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Abstract—According to Moore’s law the complexity of V LSI
circuits has doubled approximately every two years, resulting in
simulation becoming the major bottleneck in the circuit design
process. Parallel and distributed simulations can be applied
as fast, cost effective approaches to the simulation of large,
complex circuits. In this paper, a simple yet effective simulated
annealing-based approach is proposed to optimize the choice
of a time window for optimistic parallel simulation. We chose
gate level circuits simulations as our experimental vehicle. Our
results show up to a 52% improvement in the simulation time
using our simulated annealing algorithm. To the best of our
knowledge, this is the first time that SA has been applied to
optimize the performance of Time Warp simulations.
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I. I N T R O D U C T I O N

Hardware Description Languages (H D L) such as
Verilog[1] and V H D L[2] are commonly employed to design
circuits. The use of an H D L expedites the design process
and the time-to-market of these circuits. A n important part
of the design process is verification, in which engineers
check the correctness and performance of the circuits
using both hardware and software simulation. Because
of the expense of hardware simulation, the verification
process relies more upon software simulation. Because of
the memory and speed limitation of sequential simulation,
parallel discrete event simulation has emerged as a viable
alternative to provide a fast, cost effective approach for the
performance analysis of current V LSI circuits.

A parallel (or distributed) simulation is composed of
a set of Logical Processes (LP) which are executed on
different processors and which model different parts of a
physical system. The events in a parallel simulation must be
executed in the same order as they would be in a sequential
simulation[3], i.e. causality must be maintained. In order to
maintain causality, the LPs must be synchronized. There are
two main approaches to the synchronization of a parallel
simulation: conservative synchronization[4] and optimistic
synchronization[5]. The main drawback of conservative ap-
proaches is that they cannot maximally exploit all of the
available concurrency in a system. Worse yet, they can
deadlock. A mong the optimistic synchronization schemes,
Time Warp[5] is widely employed. In this paper we use
Time Warp for the parallel simulation of digital circuits.

Time Warp simulators for digital logic circuits have been
used in [6][7][8][9]. We also utilize D V S[6] for the parallel
simulation of our circuits.

While Time Warp potentially makes better use of the sys-
tem’s parallelism, its over-optimism may lead to instability.
In the worst case, the LPs spend most of their time rolling
back in order to maintain causality, making it impossible for
the simulation to progress[10]. A nother major problem with
Time Warp is its memory consumption, resulting from the
need to save the states of LPs as well as events. One solution
to this problem is to force an LP to block for a short period of
time if its local time exceeds a certain virtual time (G V T).
The virtual time constitutes the upper bound of a virtual
time window, whose lower bound is the G V T. A pproaches
to computing the size of the time window may be found
in [11][12][13]. Jun[13] achieved excellent performance by
utilizing reinforcement learning approach[14].

Simulated A nnealing (SA )[15] is a stochastic search
method to find a good approximation to the global min-
imum of a function in a large search space. Due to the
excellent performance of SA in solving combinatorial op-
timization problems, it has been applied in different appli-
cations, such as convex optimization[16], manufacturing cell
formation[17] and the robust spanning tree problem[18]. In
this paper we utilize an SA algorithm in order to find the size
of a time window for Time Warp protocol. The simulation
results show up to 30% improvement of simulation time in
comparison to reinforcement learning[13].

The rest of the paper is organized as follows. In section
2, we briefly discuss our simulation environment. In section
3 we introduce the SA algorithm and how it is used in
Time Warp. The performance analysis of this SA algorithm
is addressed in section 4. F inally, the last section contains
our conclusion and our thoughts for future work.

I I. D V S: A D I S T R I B U T E D V E R I L O G SI M U L A T O R

In [6], the authors developed a D istributed Verilog Sim-
ulator (D V S). D V S is an outgrowth of C lustered Time
Warp (C T W)[7]. In C T W, as the name implies, LPs are
grouped together in a cluster. The intuition behind this is
that in large scale digital circuits (and network systems as
well), LPs which model the same functional units should
be grouped together to improve the performance of Time
Warp. B y keeping LPs which communicate frequently with
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one another in the same cluster it is possible to reduce
the amount of communication between the LPs. In C T W,
Time Warp is used between different processors. Within each
cluster a sequential algorithm is employed.

In D V S, Icarus Verilog is used to compile the Verilog
source files to simulation codes. Icarus Verilog is an open-
source Verilog simulator which is composed of two major
parts: the Iverilog compiler and the Verilog Virtual Pro-
cessor (V V P) simulator. These two are connected by the
V V P assembly code. The Iverilog compiler translates the
input Verilog file into the V V P assembly code. The V V P
simulator, which is an event-driven simulator, processes the
events and produces the final results. D V S receives the V V P
assembly code generated by Iverilog as its input. A s is well
known, Verilog supports both the structural and behavioral
description of a circuit. The structural description models
a circuit as a network of interconnecting gates, and the
behavioral description takes into account the changes in the
signals. These two are translated to functor statements and
thread statements in the V V P assembly code[6] .

The main structure of D V S is depicted in figure 1. The
V V P Parser parses the V V P assembly code and instanti-
ates structural and behavioral statements into Functors and
V threads respectively. Each Functor is a digital gate with
four inputs and one output. When any of the inputs changes
during the simulation the value of the output port is updated.
V threads are employed to drive functors with input vectors.
The main function of the Partitioner in D V S is to provide
an infrastructure for testing different partitioning algorithms.
There is an abstract class, called ParBase, from which all of
the partitioning algorithms can be derived.

There are three layers in D V S simulators. The bottom
layer is a communication layer which is used by the upper
layers for message passing. The middle layer is a distributed
simulation layer, called O O C T W (Object Oriented C lustered
Time Warp). This is an object oriented version of C lustered
Time Warp which manages all of the Time Warp operations.
The top layer is the simulation engine, which is a copy of
the sequential D V S simulation engine. We added the SA
algorithm to the C luster class in the O O C T W layer of D V S.

I I I. SI M U L A T E D A N N E A L I N G

Simulated A nnealing (SA ) is a probabilistic heuristic
approach originally proposed in [15] for global optimization
problem of applied mathematics. For a given objective
function f , SA can find a good approximation for the global
optimum in a large search space. SA starts from an initial
solution and attempts to move to a neighboring solution in
order to improve the result. SA is grounded in an analogy
pertaining to the thermal mobility of molecules, e.g. water
changes from a liquid state to a pure crystalline form when
the temperature is decreased.

A. The Simulated Annealing Algorithm

A t each step of the algorithm, SA decides between moving
the system to a new state s0 and staying in the current state
s where s0 is a neighbor of the current state. This decision is
made probabilistically. The probabilities are chosen so that
SA tends to move to states with a better objective function
value. States are, of course, specified in an application-
specific way. This step is repeated until a ”good enough”
solution has been determined or a computational budget has
been exhausted.

The acceptance probability function P ( Ð E ; T ) specifies
the probability of making the transition from the current
state s to a candidate new state s0 according to changes
in the value of the function Ð E . If a new state results in
a better value, it is accepted. However, if the new solution
yields a worse value, there is a probability that it will still be
accepted. This is accomplished by first randomly selecting
a number from (0,1). If the value is less than or equal to the
value of the probability function, the new state is accepted;
otherwise, it is rejected. This check prevents the algorithm
from being stuck in a local minimum-a state that has a value
which is larger than the global minimum, but which smaller
than any of its neighbors. The probability function is shown
in formula 1[15]:

P ( Ð E ; T ) = e  Ð E = T ; (1)

where T is the current temperature. This is known as the
Boltzmann distribution. When T goes to zero, the probability
P ( Ð E ; T ) goes to zero if Ð E > 0 , and to a positive value
if Ð E < 0. On the other hand, for small values of T , the
system will increasingly favor moves to state in which the
objective function is improved and avoid those which worsen
the objective function. When T is 0, the SA changes the state
only if it improves the objective function.

A nother feature of SA is the annealing schedule - the
temperature is gradually reduced as the simulation proceeds.
Initially, T is set to a high value in order to escape local
minima. A fter a few steps the temperature T is reduced
gradually according to some annealing schedule. The an-
nealing schedule can be specified by the user but should
end with a low value temperature by the end of the allotted
computational budget. The evolution of the temperature T



during the optimization process is also called the cooling
schedule.

B. Simulated Annealing and Optimizing Time Warp
Time Warp is prone to an explosive growth in the number

of rollbacks and to an excessive usage of memory. One
approach to avoiding these problems is to limit the optimism
by allowing only those events whose timestamps are within
a certain time window to be executed optimistically[12]. The
time window is defined by the interval [ G V T , G V T + W ],
where W is the size of the window. E vents within this
interval can be executed, but those which have a timestamp
beyond G V T + W are not allowed to be executed, i.e. the
LP is blocked. A blocked LP can still receive messages, but
cannot send messages except for messages involved in the
G V T computation. A fter a G V T update, the window itself is
updated. Previously blocked LPs are unblocked if their next
scheduled event falls within the newly updated window.

Note that if an objective function does not adequately
reflect the main goal of the system, the SA algorithm
may well fail to find an optimal policy. In Time Warp,
the basic goal is to reduce the simulation time; hence the
objective function should be related to the wall-clock time
of the simulation. A s in [13], we select the E vent Commit
Rate(E C R) as the objective function. If G V T i is the wall
clock time at the ith G V T, the E vent Commit Rate (E C R)
of the ith G V T interval (the interval from G V T i  1 to G V T i )
is defined as:

E C R i = N C i =(t i  t i  1 ); (2)

where N C i denotes the number of committed events at
G V T i .

Algorithm 1. S A i n i t i al i z e()
1: old w i ns[1::n] = r a ndom(1; M A X W I N ); %set ini-

tial windows randomly
2: bcast(old w i ns); %broadcast the initial windows to all

nodes
3: std r a te = 0;

Algorithm 2. S A doi t()
1: g a ther (tot al ec); %gather committed events number
2: new r a te = tot al ec=dt; %calculate the commited

event rate
3: ž = e( ( n e w r a t e  s t d r a t e ) = T ) ;
4: x = r a ndom(0; 1);
5: if x < ž then
6: old w i ns = new w i ns;
7: std r a te = new r a te;
8: new w i ns = get a ne ighbor (old w i ns);
9: else

10: new w i ns = get a ne ighbor (old w i ns);
11: end if
12: bcast(new w i ns); %broadcast the new windows
13: T cou n ter + + ;
14: T = T0 ð F ( T co u n t e r = M )

c ;

The main process of our SA algorithm is described in
algorithm 1 and algorithm 2. Since the result of the SA
algorithm is independent of the initial choice, we set the
window sizes of different nodes to a random value at the
beginning of the simulation. Then, we use the first C G V T
cycles to run the SA algorithm and find a good choice for the
windows. A fter that, we will use the result of SA algorithm
as the window sizes in the remaining simulation.

During the SA running period, we calculate the commit
rate in every n G V T cycles, afterward we move to a
neighboring window and try to find a better choice. In order
to move to a new neighbor, we select some elements of
the windows randomly and increase or decrease its size by
a dynamic value, D , according to the acceptance rate. D is
the distance between neighbors. It is an important parameter
to adjust the SA process. We will show the effect of the
distance in the next section. A fter finding a neighbor, we
wait for n G V T cycles and calculate the new event commit
rate E C R n e w . If E C R n e w is greater than old(previous)
E vent Commit Rate E C R o l d , we accept the new neighbor
as the current windows. Otherwise a random value between
0 and 1 is generated, if this random value is less than
probability function value in (1), we again select the new
neighbor as the current windows. A s the cooling process,
T is multiplied by a cooling factor, F c , after each M G V T
cycles, where F c and M are some user input parameters.

I V. E X P E R I M E N T A L R E S U LT S

In this section we present performance results for the
simulated annealing algorithm. We utilized D V S[6] as our
simulation engine and the C38417 and C38584 circuits from
ISC A S-89 suite as our test benches. Our experimental plat-
form consists of 12 dual core, 64 bit Intel processors. Each of
these processors has 8 G igabytes of internal memory. Load
distribution between the two cores of a processor is automat-
ically performed by the operating system. The processors are
connected to each other by means of a 1 G igabyte per second
Ethernet. We utilized the Message Passing Interface (MPI)
as the communication platform between processors. MPI
provides a reliable mechanism for sending and receiving
messages between different processors.

A mong the different parameters which affect the perfor-
mance of the SA algorithm, the distance parameter is very
important. The distance parameter is the Euclidean distance
between neighboring window-vectors. In order to find a
neighbor window-vector of a current vector, we specify
a radius and randomly select one within an n-dimension
sphere. If the distance is too small, the searching process
advances too slowly and we cannot find the optimal choice
within a limited number of steps. If the distance is too big,
we may jump too far and not obtain the optimal choice
between neighbors.

F ig. 2 shows the effect of different distances on the
performance of Time Warp for circuit C38584. In this figure,
the X -axis represents the distance between neighbors and the
Y-axis represents the simulation time. The numbers in the
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F igure 2. The effect of distance parameter on simulation time
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F igure 3. The effect of distance parameter on acceptance rate

legend represent the number of nodes which participate in
the SA algorithm. A s the results indicate, the best distances
when we have 4, 8 and 16 nodes are 1, 4 and 8, respectively.
The best distance becomes bigger with more nodes because
the choice becomes greater with more nodes, and we need
a larger distance to find a better choice.

There is a relationship between the simulation time and
the acceptance rate. F ig. 3 shows the acceptance rates for
different distance values. In this figure, the X -axis represents
the distance between neighbors and the Y-axis represents
the acceptance rate. The numbers in the legend represent
the number of nodes which participate in the SA algorithm.
A s figures 2 and 3 imply, if the acceptance rate is close
to 50%, the simulation time will be reduced by using the
SA algorithm. The reason for this is that if the acceptance
rate is too high, the neighboring window is too close to
the original window and we need to increase the distance.
On the other hand, if the acceptance rate is too low, the
neighboring window is too far from the original window
and we need to decrease the distance. Therefore, we applied
an adaptive method to adjust the distance. If the acceptance
rate is greater than 50%, we increase the distance; otherwise
we decrease it.

F igures 4 and 5 show the simulation results for the
C38417 and C38584 circuits with different algorithms. In
these figures the X -axis represents the number of nodes that
participate in the simulation and the Y-axis represents the

F igure 4. Simulation Results of C ircuit C38417

F igure 5. Simulation Results of C ircuit C38584

simulation time. The labels in the legend represent different
methods which we utilize in order to find the size of the
time window. “ No-Win” represents the results without using
a time window (the window is set to infinity); “avg-Win”
represents the average results for all of the values of time
windows; “R L” represents the results of a Reinforcement
Learning algorithm with random candidates, in this work
we implement a Q-Learning algorithm with one state; “SA”
represents our simulated annealing algorithm. Both “R L”
and “SA” methods are implemented on-line. A s these figures
indicate, the SA algorithm outperforms the other algorithms.
The results show that simulation time is reduced by up
to 52% when compared to the “ No-Win” approach for
the C38417 circuit. The best simulation time in [13] was
achieved by applying the reinforcement learning approach.
A s we can see, our SA algorithm reduced the simulation
time by up to 36% compared to the approach in [13] for the
C38417 circuit with 24 nodes.

F igures 6 and 7 show the standard variance for the
experiments for 100 repetitions with different methods. In
the figures, the X -axis represents the number of nodes and
the Y-axis represents the standard variance. The labels in the
legend represent the different methods. From these figures,
we can see that our SA algorithm gets more stable result than
the R L algorithm. The reason for this is that the result of



F igure 6. Standard Variance of C ircuit C38417

F igure 7. Standard Variance of C ircuit C38417

R L algorithm is decided by the quality of candidates which
are input to the algorithm, while the SA algorithm can find
a good solution given a rather large choice of possibilities.
A s for the overhead, the overhead of both R L and SA is
very low (no more than 1% of the computation time), so
we do not portray detailed results for the overhead in this
paper. The above experimental results clearly show that our
SA algorithm can accelerate the simulation effectively as the
speed-up obtained by our algorithm is better than any other
existing method for choosing a time window.

V. C O N C L U S I O N

In this paper, we presented a simulated annealing algo-
rithm for choosing an optimal window size for bounded
Time Warp. We utilized D V S[6] as our simulation engine
and examined the performance of the SA algorithm for
two circuits from the ISC A S benchmark suite. Our results
showed that for different circuits and different topologies
(i.e. differing numbers of processors), the SA algorithm
can find a nearly optimal value for a time window. Our
experimental results showed that the simulation time was
reduced by up to 52% using this approach. To the best of
our knowledge, this is the first time that SA has been utilized
to chose a window for bounded Time Warp.

A s for our future work, we plan to study the effect of
adaptive simulated annealing for Time Warp simulation.
Employing neural networks to optimize Time Warp is a
future research direction as well.
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