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Abstract 

This paper presents a sparse state saving scheme 
for Time Warp parallel discrete event simulation. The 
scheme bases the selection of the states to be recorded 
on the event history of the logical processes. To this 
purpose, statistics on the virtual time advancement of 
the processes are collected for the prediction of virtual 
time intervals that are likely to contain rollback points; 
the states corresponding to the starting point of those 
intervals are recorded as checkpoints in order to reduce 
the average coasting forward. The percentage of states 
to be recorded is defined by a parameter whose value 
is dynamically recalculated on the basis of the on-line 
observation of the variation of a checkpointing-rollback 
cost function. Simulation results of synthetic workloads 
are presented for a performance comparison with pre- 
vious schemes. 

1 Introduction 

In parallel discrete event simulation, concurrent log- 
ical processes (LPs) model the parts of the system to 
be simulated [7]. The interaction between LPs takes 
place through the exchange of timestamped messages, 
and the scheduling of an event for an LP at virtual time 
t is realized by sending to the LP a message with times- 
tamp t. An underlying synchronization protocol guar- 
antees causality by ensuring that each LP processes 
input messages in non-decreasing timestamp order. 

The Time Warp synchronization protocol [ll, 121 
lets the LPs schedule simulation events whenever they 
are available (by optimistically assuming that the 
schedule does not violate causality) and uses rollback 
to recover from out of order computations. In partic- 
ular, when an LP detects an out of order computation 
at virtual time t, it rolls back to its state immediately 
prior t, and resumes execution from that state. 

*Work partially supported by grant No. ERB4050PL932483 
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In order to guarantee the reconstructability of past 
states, Time Warp simulators are provided with well 
known checkpointing schemes such as copy, sparse and 
incremental state saving (recently schemes that mix 
features of both sparse and incremental approaches 
have been proposed in [6, 181). 

When copy state saving is adopted, the state of an 
LP is recorded as a checkpoint before processing each 
event [ll]. In this case, a state to be restored due to 
rollback is always available, but, unless special hard- 
ware is employed to accelerate the state saving oper- 
ation [9], the checkpointing overhead can reach unac- 
ceptable levels. Sparse and incremental state saving 
aim at reducing such an overhead. The first scheme 
records as checkpoints only a subset of states [l, 131. 
The latter records the inverses of all the incremental 
changes of an LP state [22, 231. The cost incurred in 
both solutions is a time penalty added to rollback. In 
the first case, the reconstruction of an unrecorded state 
(missing state) . is realized by starting from a previous 
recorded one and by re-processing intermediate events 
(coasting forward). In the second, the state to be re- 
stored is regenerated by starting from the current LP 
state and by backward applying inverse changes. 

Although each scheme is suitable for a given class of 
simulationsl, the most interesting, from a performance 
study point of view, is sparse state saving, due to the 
multiplicity of approaches that can be adopted for the 
selection of the states to be recorded. To the best of 
our knowledge, two approaches have been envisaged. 
One [l] records the state of the LP after it consumes 
a save period amount of CPU time. The other [13], 
also known as periodic state saving, selects the states 
to be recorded on the basis of simulation events (the 
state of an LP is periodically recorded each x event 
executions, x being the checkpoint interval of the LP). 
Both solutions do not take the event history of the LP 
into account. As a consequence, no correlation comes 
out between checkpoints and rollback points, thus lead- 

‘In [15] it has been proved that incremental state saving im- 
proves performance over the other schemes when both thefrac- 
tion of the state updated at each event execution and the rollback 
length are minimal. 

72 
1087-4097198 $10.00 0 1998 IEEE 



ing to a rollback cost proportional to the average dis- 
tance between checkpoints. In these approaches the 
tradeoff between the checkpointing frequency and the 
checkpointing-rollback overhead has been the object of 
several studies [l, 13, 15, 16, 19, 201. Furthermore, in 
the case of periodic state saving, adaptive techniques 
have been introduced to dynamically recalculate the 
value of the checkpoint interval. In [14, 17, 191 the 
recalculation is based on the variation of the rollback 
behavior (i.e., rollback frequency and rollback length) 
of the LP; in [5] it is based on the variation of the 
time spent due to checkpointing and coasting forward 
operations. 

As an alternative approach, this paper introduces a 
sparse state saving scheme which bases the selection of 
the states to be recorded on the event history of the 
LPs. Intuitively, smaller rollback cost, compared to 
previous solutions, can be obtained if checkpoints are 
not taken randomly in virtual time, but correlated to 
the rollback points of the LPs. In order to achieve this 
goal, each LP observes how the scheduling of events af- 
fects its virtual time progression and, by keeping track 
of statistics related to such progression, tries to predict 
virtual time intervals (defined by timestamps of succes- 
sive events) that are likely to contain rollback points. 
The states corresponding to the starting point of those 
intervals are recorded as checkpoints in order to reduce 
the average coasting forward. 

Our approach is based also on the observation of 
a checkpointing-rollback cost function (actually this 
function is the same as the one presented in [5]) which 
reflects the tradeoff between the number of states 
recorded and the goodness of the prediction of the 
states that have to be restored. The on-line variation 
of such a function is used for dynamically recalculating 
the value of a parameter which defines the percentage 
of states to be recorded. 

The exploitation of the event history joins this 
sparse state saving approach and several techniques 
introduced with the aim of limiting the optimism of 
Time Warp (for example those in [3, 4, 21]), with the 
difference that the reduction of the rollback overhead 
is achieved by reducing the rollback cost instead of the 
rollback frequency. 

An experimental study of synthetic workloads is pre- 
sented for a performance comparison with the adaptive 
methods in [19] and in [5]. The results show that the 
new approach achieves a reduction of the average coast- 
ing forward which leads to a significant performance 
improvement. 

The remainder of the paper is organized as follows. 
In Section 2 some details about sparse state saving 
are reported; furthermore, the adaptive solutions pre- 
sented in [19] and in [5] are summarized. In Section 
3 the sparse state saving scheme is described. Experi- 
mental results are reported in Section 4. Conclusions, 
a discussion on limitations of our scheme and future 
work constitute Section 5. 

2 Background 

Checkpointing has two distinct effects on a Time 
Warp simulation. First, some processing time is spent 
running the state saving protocol; second, memory is 
consumed to record the state (or part of it) of an LP. 
Furthermore, the checkpointing scheme has a direct im- 
pact on the rollback cost. This paper focuses on the 
effect of sparse state saving on the execution time of 
the simulation. 

As outlined in the Introduction, the sparse state sav- 
ing schemes proposed in literature select the states to 
be recorded without exploiting information about the 
event history of the LPs. Several studies [5, 191 proved 
that by using this approach there is no correlation be- 
tween where in virtual time rollbacks occur and the 
timestamp of events that are checkpointed. As a con- 
sequence, the average length of coasting forward (i.e., 
the average number of events to be re-executed upon 
the regeneration of a missing state) results proportional 
to the average distance (in terms of executed events) 
between successive state saving operations. From the 
above considerations, two opposite effects appear while 
decreasing the checkpointing frequency of an LP: (i) 
the CPU time spent for state saving decreases, (ii) the 
average cost of rollback increases. 

In the case of sparse state saving based on real CPU 
execution time, it has been shown [l] that, for unsatu- 
rated workloads, the best execution times are obtained 
when the state is recorded after a save period amount 
of CPU execution time equal to zero. This is because 
the cost of checkpointing in terms of CPU time can 
be ignored if a processor has no productive simulation 
work to be performed. 

In the case of periodic state saving, several analyt- 
ical models have been proposed to describe the sim- 
ulation execution time of an LP as a function of its 
checkpoint interval [13, 15, 191. Among those models, 
particularly interesting is the one in [20], which takes 
into account how the granularities of different event 
types affect the average regeneration time of a missing 
state. 

The extended experimental study in [16] pointed out 
that, under atomic coasting forward, the variation of 
the checkpoint interval strongly affects the rollback be- 
havior of the LPs. Presented results showed that when 
the checkpoint interval slightly increases a throttling ef- 
fect appears which tends to reduce the number of roll- 
backs; when the checkpoint interval is largely increased 
(i.e., in the case of long average coasting forward), a 
thrashing effect gives rise to an increase in the number 
of rollbacks. 

Due to the presence of these phenomena and to the 
proper dynamism of the rollback behavior of the LPs, 
the selection of a fixed value of the checkpoint interval 
usually results as being unsuitable for providing per- 
formance optimization. Hence, several authors have 
introduced adaptive periodic state saving techniques. 
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Most of them [5, 17, 191 are based on the observation 
of some parameters of the LP behavior over a certain 
number of scheduled events, referred to as observation 
period, and recalculate the checkpoint interval at the 
beginning of each period. A different approach can be 
found in [14], where the recalculation is executed every 
Global- Virtual- Time (GVT) evaluation’. 

Performance achievable by using the checkpointing 
scheme presented in this paper is compared in Section 
4 to the one obtained by using the adaptive solutions 
proposed by Ronngren and Ayani, and by Fleischmann 
and Wilsey. Both these solutions are sketched below. 

Ronngren and Ayani’s Approach. The adaptive 
checkpointing algorithm presented by Ronngren and 
Ayani [19] is based on an analytical model of the LP 
execution time. The model lies on the following basic 
assumptions: (i) non preemptive rollback, (ii) atomic 
rollback procedure. 

Once measured the parameters Ic,bs (number of roll- 
backs) and Robs (number of executed events, exclud- 
ing coasting forward ones), the following expression is 
given for the time-optimal checkpoint interval of an LP 

(1) 

where 6, and 6, are, respectively, the average state sav- 
ing time and the average time for an event in a coast- 
ing forward phase. Starting from expression 1, the au- 
thors derive an algorithm to calculate a new value of 
the checkpoint interval xn at the n-th observation pe- 
riod. Denoting with xinitial the initial value for x, with 
X 7na2 = 15 an upper limit on x, with xrnin the value 
resulting from equation 1 evaluated from the statistics 
collected during the last observation period, and with 
p a weighting parameter (generically assumed equal to 
0.4), the authors propose the following adaptive solu- 
tion: 

if n = 0 then xn = xznitial 
else if kObs = 0 then xn = [(l - p)xlael + pxmasj 
else xn = ma4, [Cl - P)X~-I + pmin(x,i,, xmaz)l) 

Furthermore, an upper bound k,,, on the number 
of rollbacks is introduced in order to enforce an LP ex- 
periencing frequent rollbacks to recalculate its check- 
point interval by using previous expression. 

Fleischmann and Wilsey’s Approach. The dy- 
namic recalculation of x proposed by Fleischmann and 

‘The GVT of a Time Warp simulation is defined as the min- 
imum of the virtual times of all LPs and of the timestamps of 
messages in transit. Its notion is used to recover the storage al- 
located for obsolete information as no LP will ever rollback to a 
time before GVT. 

Wilsey [5] is based on the on-line observation of the 
following cost function: 

Ec = Css + Ccf (2) 

where C,, and Ccf represent, respectively, the CPU 
time spent by the LP in state saving and coasting 
forward operations. The adaptive checkpointing algo- 
rithm works as follows: at the first observation period 
x is set to the initial value xinitial = 1; in the successive 
observation periods the cost function E, is evaluated 
and x is increased by one if EC did not significantly 
increase. If the value of the cost function observed in 
the current period is greater than the one in the pre- 
vious period, the adaptation direction is changed (x 
is decreased by one). Furthermore, if during its whole 
history an LP never rolls back its checkpoint interval is 
set to xmaz (the authors select xmas = 30 as a suitable 
value in accordance with empirical observations). 

In both previous solutions an upper limit on the 
value of x is introduced due to the LP memory con- 
sumption problem. In fact, since rollback to GVT is 
possible, upon recovering the storage allocated for ob- 
solete states and messages, at least one state older than 
GVT and also all the input messages with timestamps 
larger than the virtual time of that state need to be re- 
tained. So if very few states are recorded, then a large 
amount of input messages cannot be garbage collected 
giving rise to an increase in the frequency of storage 
recovering (due to the frequent saturation of the input 
queue), thus making performance worse. 

3 A Sparse State Saving Scheme 

The state saving scheme we propose is based on the 
belief that the likelihood of a rollback point being con- 
tained in the virtual time interval I, the delimiting 
points of which are timestamps of successive events, 
increases with the distance between those points (a 
similar observation has been made in [21], with the 
difference that the starting point of the interval is the 
GVT of the simulation). 

So, let us suppose that LVT’ is the current local 
virtual time of an LP (the current state of the LP is de- 
noted as SLVT*), and the timestamp of the next event 
enezt to be scheduled is T*. If T* - LVT* is sign@- 
cantly larger than the usual difference between times- 
tamps of successive already scheduled events, then, in 
all likelihood, either messages will arrive later having 
timestamps between LVT* and T*, or the sender of 
the message that schedules the event enest at T* will 
roll back undoing that message. So, in case of rollback, 
in all likelihood the rollback point will be contained in 
the interval (LVT*, T*] and the state SLVT~ will have 
to be restored due to rollback. 

Based on this observation a checkpointing rule can 
be introduced to force the LP to record its state prior 
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to a local virtual time increment which generates an 
interval that is likely to contain a rollback point. If a 
rollback really occurs in that interval, no penalty due 
to coasting forward arises since the state to be restored 
is directly available. 

Let ALvT be the average local virtual time incre- 
ment due to the scheduling of a single event, and cr be 
a real value grater than or equal to zero, the rule is 
synthesized by the following expression: 

Upon scheduling enezt with timestamp T*: 
if T* - LVT* > CXALVT 
then record current state; 

The quantity oAhvT is the threshold over which 
the local virtual time increment due to the scheduling 
of ened determines an interval suspected to contain 
rollback points. Whenever the virtual time increment 
is less than this threshold, the current LP state is not 
recorded. 

The choice of the value for (Y is far from being a 
trivial task because of its relation with both the distri- 
bution function of the local virtual time increment and 
the average rollback frequency of the LP. In what fol- 
lows, an adaptive method for selecting suitable values 
for cr is given. 

3.1 Dynamic Selection of the Parameter (Y 

Let us partition the execution of the LP into 
observation periods. Each period consists of L 
committed/rolled-back events (suggestions to choose L 
have been pointed out in [l?]). Let cy, be the value of 
a at the n-th period, and AIVT be the average local 
virtual time increment (observed overall the scheduled 
events except the coasting forward ones) till the be- 
ginning of the n-th period. The value for AEvT is 
evaluated as follows: 

if n=O 
if n>O (3) 

where AiVT is the virtual time increment due to the 
scheduling of the h-th event. During the n-th period 
the checkpointing activity of the LP is driven by the 
previous rule specialized as follows: 

Upon scheduling enezt with timestamp T*: 
if T* - LVT* > CY~&~,, 
then record current state; 

The dynamic selection of Q: is based on the obser- 
vation of the same cost function introduced by Fleis- 
chmann and Wilsey [5] ( we report it below for con- 
venience of the reader). At the n-th period, the cost 
function is evaluated as follows: 

E - CM,, + Gf,n c,n - (4) 

where C,,,, and C’,f+ represent, respectively, the CPU 
time spent by the LP in state saving and coasting for- 
ward operations during that period. 

The adaptive selection of a works as follows: at the 
first observation period cr is set to zero, thus the state 
is recorded before processing each event. In the succes- 
sive observation periods the cost function E, is evalu- 
ated and Q is increased by a quantity E if EC did not 
increase. Otherwise the adaptation direction of a is 
inverted (a is decreased by e). The inversion of the 
adaptation direction takes place each time the last ob- 
served value of the cost function is greater than the 
previous one. So, the idea underlying the recalcula- 
tion is to skip recording as much states as possible (by 
increasing the threshold over which the virtual time in- 
crement generates an interval likely to contain rollback 
points) until the prediction of the intervals containing 
rollback points becomes poor and the time spent due 
to coasting forward determines a performance decrease. 
In that case, the threshold is decreased until the check- 
pointing overhead becomes, in turn, the major factor 
adversely affecting performance. 

Differently from [5], our approach tries to optimize 
the position of checkpoints in virtual time by exploit- 
ing the virtual time differences of the timestamps of 
arriving messages. This feature suggests that our solu- 
tion, compared to the one in [5], allows the LP to skip 
recording more states before the cost function shows 
an increase due to coasting forward, with a benefit im- 
pact on the total checkpointing-rollback overhead. Ex- 
perimental results reported in Section 4 confirm this 
hypothesis. 

When the value of cr increases, the number of states 
recorded as checkpoints usually decreases, thus also C,, 
decreases. If the LP never rolls back (or it shows a very 
low rate of rollbacks) the inversion of the adaptation 
direction of the parameter (Y may never take place (or 
it takes place only when very few states are recorded 
in each period). As outlined in Section 2, this behavior 
is not desirable due to the LP memory consumption 
problem. Therefore, in the case of very low rollback 
frequency, the inversion of the adaptation direction has 
to be imposed in order to have at least a percentage y 
of states recorded in each period. To this purpose, each 
LP keeps track of the number of states NCn recorded 
as checkpoints during the n-th period; at the end of the 
period it compares such a number with the minimum 
number yL of states to be recorded. If NC,, < yL the 
adaptation direction is inverted (cr is decreased by c). 
We adopt the value y = l/15, thus, on average, the LP 
is not allowed to skip recording its state plus than 14 
times over 15. 

The value of E determines how greatly the cost func- 
tion E, changes during the execution. Preliminary re- 
sults showed that small values allow to avoid too large 
oscillations of EC and usually generate a better per- 
formance compared to large values (experiments pre- 
sented in Section 4 have been realized by adopting the 
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value 0.05). Below the complete structure of the algo- 
rithm for the selection of cr at the n-th period is shown 
(the boolean flag fwd indicates whether the adapta- 
tion direction actually goes towards increasing values 
of cy or not): 

ifn=Othena,=O; 
ifn=lthen{cu,= CY,-1 + E; fwd = TRUE}; 
ifn > 1 then 

if fwd then 
if b%-2 < &,,-I ) 01: (NC-1 < YL) 
then {an = maz(0, CY,-~ - 6); fwd = FALSE} 
else cy, = CY,-~ + E 

else 
if C&,-Z < &,n--l) or (w-1 = 0) 
then {cm = a,-1 + E; fwd = TRUE} 
else (Y, = maz(0, cy,-l - E) 

4 A Performance Comparison 

In this section experimental results are presented to 
compare performance achievable by using the check- 
pointing scheme proposed in this paper (hereafter Q) 
to the one obtained by using Ronngren and Ayani’s ap- 
proach (RA) and Fleischmann and Wilsey’s approach 
(FW 

The experiments have been carried out by using the 
distributed simulation platform SIMCOR [a], which 
has the following basic characteristics: LPs are stat- 
ically assigned to processors; the aggressive approach 
[lo] is adopted in the cancellation phase (i.e., antimes- 
sages are sent as soon as an LP rolls back); a single 
scheduler (Time Warp kernel) runs on each processor 
and manages the local event list by scheduling local 
LPs according to the STF (Smallest-Timestamp-First) 
algorithm; LPs execute the coasting forward in atomic 
fashion. 

We propose simulation results of two synthetic work- 
loads. The first, known as PHOLD, has been widely 
used for testing performance of Time Warp simulators 
(it was originally described in [S]). In this workload, a 
constant number of messages circulate among the LPs, 
messages are equally likely to be forwarded to any other 
LP and the timestamp increments are taken from some 
stochastic distribution. We consider a PHOLD model 
with 32 LPs and 1 message for each LP at the simu- 
lation starting. Timestamp increments are taken from 
an exponential distribution with mean 1. The second 
workload (HOT SPOT) is a modification of the first. 
It has 4 hot spot LPs to which 50% of all messages are 
routed. The experiments were performed on 4 nodes 
(386i 16MHz) of an iPSC/2 multiprocessor. The ex- 
periments have been carried out by adopting four dif- 
ferent values (0.1, 0.25, 0.5 and 1.0) of the ratio 6,/b, 
between the average state saving time and the average 
event routine time (the state saving cost is fixed at 300 
psec. and the value of the ratio is modified, as in [16], 

by introducing variable delay loops into the event rou- 
tine). In this way we can compare Q, RA and FW 
either when the average event routine cost dominates 
or when it is comparable to the average state saving 
time. The observation period was fixed at 500 events 
and, as mentioned in Section 3, the value 0.05 was cho- 
sen for 6. 

We report measures related to: (a) the number of 
checkpoints NC taken by the LPs, (b) the average 
coasting forward length ACF, (c) the event rate (i.e., 
committed events per second), (d) the efficiency (i.e., 
the ratio between the total number of committed events 
and the total number of processed events, excluding 
coasting forward ones), (e) the total execution time 
ET and (f) the average distance between checkpoints 
(i.e., the average checkpoint interval ACI). We base 
our comparison on the average value analysis. All pa- 
rameter values result as the average of 10 runs. At least 
lo6 committed events were simulated in each run. 

4.1 Results of the Experiments 

Five series of plots have been reported. The first 
series (Figure 1) shows the ratio between the number 
of checkpoints taken by RA and FW and the number 
of checkpoints taken by Q (NC(Q)). The second series 
(Figure 2) shows the ratio between the average coast- 
ing forward of RA and FW and the average coasting 
forward of Q (ACF(Q)). The third and the fourth se- 
ries (Figure 3 and Figure 4) report, respectively, the 
efficiency and the event rate for all the checkpointing 
schemes. The fifth series (Figure 5) shows the ratio 
between the execution times of RA and FW and the 
execution time of Q (ET(Q)). The sixth series (Figure 
6) reports the average distance between checkpoints for 
all the checkpointing schemes. In each series results are 
reported while varying the ratio between the average 
state saving time and the average event routine time 
(the 2 axis has a logarithmic scale). 

PHOLD Workload. The checkpointing overhead of 
RA is between 0.72 and 0.93 times that of Q. The 
minimum value of NC(RA)/NC(Q) is obtained for 
small state saving time compared to the event routine 
time (i.e., 6,/d, = 0.1). In this point, due to expres- 
sion 1, the LPs tend to choose small checkpoint in- 
tervals under RA (the measured value of the average 
checkpoint interval under RA is around 2.21 events); 
hence, the larger checkpointing overhead of Q means 
very small average distance between checkpoints (the 
measured value is around 1.86 events) that, together 
with the attempt to optimize their position in virtual 
time with respect to the rollback points, lead to very 
small ACF under Q. As a result, in this point the 
average coasting forward of RA reaches its maximum 
distance from ACF(Q) (ACF(RA) becomes around 11 
times ACF(Q)). 
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Figure 1. Ratio Between the Number of Check- 
points of RA and FW and the Number of 
Checkpoints of Q. 
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Figure 2. Ratio Between the Average Coast- 
ing Forward of RA and FW and the Average 
Coasting Forward of Q. 

The difference between the checkpointing overhead 
of RA and that of Q decreases when 0.5 5 6,/6, 5 1.0 
(the minimum distance, that is 7%, is obtained when 
b,T/6, = 0.5) and ACF(RA) becomes between 1.9 and 
1.6 times ACF(Q). The efficiency of Q is between 
7% and 10% greater than the efficiency of RA. This 
behavior directly derives from the longer ACF of RA 
compared to Q. In fact, as shown in [16], the drawback 
usually incurred due to long average coasting forward 
length is an increase in the number of rollbacks (thrash- 
ing) which adversely affects the efficiency of the sim- 
ulation. The efficiency of Q gets its maximum gain 
when state saving and event routine have the same 
cost. In this point, the measured value of the average 
checkpoint interval under RA is around 5 events and 
ACF(RA) is 2.07 events while ACF(Q) is 1.18 events 
with an average checkpoint interval of 4.36 events. In 
conclusion, the observed reduction of ACF allows Q 
to mantain a good efficiency in the whole considered 

- 
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(f--f) RA (PHOLD) ’ 
M FW (PHOLD) i 
---+ Q (HOT SPOT) 
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Figure 3. Efficiency. 
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Figure 4. Event Rate. 

range for 6,/b, (i.e., the execution under Q is affected 
by thrashing less than under RA). The plots related 
to the event rate and to the execution time match with 
previous results. In particular, the event rate of Q is 
between 20% and 26% greater than the event rate of 
RA and the execution time of RA is between 20% and 
26% larger than ET(Q). 

The behavior of FW is quite different from that of 
RA. The major difference is a larger checkpointing 
overhead with the result that the number of check- 
points of FW is between 1.16 and 1.45 times the num- 
ber of checkpoints of Q. In spite of this, ACF(FW) 
remains larger than ACF(Q) in the whole range for 
6,/b,, with a maximum distance when 6,/6, = 0.1 (in 
this point the measured value of the average checkpoint 
interval of FW is around 1.49 events while, as men- 
tioned before, ACI(Q) is 1.86). The efficiency of FW is 
slightly greater than the efficiency of RA, especially for 
large event routine time compared to the state saving 
time. This behavior derives because FW shows a no- 
tably smaller ACF compared to RA (with a maximum 
distance when 6,/h, = 0.1) denoting less thrashing. 
However the efficiency of FW remains smaller than 
that of Q. This phenomenon, together with the larger 
checkpointing overhead and coasting forward length, 
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Figure 5. Ratio Between the Execution Time 
of RA and FW and the Execution Time of Q. 
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Figure 6. Average Checkpoint Interval (ACI). 

lead the event rate of FW to be smaller (between 12% 
and 17%) than that of Q, hence the execution time of 
FW is between 12% and 17% larger than ET(Q). 

HOT SPOT Workload. In the range 0.1 5 6,/J, 5 
0.25 the difference between the checkpointing overhead 
of RA and that of Q is similar to the one observed in 
the case of the PHOLD workload. On the contrary, 
in the range 0.5 5 b,/& 5 1.0 the results are quite 
different (NC(RA)/NC(Q) remains around 0.7). As 
for the PHOLD workload, ACF(RA) is larger than 
ACF(Q) but the distance is not so evident; in particu- 
lar, ACF(RA) is between 1.3 and 2.7 times ACF(Q). 
The difference between the efficiency of RA and that 
of Q is reduced compared to the one observed for the 
PHOLD workload, however, Q remains between 4.5% 
and 8% more efficient than RA. As for the PHOLD 
workload, the maximum distance between the effi- 
ciency of RA and that of Q is noted when 6,/d, = 1.0. 
In conclusion, when b,/& = 1.0 the event rate of Q is 
up to 14% greater than the event rate of RA, hence 
ET(RA) is up to 14% larger than ET(Q). On the 
contrary, for smaller values of 6,/J, the performance 

difference between the two schemes looks slightly re- 
duced; the event rate of Q is around 11% greater than 
the event rate of RA, so ET(RA) is around 11% larger 
than ET(Q). 

While moving from 6,/b, = 0.1 to S,/& = 1.0 
the checkpointing overhead of FW decreases from 1.4 
to 0.82 times the checkpointing overhead of Q and 
ACF(FW) is between 1.1 and 1.6 times ACF(Q). 
This means that Q achieves around the same cost of 
coasting forward (or even smaller) but usually with less 
checkpoints (i.e., with larger average checkpoint inter- 
vals) compared to FW (this feature derives directly 
from the better placing of checkpoints of Q). The effi- 
ciency of FW is between 2% and 7% smaller than the 
efficiency of Q (the maximum distance is noted when 
6,/b, = 1.0). So, the basic factors affecting perfor- 
mance are the larger checkpointing overhead and the 
smaller efficiency of FW. The event rate of Q is be- 
tween 4% and 15% greater than the event rate of FW 
(the maximum distance is noted when 6,/d, = l.O), so 
ET(RA) is between 4% and 15% larger than ET(Q). 

5 Conclusions 

In this paper a sparse state saving scheme for Time 
Warp simulators is presented. The scheme aims at es- 
tablishing a relation between checkpoints and rollback 
points in order to reduce the average rollback cost. To 
this purpose, statistics on the event history are col- 
lected for predicting states that will be restored due to 
rollback. Those states are recorded as checkpoints in 
order to make them directly available. The percentage 
of states to be recorded is a function of a parameter cy 
whose value determines the degree of goodness of the 
prediction. The adaptation of (Y is realized by observ- 
ing the impact of its value on a checkpointing-rollback 
cost function. Our state saving scheme attempts for 
the first time to put together the exploitation of statis- 
tics related to the virtual time progression with the ob- 
servation of the CPU time spent due to checkpointing 
and rollback operations, in order to determine both the 
best appropriate percentage of states to be recorded as 
checkpoints and also their position in virtual time. 

Two synthetic workloads, PHOLD and HOT SPOT, 
have been used to provide a performance comparison 
with previous solutions. In order to carry out the com- 
parison while varying the impact of checkpointing and 
coasting forward on the execution time, simulations 
have been realized by using several different values of 
the ratio between the average state saving time and the 
average event routine time of the logical processes. 

For both simulation models, the new scheme shows 
an improvement of the efficiency and of the event rate 
compared to other schemes. Hence the results are de- 
cidedly encouraging thus pushing towards future work 
focused on both a more accurate performance compar- 
ison, based on a broad variety of simulation workloads 
(including real world simulation models), and also an 
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investigation onto the impact of the new approach on 
memory space. 

As a final point, we would like to outline one limita- 
tion of our state saving scheme. It exploits information 
only about the arithmetic mean of the average virtual 
time increment of an LP. This approach has the advan- 
tage of adding negligible overhead to the execution but 
cannot well tackle situations in which the virtual time 
increment follows a skewed, non-unimodal distribution. 
In those situations the scheme might not produce per- 
formance improvement over previous proposals. In or- 
der to overcome this problem, sophisticated forecast 
methods would be adopted. The embedding of some of 
those methods in our state saving scheme is the object 
of a study in progress. 
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