhead has been the object of
several studies [l, 13, 15, 16, 19, 201. Furthermore, in
the case of periodic state saving, adaptive techniques
have been introduced to dynamically recalculate the
value of the checkpoint interval. In [14, 17, 191 the
recalculation is based on the variation of the rollback
behavior (i.e., rollback frequency and rollback length)
of the LP; in [5] it is based on the variation of the
time spent due to checkpointing and coasting forward
operations.

As an alternative approach, this paper introduces a
sparse state saving scheme which bases the selection of
the states to be recorded on the event history of the
LPs. Intuitively, smaller rollback cost, compared to
previous solutions, can be obtained if checkpoints are
not taken randomly in virtual time, but correlated to
the rollback points of the LPs. In order to achieve this
goal, each LP observes how the scheduling of events af-
fects its virtual time progression and, by keeping track
of statistics related to such progression, tries to predict
virtual time intervals (defined by timestamps of succes-
sive events) that are likely to contain rollback points.
The states corresponding to the starting point of those
intervals are recorded as checkpoints in order to reduce
the average coasting forward.

Our approach is based also on the observation of
a checkpointing-rollback cost function (actually this
function is the same as the one presented in [5]) which
reflects the tradeoff between the number of states
recorded and the goodness of the prediction of the
states that have to be restored. The on-line variation
of such a function is used for dynamically recalculating
the value of a parameter which defines the percentage
of states to be recorded.

The exploitation of the event history joins this
sparse state saving approach and several techniques
introduced with the aim of limiting the optimism of
Time Warp (for example those in [3, 4, 21]), with the
difference that the reduction of the rollback overhead
is achieved by reducing the rollback cost instead of the
rollback frequency.

An experimental study of synthetic workloads is pre-
sented for a performance comparison with the adaptive
methods in [19] and in [5]. The results show that the
new approach achieves a reduction of the average coast-
ing forward which leads to a significant performance
improvement.

The remainder of the paper is organized as follows.
In Section 2 some details about sparse state saving
are reported; furthermore, the adaptive solutions pre-
sented in [19] and in [5] are summarized. In Section
3 the sparse state saving scheme is described. Experi-
mental results are reported in Section 4. Conclusions,
a discussion on limitations of our scheme and future
work constitute Section 5.

2 Background

Checkpointing has two distinct effects on a Time
Warp simulation. First, some processing time is spent
running the state saving protocol; second, memory is
consumed to record the state (or part of it) of an LP.
Furthermore, the checkpointing scheme has a direct im-
pact on the rollback cost. This paper focuses on the
effect of sparse state saving on the execution time of
the simulation.

As outlined in the Introduction, the sparse state sav-
ing schemes proposed in literature select the states to
be recorded without exploiting information about the
event history of the LPs. Several studies [5, 191 proved
that by using this approach there is no correlation be-
tween where in virtual time rollbacks occur and the
timestamp of events that are checkpointed. As a con-
sequence, the average length of coasting forward (i.e.,
the average number of events to be re-executed upon
the regeneration of a missing state) results proportional
to the average distance (in terms of executed events)
between successive state saving operations. From the
above considerations, two opposite effects appear while
decreasing the checkpointing frequency of an LP: (i)
the CPU time spent for state saving decreases, (ii) the
average cost of rollback increases.

In the case of sparse state saving based on real CPU
execution time, it has been shown [l] that, for unsatu-
rated workloads, the best execution times are obtained
when the state is recorded after a save period amount
of CPU execution time equal to zero. This is because
the cost of checkpointing in terms of CPU time can
be ignored if a processor has no productive simulation
work to be performed.

In the case of periodic state saving, several analyt-
ical models have been proposed to describe the sim-
ulation execution time of an LP as a function of its
checkpoint interval [13, 15, 191. Among those models,
particularly interesting is the one in [20], which takes
into account how the granularities of different event
types affect the average regeneration time of a missing
state.

The extended experimental study in [16] pointed out
that, under atomic coasting forward, the variation of
the checkpoint interval strongly affects the rollback be-
havior of the LPs. Presented results showed that when
the checkpoint interval slightly increases a throttling ef-
fect appears which tends to reduce the number of roll-
backs; when the checkpoint interval is largely increased
(i.e., in the case of long average coasting forward), a
thrashing effect gives rise to an increase in the number
of rollbacks.

Due to the presence of these phenomena and to the
proper dynamism of the rollback behavior of the LPs,
the selection of a fixed value of the checkpoint interval
usually results as being unsuitable for providing per-
formance optimization. Hence, several authors have
introduced adaptive periodic state saving techniques.

73

Most of them [5, 17, 191 are based on the observation
of some parameters of the LP behavior over a certain
number of scheduled events, referred to as observation
period, and recalculate the checkpoint interval at the
beginning of each period. A different approach can be
found in [14], where the recalculation is executed every
Global- Virtual- Time (GVT) evaluation’.

Performance achievable by using the checkpointing
scheme presented in this paper is compared in Section
4 to the one obtained by using the adaptive solutions
proposed by Ronngren and Ayani, and by Fleischmann
and Wilsey. Both these solutions are sketched below.

Ronngren and Ayani’s Approach. The adaptive
checkpointing algorithm presented by Ronngren and
Ayani [19] is based on an analytical model of the LP
execution time. The model lies on the following basic
assumptions: (i) non preemptive rollback, (ii) atomic
rollback procedure.

Once measured the parameters Ic,bs (number of roll-
backs) and Robs (number of executed events, exclud-
ing coasting forward ones), the following expression is
given for the time-optimal checkpoint interval of an LP

(1)

where 6, and 6, are, respectively, the average state sav-
ing time and the average time for an event in a coast-
ing forward phase. Starting from expression 1, the au-
thors derive an algorithm to calculate a new value of
the checkpoint interval xn at the n-th observation pe-
riod. Denoting with xinitial the initial value for x, with
X 7na2 = 15 an upper limit on x, with xrnin the value
resulting from equation 1 evaluated from the statistics
collected during the last observation period, and with
p a weighting parameter (generically assumed equal to
0.4), the authors propose the following adaptive solu-
tion:

if n = 0 then xn = xznitial
else if kObs = 0 then xn = [(l - p)xlael + pxmasj
else xn = ma4, [Cl - P)X~-I + pmin(x,i,, xmaz)l)

Furthermore, an upper bound k,,, on the number
of rollbacks is introduced in order to enforce an LP ex-
periencing frequent rollbacks to recalculate its check-
point interval by using previous expression.

Fleischmann and Wilsey’s Approach. The dy-
namic recalculation of x proposed by Fleischmann and

‘The GVT of a Time Warp simulation is defined as the min-
imum of the virtual times of all LPs and of the timestamps of
messages in transit. Its notion is used to recover the storage al-
located for obsolete information as no LP will ever rollback to a
time before GVT.

Wilsey [5] is based on the on-line observation of the
following cost function:

Ec = Css + Ccf (2)

where C,, and Ccf represent, respectively, the CPU
time spent by the LP in state saving and coasting
forward operations. The adaptive checkpointing algo-
rithm works as follows: at the first observation period
x is set to the initial value xinitial = 1; in the successive
observation periods the cost function E, is evaluated
and x is increased by one if EC did not significantly
increase. If the value of the cost function observed in
the current period is greater than the one in the pre-
vious period, the adaptation direction is changed (x
is decreased by one). Furthermore, if during its whole
history an LP never rolls back its checkpoint interval is
set to xmaz (the authors select xmas = 30 as a suitable
value in accordance with empirical observations).

In both previous solutions an upper limit on the
value of x is introduced due to the LP memory con-
sumption problem. In fact, since rollback to GVT is
possible, upon recovering the storage allocated for ob-
solete states and messages, at least one state older than
GVT and also all the input messages with timestamps
larger than the virtual time of that state need to be re-
tained. So if very few states are recorded, then a large
amount of input messages cannot be garbage collected
giving rise to an increase in the frequency of storage
recovering (due to the frequent saturation of the input
queue), thus making performance worse.

3 A Sparse State Saving Scheme

The state saving scheme we propose is based on the
belief that the likelihood of a rollback point being con-
tained in the virtual time interval I, the delimiting
points of which are timestamps of successive events,
increases with the distance between those points (a
similar observation has been made in [21], with the
difference that the starting point of the interval is the
GVT of the simulation).

So, let us suppose that LVT’ is the current local
virtual time of an LP (the current state of the LP is de-
noted as SLVT*), and the timestamp of the next event
enezt to be scheduled is T*. If T* - LVT* is sign@-
cantly larger than the usual difference between times-
tamps of successive already scheduled events, then, in
all likelihood, either messages will arrive later having
timestamps between LVT* and T*, or the sender of
the message that schedules the event enest at T* will
roll back undoing that message. So, in case of rollback,
in all likelihood the rollback point will be contained in
the interval (LVT*, T*] and the state SLVT~ will have
to be restored due to rollback.

Based on this observation a checkpointing rule can
be introduced to force the LP to record its state prior

74

to a local virtual time increment which generates an
interval that is likely to contain a rollback point. If a
rollback really occurs in that interval, no penalty due
to coasting forward arises since the state to be restored
is directly available.

Let ALvT be the average local virtual time incre-
ment due to the scheduling of a single event, and cr be
a real value grater than or equal to zero, the rule is
synthesized by the following expression:

Upon scheduling enezt with timestamp T*:
if T* - LVT* > CXALVT
then record current state;

The quantity oAhvT is the threshold over which
the local virtual time increment due to the scheduling
of ened determines an interval suspected to contain
rollback points. Whenever the virtual time increment
is less than this threshold, the current LP state is not
recorded.

The choice of the value for (Y is far from being a
trivial task because of its relation with both the distri-
bution function of the local virtual time increment and
the average rollback frequency of the LP. In what fol-
lows, an adaptive method for selecting suitable values
for cr is given.

3.1 Dynamic Selection of the Parameter (Y

Let us partition the execution of the LP into
observation periods. Each period consists of L
committed/rolled-back events (suggestions to choose L
have been pointed out in [l?]). Let cy, be the value of
a at the n-th period, and AIVT be the average local
virtual time increment (observed overall the scheduled
events except the coasting forward ones) till the be-
ginning of the n-th period. The value for AEvT is
evaluated as follows:

if n=O
if n>O (3)

where AiVT is the virtual time increment due to the
scheduling of the h-th event. During the n-th period
the checkpointing activity of the LP is driven by the
previous rule specialized as follows:

Upon scheduling enezt with timestamp T*:
if T* - LVT* > CY~&~,,
then record current state;

The dynamic selection of Q: is based on the obser-
vation of the same cost function introduced by Fleis-
chmann and Wilsey [5] (we report it below for con-
venience of the reader). At the n-th period, the cost
function is evaluated as follows:

E - CM,, + Gf,n c,n - (4)

where C,,,, and C’,f+ represent, respectively, the CPU
time spent by the LP in state saving and coasting for-
ward operations during that period.

The adaptive selection of a works as follows: at the
first observation period cr is set to zero, thus the state
is recorded before processing each event. In the succes-
sive observation periods the cost function E, is evalu-
ated and Q is increased by a quantity E if EC did not
increase. Otherwise the adaptation direction of a is
inverted (a is decreased by e). The inversion of the
adaptation direction takes place each time the last ob-
served value of the cost function is greater than the
previous one. So, the idea underlying the recalcula-
tion is to skip recording as much states as possible (by
increasing the threshold over which the virtual time in-
crement generates an interval likely to contain rollback
points) until the prediction of the intervals containing
rollback points becomes poor and the time spent due
to coasting forward determines a performance decrease.
In that case, the threshold is decreased until the check-
pointing overhead becomes, in turn, the major factor
adversely affecting performance.

Differently from [5], our approach tries to optimize
the position of checkpoints in virtual time by exploit-
ing the virtual time differences of the timestamps of
arriving messages. This feature suggests that our solu-
tion, compared to the one in [5], allows the LP to skip
recording more states before the cost function shows
an increase due to coasting forward, with a benefit im-
pact on the total checkpointing-rollback overhead. Ex-
perimental results reported in Section 4 confirm this
hypothesis.

When the value of cr increases, the number of states
recorded as checkpoints usually decreases, thus also C,,
decreases. If the LP never rolls back (or it shows a very
low rate of rollbacks) the inversion of the adaptation
direction of the parameter (Y may never take place (or
it takes place only when very few states are recorded
in each period). As outlined in Section 2, this behavior
is not desirable due to the LP memory consumption
problem. Therefore, in the case of very low rollback
frequency, the inversion of the adaptation direction has
to be imposed in order to have at least a percentage y
of states recorded in each period. To this purpose, each
LP keeps track of the number of states NCn recorded
as checkpoints during the n-th period; at the end of the
period it compares such a number with the minimum
number yL of states to be recorded. If NC,, < yL the
adaptation direction is inverted (cr is decreased by c).
We adopt the value y = l/15, thus, on average, the LP
is not allowed to skip recording its state plus than 14
times over 15.

The value of E determines how greatly the cost func-
tion E, changes during the execution. Preliminary re-
sults showed that small values allow to avoid too large
oscillations of EC and usually generate a better per-
formance compared to large values (experiments pre-
sented in Section 4 have been realized by adopting the

75

value 0.05). Below the complete structure of the algo-
rithm for the selection of cr at the n-th period is shown
(the boolean flag fwd indicates whether the adapta-
tion direction actually goes towards increasing values
of cy or not):

ifn=Othena,=O;
ifn=lthen{cu,= CY,-1 + E; fwd = TRUE};
ifn > 1 then

if fwd then
if b%-2 < &,,-I) 01: (NC-1 < YL)
then {an = maz(0, CY,-~ - 6); fwd = FALSE}
else cy, = CY,-~ + E

else
if C&,-Z < &,n--l) or (w-1 = 0)
then {cm = a,-1 + E; fwd = TRUE}
else (Y, = maz(0, cy,-l - E)

4 A Performance Comparison

In this section experimental results are presented to
compare performance achievable by using the check-
pointing scheme proposed in this paper (hereafter Q)
to the one obtained by using Ronngren and Ayani’s ap-
proach (RA) and Fleischmann and Wilsey’s approach
(FW

The experiments have been carried out by using the
distributed simulation platform SIMCOR [a], which
has the following basic characteristics: LPs are stat-
ically assigned to processors; the aggressive approach
[lo] is adopted in the cancellation phase (i.e., antimes-
sages are sent as soon as an LP rolls back); a single
scheduler (Time Warp kernel) runs on each processor
and manages the local event list by scheduling local
LPs according to the STF (Smallest-Timestamp-First)
algorithm; LPs execute the coasting forward in atomic
fashion.

We propose simulation results of two synthetic work-
loads. The first, known as PHOLD, has been widely
used for testing performance of Time Warp simulators
(it was originally described in [S]). In this workload, a
constant number of messages circulate among the LPs,
messages are equally likely to be forwarded to any other
LP and the timestamp increments are taken from some
stochastic distribution. We consider a PHOLD model
with 32 LPs and 1 message for each LP at the simu-
lation starting. Timestamp increments are taken from
an exponential distribution with mean 1. The second
workload (HOT SPOT) is a modification of the first.
It has 4 hot spot LPs to which 50% of all messages are
routed. The experiments were performed on 4 nodes
(386i 16MHz) of an iPSC/2 multiprocessor. The ex-
periments have been carried out by adopting four dif-
ferent values (0.1, 0.25, 0.5 and 1.0) of the ratio 6,/b,
between the average state saving time and the average
event routine time (the state saving cost is fixed at 300
psec. and the value of the ratio is modified, as in [16],

by introducing variable delay loops into the event rou-
tine). In this way we can compare Q, RA and FW
either when the average event routine cost dominates
or when it is comparable to the average state saving
time. The observation period was fixed at 500 events
and, as mentioned in Section 3, the value 0.05 was cho-
sen for 6.

We report measures related to: (a) the number of
checkpoints NC taken by the LPs, (b) the average
coasting forward length ACF, (c) the event rate (i.e.,
committed events per second), (d) the efficiency (i.e.,
the ratio between the total number of committed events
and the total number of processed events, excluding
coasting forward ones), (e) the total execution time
ET and (f) the average distance between checkpoints
(i.e., the average checkpoint interval ACI). We base
our comparison on the average value analysis. All pa-
rameter values result as the average of 10 runs. At least
lo6 committed events were simulated in each run.

4.1 Results of the Experiments

Five series of plots have been reported. The first
series (Figure 1) shows the ratio between the number
of checkpoints taken by RA and FW and the number
of checkpoints taken by Q (NC(Q)). The second series
(Figure 2) shows the ratio between the average coast-
ing forward of RA and FW and the average coasting
forward of Q (ACF(Q)). The third and the fourth se-
ries (Figure 3 and Figure 4) report, respectively, the
efficiency and the event rate for all the checkpointing
schemes. The fifth series (Figure 5) shows the ratio
between the execution times of RA and FW and the
execution time of Q (ET(Q)). The sixth series (Figure
6) reports the average distance between checkpoints for
all the checkpointing schemes. In each series results are
reported while varying the ratio between the average
state saving time and the average event routine time
(the 2 axis has a logarithmic scale).

PHOLD Workload. The checkpointing overhead of
RA is between 0.72 and 0.93 times that of Q. The
minimum value of NC(RA)/NC(Q) is obtained for
small state saving time compared to the event routine
time (i.e., 6,/d, = 0.1). In this point, due to expres-
sion 1, the LPs tend to choose small checkpoint in-
tervals under RA (the measured value of the average
checkpoint interval under RA is around 2.21 events);
hence, the larger checkpointing overhead of Q means
very small average distance between checkpoints (the
measured value is around 1.86 events) that, together
with the attempt to optimize their position in virtual
time with respect to the rollback points, lead to very
small ACF under Q. As a result, in this point the
average coasting forward of RA reaches its maximum
distance from ACF(Q) (ACF(RA) becomes around 11
times ACF(Q)).

76

(-1 RA (PHOLD)

(1--n FW (PHOLD)
/ ti / RA (HOT SPOT)
\t+ FW (HOT SPOT)

Figure 1. Ratio Between the Number of Check-
points of RA and FW and the Number of
Checkpoints of Q.

8.0

g . :‘.......\
:f--ORA (PHOLD)
H FW (PHOLD)
uil RA (HOT SPOT)
- FW (HOT SPOT)

4

8 6.0
\-

i

0.0 L- I 01 1.0

Figure 2. Ratio Between the Average Coast-
ing Forward of RA and FW and the Average
Coasting Forward of Q.

The difference between the checkpointing overhead
of RA and that of Q decreases when 0.5 5 6,/6, 5 1.0
(the minimum distance, that is 7%, is obtained when
b,T/6, = 0.5) and ACF(RA) becomes between 1.9 and
1.6 times ACF(Q). The efficiency of Q is between
7% and 10% greater than the efficiency of RA. This
behavior directly derives from the longer ACF of RA
compared to Q. In fact, as shown in [16], the drawback
usually incurred due to long average coasting forward
length is an increase in the number of rollbacks (thrash-
ing) which adversely affects the efficiency of the sim-
ulation. The efficiency of Q gets its maximum gain
when state saving and event routine have the same
cost. In this point, the measured value of the average
checkpoint interval under RA is around 5 events and
ACF(RA) is 2.07 events while ACF(Q) is 1.18 events
with an average checkpoint interval of 4.36 events. In
conclusion, the observed reduction of ACF allows Q
to mantain a good efficiency in the whole considered

-
-Q (PHOLD)
(f--f) RA (PHOLD) ’
M FW (PHOLD) i
---+ Q (HOT SPOT)
nil RA (HOT SPOT) I

Figure 3. Efficiency.

x x c1 (PHOLD)
0 0 RA (PHOLD)
n a FW (PHOLD)
-Q (HOT SPOT)
C- RA (HOT SPOT)
- FW (HOT SPOT

Figure 4. Event Rate.

range for 6,/b, (i.e., the execution under Q is affected
by thrashing less than under RA). The plots related
to the event rate and to the execution time match with
previous results. In particular, the event rate of Q is
between 20% and 26% greater than the event rate of
RA and the execution time of RA is between 20% and
26% larger than ET(Q).

The behavior of FW is quite different from that of
RA. The major difference is a larger checkpointing
overhead with the result that the number of check-
points of FW is between 1.16 and 1.45 times the num-
ber of checkpoints of Q. In spite of this, ACF(FW)
remains larger than ACF(Q) in the whole range for
6,/b,, with a maximum distance when 6,/6, = 0.1 (in
this point the measured value of the average checkpoint
interval of FW is around 1.49 events while, as men-
tioned before, ACI(Q) is 1.86). The efficiency of FW is
slightly greater than the efficiency of RA, especially for
large event routine time compared to the state saving
time. This behavior derives because FW shows a no-
tably smaller ACF compared to RA (with a maximum
distance when 6,/h, = 0.1) denoting less thrashing.
However the efficiency of FW remains smaller than
that of Q. This phenomenon, together with the larger
checkpointing overhead and coasting forward length,

77

lx r- ------ - --------
(f-i: RA (PHOLD)

1.30 bil FW (PHOLD)
T--f) RA (HOT SPOT)

1.25 __--/- W FW (HOT SPOT) ,

1.00 -
0.1 1.0

Figure 5. Ratio Between the Execution Time
of RA and FW and the Execution Time of Q.

6.0
r&Q (PHOLDI n

Figure 6. Average Checkpoint Interval (ACI).

lead the event rate of FW to be smaller (between 12%
and 17%) than that of Q, hence the execution time of
FW is between 12% and 17% larger than ET(Q).

HOT SPOT Workload. In the range 0.1 5 6,/J, 5
0.25 the difference between the checkpointing overhead
of RA and that of Q is similar to the one observed in
the case of the PHOLD workload. On the contrary,
in the range 0.5 5 b,/& 5 1.0 the results are quite
different (NC(RA)/NC(Q) remains around 0.7). As
for the PHOLD workload, ACF(RA) is larger than
ACF(Q) but the distance is not so evident; in particu-
lar, ACF(RA) is between 1.3 and 2.7 times ACF(Q).
The difference between the efficiency of RA and that
of Q is reduced compared to the one observed for the
PHOLD workload, however, Q remains between 4.5%
and 8% more efficient than RA. As for the PHOLD
workload, the maximum distance between the effi-
ciency of RA and that of Q is noted when 6,/d, = 1.0.
In conclusion, when b,/& = 1.0 the event rate of Q is
up to 14% greater than the event rate of RA, hence
ET(RA) is up to 14% larger than ET(Q). On the
contrary, for smaller values of 6,/J, the performance

difference between the two schemes looks slightly re-
duced; the event rate of Q is around 11% greater than
the event rate of RA, so ET(RA) is around 11% larger
than ET(Q).

While moving from 6,/b, = 0.1 to S,/& = 1.0
the checkpointing overhead of FW decreases from 1.4
to 0.82 times the checkpointing overhead of Q and
ACF(FW) is between 1.1 and 1.6 times ACF(Q).
This means that Q achieves around the same cost of
coasting forward (or even smaller) but usually with less
checkpoints (i.e., with larger average checkpoint inter-
vals) compared to FW (this feature derives directly
from the better placing of checkpoints of Q). The effi-
ciency of FW is between 2% and 7% smaller than the
efficiency of Q (the maximum distance is noted when
6,/b, = 1.0). So, the basic factors affecting perfor-
mance are the larger checkpointing overhead and the
smaller efficiency of FW. The event rate of Q is be-
tween 4% and 15% greater than the event rate of FW
(the maximum distance is noted when 6,/d, = l.O), so
ET(RA) is between 4% and 15% larger than ET(Q).

5 Conclusions

In this paper a sparse state saving scheme for Time
Warp simulators is presented. The scheme aims at es-
tablishing a relation between checkpoints and rollback
points in order to reduce the average rollback cost. To
this purpose, statistics on the event history are col-
lected for predicting states that will be restored due to
rollback. Those states are recorded as checkpoints in
order to make them directly available. The percentage
of states to be recorded is a function of a parameter cy
whose value determines the degree of goodness of the
prediction. The adaptation of (Y is realized by observ-
ing the impact of its value on a checkpointing-rollback
cost function. Our state saving scheme attempts for
the first time to put together the exploitation of statis-
tics related to the virtual time progression with the ob-
servation of the CPU time spent due to checkpointing
and rollback operations, in order to determine both the
best appropriate percentage of states to be recorded as
checkpoints and also their position in virtual time.

Two synthetic workloads, PHOLD and HOT SPOT,
have been used to provide a performance comparison
with previous solutions. In order to carry out the com-
parison while varying the impact of checkpointing and
coasting forward on the execution time, simulations
have been realized by using several different values of
the ratio between the average state saving time and the
average event routine time of the logical processes.

For both simulation models, the new scheme shows
an improvement of the efficiency and of the event rate
compared to other schemes. Hence the results are de-
cidedly encouraging thus pushing towards future work
focused on both a more accurate performance compar-
ison, based on a broad variety of simulation workloads
(including real world simulation models), and also an

78

investigation onto the impact of the new approach on
memory space.

As a final point, we would like to outline one limita-
tion of our state saving scheme. It exploits information
only about the arithmetic mean of the average virtual
time increment of an LP. This approach has the advan-
tage of adding negligible overhead to the execution but
cannot well tackle situations in which the virtual time
increment follows a skewed, non-unimodal distribution.
In those situations the scheme might not produce per-
formance improvement over previous proposals. In or-
der to overcome this problem, sophisticated forecast
methods would be adopted. The embedding of some of
those methods in our state saving scheme is the object
of a study in progress.

Acknowledgments. The author would like to thank
Cristina Auriche and the anonymous referees for their
helpful comments and suggestions.

References

[l] S. Bellenot, “State Skipping Performance with the
Time Warp Operating System”, Proc. 6-th Workshop
on Parallel and Distributed Simulation, pp.33-42, Jan-
uary 1992.

[2] B. Ciciani and M. Angelaccio, “An Interface to De-
velop Time-Warp Based Parallel Simulations”, PTOC.
Massively Parallel Processing Conference, pp.20-21,
June 1994.

[3] A. Ferscha, “Probabilistic Adaptive Direct Optimism
Control in Time Warp”, PTOC. 9-th Workshop on
Parallel and Distributed Simulation, pp.120-129, July
1995.

[4] A. Ferscha and J. Luthi, “Estimating Rollback Over-
head for Optimism Control in Time Warp”, PTOC. 28-
th Annual Simulation Symposium, pp.2-12, April 1995.

[5] J. Fleischmann and P.A. Wilsey, “Comparative Anal-
ysis of Periodic State Saving Techniques in Time Warp
Simulators”, PTOC. 9-th Workshop on Parallel and Dis-
tributed Simulation, pp.50-58, July 1995.

[6] S. Franks, F. Gomes, B. Unger and J. Cleary, “State
Saving for Interactive Optimistic Simulation”, PTOC.
11-th Workshop on Parallel and Distributed Simula-
tion, pp.72-79, 1997.

[7] R.M. Fujimoto, “Parallel Discrete Event Simulation”,
Communications of ACM, Vo1.33, No.10, 1990, pp.30-
53.

[8] R.M. Fujimoto, “Performance of Time Warp Under
Synthetic Workloads”, PTOC. Multiconf. Distributed
Simulation, Vo1.22, No.1, January 1990.

[9] R.M. Fujimoto and G.C. Gopalakrishnan, “Design
and Evaluation of the Rollback Chip: Special Pur-
pose Hardware for Time Warp”, IEEE Transactions
on Computers, Vo1.41, No.1, 1992, pp.68-82.

[lo] A. Gafni, “Space Management and Cancellation
Mechanisms for Time Warp”, Tech. Rep. TR-85
341, University of Southern California, Los Angeles
(Ca,USA).

[ll] D. Jefferson and H. Sowizral, “Fast Concurrent Simu-
lation Using the Time Warp Mechanism; Part I: Local
Control”, Tech. Rep. N1906AF, RAND Corporation,
December 1982.

[12] D. Jefferson, “Virtual time”, ACM Trans. on PTO-
gramming Languages and Systems, Vo1.7, No.3, 1985,
pp.404-425.

[13] Y.B. Lin, B.R. Preiss, W.M. Loucks and E.D. La-
zowska, “Selecting the Checkpoint Interval in Time
Warp Simulation”, Proc. 7-th Workshop on Parallel
and Distributed Simulation, pp.3-10, May 1993.

[14] A.C. Palaniswamy and P.A. Wilsey, “Adaptive
Checkpoint Intervals in an Optimistically Synchro-
nized Parallel Digital System Simulator”, Proc. IFZP
TC/WGlO.5 Znt. Conf. on Very Large Scale Integra-
tion, pp.353-362, September 1993.

[15] A.C. Palaniswamy and P.A. Wilsey, “An Analytical
Comparison of Periodic Checkpointing and Incremen-
tal State Saving”, PTOC. 7-th Workshop on Parallel and
Distributed Simulation, pp.127-134, May 1993.

[16] B.R. Preiss, W.M. Loucks and D. MAcIntyre, “Ef-
fects of the Checkpoint Interval on Time and Space
in Time Warp”, ACM Transactions on Modeling and
Computer Simulation, Vo1.4, No.3, 1994, pp.223-253.

[17] F. Quaglia and L.R.G. Auriche, “A New Technique for
Adaptive Checkpointing in Time Warp”, PTOC. ll-th
European Simulation Multiconference, pp.35-39, June
1997.

[18] F. Quaglia and V. Cortellessa, “Rollback-Based Par-
allel Discrete Event Simulation by Using Hybrid State
Saving”, Proc. 9- th European Simulation Symposium,
pp.275-279, October 1997.

[19] R. Ronngren and R. Ayani, “Adaptive Checkpointing
in Time Warp”, PTOC. 8-th Workshop on Parallel and
Distributed Simulation, pp.llO-117, July 1994.

[20] S. Skold and R. Ronngren, “Event Sensitive State
Saving in Time Warp Parallel Discrete Event Simu-
lations”, Proc. 1996 Winter Simulation Conference,
December 1996.

[21] J. Steinman, “Breathing Time Warp”, PTOC. 7-th
Workshop on Parallel and Distributed Simulation,
pp.109-118, May 1993.

[22] J. Steinman, “Incremental State Saving in SPEEDS
Using C Plus Plus”, Proc. 1993 Winter Simulation
Conference, pp.687-696, December 1993.

[23] B.W. Unger, J.G. Cleary, A. Covington and D. West,
“External State Management System for Optimistic
Parallel Simulation”, PTOC. 1993 Winter Simulation
Conference, pp.750-755, December 1993.

79

