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Abstract
The traditional high-level algorithms for rigid body simulation work well for moderate numbers
of bodies but scale poorly to systems of hundreds or more moving, interacting bodies. The prob-
lem is unnecessary synchronization implicit in these methods. Jeffersonś timewarp algorithm
(Jefferson 85) is a technique for alleviating this problem in parallel discrete event simulation.
Rigid body dynamics, though a continuous process, exhibits many aspects of a discrete one.
With modification, the timewarp algorithm can be used in a uniprocessor rigid body simulator to
give substantial performance improvements for simulations with large numbers of bodies. This
paper describes the limitations of the traditional high-level simulation algorithms, introduces
Jeffersonś algorithm, and extends and optimizes it for the rigid body case. It addresses issues
particular to rigid body simulation, such as collision detection and contact group management,
and describes how to incorporate these into the timewarp framework. Quantitative experimental
results indicate that the timewarp algorithm offers significant performance improvements over
traditional high-level rigid body simulation algorithms, when applied to systems with hundreds
of bodies. It also helps pave the way to parallel implementations, as the paper discusses.
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Abstract
The traditional high-level algorithms for rigid body simulation work well for moderate

numbers of bodies but scale poorly to systems of hundreds or more moving, interacting
bodies. The problem is unnecessary synchronization implicit in these methods. Jef-
ferson’s timewarp algorithm [22] is a technique for alleviating this problem in parallel
discrete event simulation. Rigid body dynamics, though a continuous process, exhibits
many aspects of a discrete one. With modification, the timewarp algorithm can be used
in a uniprocessor rigid body simulator to give substantial performance improvements
for simulations with large numbers of bodies. This paper describes the limitations of the
traditional high-level simulation algorithms, introduces Jefferson’s algorithm, and ex-
tends and optimizes it for the rigid body case. It addresses issues particular to rigid body
simulation, such as collision detection and contact group management, and describes
how to incorporate these into the timewarp framework. Quantitative experimental re-
sults indicate that the timewarp algorithm offers significant performance improvements
over traditional high-level rigid body simulation algorithms, when applied to systems
with hundreds of bodies. It also helps pave the way to parallel implementations, as the
paper discusses.
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Figure 1: Avalanche: 300 rocks tumble down a mountainside.

1 Introduction
Today rigid body simulation is a mature technology. The major components have been
well studied and made practical: fast, robust collision detection algorithms [10, 17, 21,
27]; impact models of varying accuracy [8, 12, 31]; methods to enforce general motion
constraints [6, 37], especially the ubiquitous non-penetration constraints [3, 4, 35, 36];
and control strategies for articulated bodies [19, 20, 28, 32]. Thus rigid body simulation
is available in many animation and CAD packages and used in computer games. Yet
areas for significant improvement remain. An important one is increasing the number
of moving, interacting bodies that can be simulated.

We are concerned with general rigid body simulation, meaning that the bodies have
nontrivial geometries, all pairs can potentially collide, and second-order physics gov-
erns the motion. There are numerous techniques to simulate large numbers of rigid
bodies by relaxing some of these assumptions. Milenkovic efficiently simulates vast
numbers of interacting spheres and non-rotating polyhedra using linear programming
techniques and zeroeth-order physics [25]. Carlson and Hodgins use different motion
levels of detail, from fully dynamic to fully kinematic, to obtain an order of magni-
tude increase in the number of legged creatures that can be simulated in real time [11].
Chenney et. al. cull dynamics computations for off-screen objects; when they enter
the field of view initial states are computed by sampling a probability distribution over
their state space [13]. Brogan et. al. simulate large herds of fully dynamic agents in
distributed virtual environments, but without full collision detection [9]. Despite these
excellent techniques, the general case is worth pursuing because of its wide applicabil-
ity; sometimes full collision detection and dynamics cannot be avoided.

Traditional techniques for the general problem become inefficient and even in-
tractable with many-bodied systems for one of two reasons. Either the integration
steps1 become very small, or the amount of work that is wasted because of unpre-
dictable events (like collisions) becomes very large. The problems are not in the com-
ponent algorithms but in the glue holding them together—the high-level simulation
loop. It imposes a synchronization between bodies that is usually unnecessary and
wasteful. These problems are explored in depth in Section 2. Jefferson’s timewarp
algorithm [22], discussed in Section 3, is an elegant paradigm designed to alleviate
similar problems in parallel discrete event simulation by running processes as asyn-
chronously as possible. An optimistic, non-interaction assumption prevails, and when

1Throughout this paper, integration step means the time interval passed to the integrator, not the smaller
steps it may take internally.
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it is violated only the computation that is provably invalid is undone. Although rigid
body dynamics is a continuous process, it exhibits many traits of a discrete process.
With some modification, the timewarp algorithm can be used in rigid body simulators,
improving both their speed and scalability. The method is described in Section 4, and
Section 5 presents results from an actual implementation.

Timewarp rigid body simulation also supports the long-range goal of a highly paral-
lel implementation. Rigid body simulation offers unlimited potential for modeling the
complex and unanticipated interactions of rich virtual environments, but current tech-
nology cannot support this. Meeting this challenge will certainly require a multipro-
cessor approach, with perhaps hundreds of processors computing motion throughout
the environment. Such a simulation farm is akin to the rendering farms that generate
today’s high quality computer animation. Section 6 touches on these issues.

2 Simulation Discontinuities
The dominating computation in a rigid body simulator is that of numerically integrating
the dynamic states of bodies forward in time. The differential equations of motion have
been known for centuries; the true difficulty lies in processing simulation discontinu-
ities, here defined as events that change the dynamic states or the equations of motion
of some subset of the bodies. Examples include collisions, new contacts, transitions
between rolling and sliding, and control law changes. Integrators cannot blithely pass
through discontinuities. Instead the integration must be stopped, the states or equations
of motion updated, and then the integrator restarted from that point. Compounding this
complication is the fact that the times of most discontinuities are impossible to predict.
Thus the integration must be interrupted even more frequently than the rate at which
discontinuities occur, just to check if they have occurred. There are two common ap-
proaches for coping with discontinuities, both of which have been shown practical for
moderate numbers of bodies.

2.1 Retroactive Detection
Retroactive detection (RD) is the most common approach to handling discontinuities.
The simulator takes small steps forward and checks for discontinuities after each step
[2, 23]. For example, inter-body penetration indicates that a collision occurred at some
time during the most recent integration step. A root finding method localizes the exact
moment of the discontinuity. After resolution, the integration is restarted from that
point. All of the bodies must be backed up to their states at the time of the disconti-
nuity because (1) the discontinuity may have affected their motion, and (2) the bodies
directly involved in the discontinuity must certainly be backed up to this time, and
there is no framework for maintaining bodies at different times—the bodies must be
kept synchronized. The first problem is avoidable by bounding a discontinuity’s influ-
ence. A certain collision may provably have no influence on the motion of a distant
body over the current integration step. However, the second problem is fundamental to
RD. It does not suffice to maintain states at two different times, the time of the discon-
tinuity and the time at the end of the step, because multiple discontinuities can occur at
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different times in a single step. Also, earlier discontinuities may cause or prevent later
ones, and it is hard to determine which one occurred first without localizing the times
of each. In practice, all bodies are backed up to the point of each discontinuity. This
method is correct since it eventually processes all real discontinuities and no spurious
ones, and Baraff has shown it to be efficient and eminently practical for moderate num-
bers of interacting bodies [5]. As the number of bodies increases, so does the the rate
of discontinuities, and the wasted work per discontinuity increases since more bodies
must be backed up. Shrinking the step size to reduce the amount of backup is not a
good solution as we shall see. Eventually RD becomes intractable due to the amount
of wasted work.

2.2 Conservative Advancement
Conservative advancement (CA) is an alternative to RD based on the idea of never
integrating over a discontinuity. Conservative lower bounds on the times of disconti-
nuities are maintained in a priority queue sorted by time, and the simulator repeatedly
advances all simulated bodies to the bound at the front of the queue. The simulator
tends to creep up to each discontinuity, taking smaller steps as it gets closer. Von
Herzen et. al. use this approach to detect collisions between time-dependent paramet-
ric surfaces [18], and Mirtich uses it to support impulse-based simulation [26]. Snyder
et. al. use a related approach to locate multi-point collisions by using interval inclu-
sions to bound surfaces in time and space [33]. Finally, CA forms the basis for kinetic
data structures pioneered by Basche et. al. [7]. These are used to solve a host of prob-
lems from dynamic computational geometry, such as maintaining the convex hull of
a moving point set, by maintaining bounds on when the combinatorial structure may
change. For rigid body simulation the advantage of CA is that it does not waste work
by integrating bodies beyond a discontinuity. Unfortunately, as the number of bodies
increases the average time to the next discontinuity check decreases, and the problem
is exacerbated since it is difficult to compute tight bounds on times of collisions and
contact changes. Stopping the integration of all bodies at each check is very inefficient,
and CA becomes intractable with many bodies.

2.3 Step Sizes and Efficiency
Figure 2 graphically demonstrates the problem with small integration steps. It shows
the computational cost of computing the 10-second trajectory of a ballistic, tumbling
brick using a fifth order adaptive Runge-Kutta integrator [30] under various step sizes.
The two qualitatively similar curves correspond to different integrator error tolerances.
At small step sizes the integrator does not need to subdivide the integration step into
smaller pieces to meet the error tolerance. Thus computation is proportional to the
number of invocations: halving the step size doubles the work. At large step sizes the
integrator breaks the requested step into smaller pieces to meet the error tolerance, so
computation is insensitive to step size. Unfortunately, even with a moderate number of
bodies, a simulator’s operating point is to the left of the elbow in these curves. Thus,
reducing the step size significantly increases computational cost.
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Figure 2: Cost of computing the trajectory of a brick versus integration step size (eps
is the integrator error tolerance).

3 The Timewarp Algorithm
The problems of RD and CA result from unnecessary synchronization. Each discon-
tinuity affects only a small fraction of the bodies, yet under RD every body must be
backed up when a discontinuity occurs, and under CA integration of every body must
stop for a discontinuity check. The inefficiencies are tolerable as long as there are not
too many bodies. Similar issues arise in discrete event simulation (DES) , which is of-
ten applied to very large models such as cars on a freeway system. These simulations
are often done in parallel or distributed settings. The simulated agents are partitioned
among a number of processors, each of which advances its agents forward in time.
There are causality relationships that must be preserved (e.g. a car suddenly braking
causes the car behind it to brake), and the crux of the problem is that one agent may
trigger an action of another agent on a different processor. Obviously communication
by message passing or other means is needed.

Conservative DES protocols guarantee correctness by requiring that each processor
advance its agents forward to a certain time only when it has provably received all
relevant events from other processors occurring before that time. Optimistic protocols
were a key breakthrough in distributed DES. These allow each processor to advance
its agents forward in time by assuming all relevant events have been received, thereby
avoiding idle time. The catch is that when an agent receives an event in its “past,” the
agent needs to be returned to the state it was in when the event occurred, its own actions
since that time must be undone, and the intervening computation is wasted. Jefferson
was among the first to define a provably correct, optimistic synchronization protocol
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along with a simple, elegant implementation called the timewarp mechanism [22]. We
now give a brief, simplified description of this seminal algorithm.

Each process maintains the state of some portion of the modeled system. Each
process also has a local clock measuring local virtual time (LVT) at that process. The
local clocks are not synchronized, and processes communicate only by sending mes-
sages. Every message is time stamped2 with a time not earlier than the sender’s LVT
but possibly earlier than the receiver’s LVT when the message is received. Processes
must process events in time order to maintain causality constraints. When a received
message has a timestamp later than the receiver’s LVT, it is inserted into an input queue
sorted by timestamp. A process’s basic execution loop is to advance LVT to the time of
the first event in its input queue, remove the event, and process it. Advancing to a new
time means creating a new state, and these are queued in time order in a state queue.

If the first event in a process’s input queue has a receive time earlier than LVT, the
process performs a rollback by returning to the latest state in its state queue before the
exceptional event’s time. This becomes the new current state, its time becomes the
new LVT, and all subsequent states in the queue are deleted. Already processed events
occurring after the new LVT are placed back in the input queue. Messages the processor
sent to other processes at times after the new LVT are “unsent” via antimessages. When
a process sends a message, it adds a corresponding antimessage to its output queue.
This is a negative copy of the sent message, identical to it except for a flipped sign
bit. When a process is rolled back to a new LVT, all antimessages in the output queue
later than this time are sent. When a message and antimessage are united in a process’s
input queue, they annihilate one another, and the net effect is as if a message were
never sent. Rollback is recursive: antimessages may trigger rollbacks that generate
new antimessages.

Global virtual time (GVT) is the minimum of all LVTs among the processes and all
times of unprocessed messages. It represents a line of commitment during the simu-
lation: states earlier than GVT are provably valid while states beyond GVT are subject
to rollback. Individual LVTs occasionally jump backwards, but GVT monotonically in-
creases. Since rollback never goes to a point before GVT, each state queue needs only
to maintain one state beforeGVT. Earlier states as well as saved messages prior to GVT
may be deleted.

4 Timewarp Rigid Body Simulation
Rigid body simulation computes a continuous process but exhibits traits of DES. Bod-
ies “communicate” through collisions and persistent contact. Collisions are in fact
usually modeled as discrete events. Contact is a continuous phenomenon, but it can be
viewed as occurring within a collection of bodies rather than between individual bod-
ies. This view facilitates the adaptation of the timewarp algorithm to uniprocessor rigid
body simulation. The result is a high-level simulation algorithm that does not suffer
from the wasted work problem of RD nor the small timestep problem of CA.

2Each message actually has two timestamps, a send and receive time, but one suffices for our purposes.
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4.1 Overview
First consider a simulation without connected or contacting bodies. Each body is a
separate timewarp process with a state queue containing the dynamic state (position
and velocity) of the body at the end of each integration step. The times of these states
are different for different bodies. A global event queue contains events for all simulated
bodies; this corresponds to a union of all the individual input queues in Jefferson’s
algorithm. Each event has a timestamp and a list of the bodies that receive it. One
iteration of the main simulation loop consists of removing the event from the front of
the event queue, integrating the receiving body or bodies to the event time, and then
processing the event. Most events are rescheduled after they are processed. Our system
supports four types of events:

1. Collision check events are received by pairs of bodies, causing a collision check
to be performed between them at the given time. Processing these events may
lead to collision resolution.

2. Group check events trigger collision checking between contacting bodies and
also checking for when groups of such bodies should be split. They can also lead
to collision resolution.

3. Redraw events exist for every rendered body. Processing one involves writing
the current position of the body to a recording buffer. Rescheduling occurs at
fixed frame intervals.

4. Callback events are received by arbitrary sets of bodies and invoke user functions
written in Scheme that, for example, drive control systems. Rescheduling is user-
specified.

4.2 Collisions and Rollback
If penetration is discovered in processing a collision check or group check event, then
a collision has occurred at a time preceding the time of the event. This may be a
normal collision or a soft collision producing a new persistent contact. Either way,
the colliding bodies must be rolled back to the collision time. This behavior differs
from that of standard timewarp events which only cause rollback up to the time of
the event; it occurs in rigid body simulation because exact collision times cannot be
predicted. To implement collision rollback each collision check and group check event
has an additional timestamp, a safe time, which is the time when the pair or group of
bodies was last verified to be disjoint. When a collision check or group check event is
processed, and there is no penetration, the safe time is updated to the time of the check.
When penetration is detected, the safe time forms a lower bound on the search for the
collision time. Since rollback never proceeds to a point before the safe time, GVT can
be computed as the minimum of all LVTs and all event safe times. This insures there
are always states to back up to when a collision occurs.

The antimessage mechanism is more general than what is needed for uniprocessor
rigid body simulation. Still considering only isolated bodies, the only inter-body com-
munication is through collisions; a suitable record of these drives the rollback. Pairs
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of corresponding post-collision states are linked together, turning the individual state
queues into a dynamic state graph as shown at the top of Figure 3. The figure depicts
the actions taken when bodies and collide. Body is rolled back by deleting all
of its states after the post-collision state. (If also had such states, a twin rollback
operation would begin in its own state queue). Some of the deleted states are linked via
collisions to states in other bodies. These inter-body communications are now suspect
due to the - collision, thus rollback proceeds across the collision links and then re-
cursively forward through other bodies’ state queues. Upon completion of rollback, all
states that were possibly affected by the - collision—and no others—are deleted.
In this example the rollback invalidates a substantial amount of work. It is an unusual
case but one the simulator must be prepared for.

Events must also be rolled back. This corresponds to placing messages back in a
process’s input queue in Jefferson’s original algorithm. An event needs to be rolled
back only if it involves a body whose state queue was rolled back to a time earlier
than the scheduled time of the event. Event rollback is type-specific. Redraw events
are simply rescheduled to the first frame time following the rollback time. Fixed-rate
callback events are handled similarly. If the rollback time is earlier than the safe time
of a collision check or group check event, the event is rescheduled to the rollback
time. If the rollback time is between the safe time and the scheduled event time, the
system optimistically assumes no action is necessary. This is a gamble since a collision
may make the previously computed collision check time inaccurate, but the timewarp
algorithm can recover gracefully from poorly predicted collision times.

In total the timewarp algorithm requires little overhead and few additional data
structures when compared to a conventional simulator. Any simulator computes se-
quences of body states; the main change is that these are kept in queues and linked to-
gether at the collision points. Rollback is implemented with a simple recursive traversal
of the state graph.

4.3 Multibodies
Multibodies (or articulated bodies) are collections of rigid bodies connected by joints,
as in a human figure. The trajectory of a single multibody link cannot be determined
in isolation; the motion of all links must be computed together. Little change is needed
to incorporate multibodies into the timewarp framework. A single state queue serves
for the entire multibody; it is advanced as a unit. Most events are still handled on a
per rigid body (per link) basis. When, for example, a particular multibody link must be
integrated to a certain time for a collision check, the whole multibody is integrated to
that time. As a result, states are more densely distributed along multibody state queues
than along rigid body state queues, especially for multibodies with many links. A
collision involving a single link causes the whole multibody to be rolled back. Clearly
timewarp does not offer much improvement if all of the bodies are connected into only
a few multibodies.
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Figure 3: Top: State graph of a five body simulation. The vertical connections link post-
collision states. The gray states are new post-collision states found while processing an

- collision check event. Bottom: The rollback operation triggered by the collision.
Crossed states are deleted and represent wasted work, but forward progress is indicated
by the advancement of GVT.

4.4 Contact Groups
Contact groups are collections of rigid bodies and multibodies in persistent contact;
the component bodies exert continuous forces on each other. The components must
again be integrated as a unit, but unlike multibodies contact groups are fluid: bodies
may join or leave groups, and groups are created and destroyed during a simulation.
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Contact groups have no analog in the classical timewarp algorithm, which is designed
for a static set of processes. Most of the added work in implementing timewarp rigid
body simulation is in managing contact groups. To impart some order we require that
groups comprise a fixed set of bodies; when the set must change a new group is created.
Groups are created by fusions and fissions. A fusion is a suitably soft collision between
two bodies, after which they are considered to remain in contact. Either body may be
part of a multibody or another group. A fission is a splitting of a group into two or
more isolated bodies or separate (non-contacting) groups.
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Figure 4: Top: The state graph for a portion of a six body simulation. Circles are
isolated body states and squares are contact group states. Bottom: The physical con-
figuration of the bodies at three distinct times. Moving bodies in contact groups are
colored to match the top part of the figure. See text for details.

The complexities of contact group evolution are best explained by example. The
top of Figure 4 shows the state graph for five rigid bodies labeled - and the various
contact groups that exist over the time interval (body does not have a state
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queue since it is fixed). The bottom of the figure depicts the physical configuration
at three distinct times. At time , only bodies and are isolated; the others are
members of two contact groups, and . Only kinematically controlled bodies,
of which fixed bodies are a special case, may be members of multiple groups at a given
time; such bodies do not link groups together since their motion and the forces they
exert on other bodies are independent of the forces exerted on them. Dotted horizontal
lines indicate intervals without isolated states since the body is part of a group. The first
change after is a fusion collision between and , creating a new group, .
and then collide, but this is a standard (non-fusion) collision so remains isolated
and intact. The - collision does set in motion, eventually leading to an

- fusion collision. This latter collision causes two previously separate groups to
fuse into a single one, which is the situation at time . Next breaks contact with ,
triggering the fission of into and . No collision occurred here;
fissions can be caused simply by breaking contacts. Still sliding, pushes off of ,
causing to leave the contact group and return to an isolated state. Finally, lands
and settles onto , fusing into a new group .

The state graph in the figure only shows states relevant to the discussion. There
would actually be many more states along all of the state queues generated by other
events and discontinuities. For example there are usually many non-fusion collisions
leading up to a fusion collision as bodies settle. At any time coordinate each non-
kinematic body is isolated or a member of exactly one group. Thus there is never
ambiguity about what the state of a body is at a given time, or from which state to
integrate when computing a new state of a body. To compute the state of body at
time , integration proceeds from the latest isolated state of prior to . To compute
the state of at time , integration proceeds from the latest state of group
prior to . To facilitate this, the state graph has additional pointers not shown in the
figure. A fusion collision points to the new group it creates, if any. Also, the last state
of every fissured group points to the newly isolated bodies and subgroups that succeed
it. These pointers make it possible to find for any body and time the latest state of

, possibly in a group, prior to . The search begins within ’s own (isolated) state
queue and extends into contact groups if necessary by following pointers. Sometimes
several pointers and contact groups must be traversed to find the proper prior state. The
pointers also facilitate rollback. When a fusion collision state is deleted, the rollback
proceeds to the new group formed by the collision, if any. When the last state of a
fissured group is deleted, rollback proceeds to the isolated body and subgroup states
that succeeded it.

Over the interval shown in Figure 4, six new contact groups are created in addition
to the two that existed at . At only two remain. Groups are terminated when they
fuse into new groups or when they fissure into pieces. Termination does not mean the
group can be deleted since rollback can cause event processing in non-temporal order.
For example it may be necessary to determine the state of body at time after the
group is terminated. Once GVT passes the last state in a terminated group,
however, the group is obsolete and the storage can be reclaimed. A group is also deleted
when a rollback operation annihilates all of its states.

Intra-group collision detection is handled in one of two ways. If bodies and are
in the same group but not currently in contact, the standard - collision check event
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triggers collision detection between them. Each group has a group check event that per-
forms all of the collision detection between already contacting bodies. The distinction
is needed since most collision time predictors do not compute meaningful results when
the separation distance is near zero. Instead, group check events are scheduled at a
fixed, user-specified rate. While collision detection between and is being handled
by a group check event, the ordinary - collision detection event is disabled.

Group check events are also responsible for detecting fissions. A graph is con-
structed in which the group’s non-kinematic bodies are vertices and contacts are edges.
A standard connected component algorithm is performed on this graph. Multiple com-
ponents indicate that the group can be split. There is flexibility in the time to split a
group. Integrating a group with multiple connected components does not give a wrong
answer; it is simply inefficient since smaller groups can be integrated faster than a
single combined one.

4.5 Collision Checks
At any given point in a simulation, collision checking is enabled between certain active
pairs of bodies, which are hopefully small in number compared to the total number
of pairs [21]. Every non-contacting active pair requires a collision check event. The
bodies’ state queues provide a simple way to keep the number of active pairs small. An
axis-aligned bounding box is maintained around the set of states currently computed
for each rigid body (hence there are multiple boxes for multibodies and groups). This
swept volume grows as new states are computed; it shrinks when states are deleted as
GVT moves past them. Using six heaps to maintain the minimum and maximum
and coordinates of the rigid body at each state, the swept volume over states is
updated in time.

The pairs of swept volumes that overlap can be maintained using a hierarchical hash
table [29] or by sorting coordinates along the three coordinate axes [3, 14]. If the swept
volumes of bodies and do not overlap, then and are known to be collision free
over the interval GVT min , where min is the time of ’s or ’s latest
state, whichever is earlier. As long as the swept volumes remain disjoint, and are
not an active pair. Now suppose integration of causes its swept volume to overlap
the previously disjoint swept volume of . To avoid missing collisions, a new collision
check event for and is scheduled for the time given by the value of min
before was integrated (Figure 5). The bodies are known to be collision free before
this point. This new event is in ’s past, but the timewarp algorithm can accommodate
it; if a collision did occur then rollback will rectify the situation. The collision check
event for and remains active as long as their swept volumes overlap. This method
works even though the swept volumes exist over different time intervals and may have
no states at common times. Inactive pairs do not need to be synchronized in order to
remain inactive, which avoids costly integration interruptions for the vast majority of
body pairs.
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simu- # of avg time avg
lation # of discont- between integr’n

duration rigid bodies inuities disconts step
simulation (s) moving/total (thousands) (ms) (ms)
atoms 120 302 / 308 51.9 2.31 6.25
cars 60 428 / 524 17.8 3.38 14.9
robots 120 240 / 430 26.8 4.48 9.88
avalanche 45 300 / 824 217 0.208 3.39

total total comp
# of integr’n rollback time /

integr’ns / moving / moving frame
simulation (millions) body (s) body (s) (s)
atoms 6.04 125 (+4.2%) 0.278 (0.23%) 0.767
cars 1.98 69.2 (+15%) 1.57 (2.6%) 0.904
robots 3.00 124 (+3.3%) 1.45 (1.2%) 0.707
avalanche 5.84 66.0 (+47%) 7.15 (16%) 97.0

Table 1: Data collected over the four simulations.

4.6 Callback Functions
It is difficult to completely hide the underlying timewarp nature of the system from user
callback functions. Because the bodies’ LVTs are not synchronized, callback functions
involving different bodies are not invoked in strict temporal order. In fact, a callback for
a single body may not be invoked at monotonically increasing times due to rollback.
Thus, a collision callback that counts a body’s collisions by incrementing a global
counter is flawed since it may get called with the same collision multiple times. One
convention that guarantees correct behavior is to forbid callback functions from access-
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ing global data. The function should only use the data passed in: the time of the event
and the states of the relevant bodies at that time. Data that must persist across callback
invocations are supported by adjoining new slots to the states of bodies. Unlike posi-
tion and velocity values, the values in these slots are simply copied from state to state
since there is no need to integrate them, but callback functions can access and mod-
ify these values. Changes are appropriately undone when the state queues are rolled
back. The collision counter is implemented correctly by attaching an integer slot to the
body state. The callback function increments the counter, and rollback may cause the
counter to decrease.

5 Results
We now describe the results of simulating four different systems with a timewarp rigid
body simulator (Figures 1 and 7). Our implementation draws from a myriad of com-
ponent algorithms and techniques described in the literature; Appendix A describes
the major ones. Robustness—always an issue in rigid body simulation—is paramount
for the kinds of simulations studied here. Anything that can go wrong certainly will
when simulating large systems over long times. Our implementation favors robustness
over efficiency. The issues are not the underlying components nor the absolute effi-
ciency of this particular implementation but the degree to which timewarp improves
any implementation’s performance.

Atoms simulates 200 spheres and 100 water-like molecules bouncing in a divided
box. During the simulation the divider compresses one compartment and lifts to allow
the gasses to mix. Cars simulates four multibody vehicles with active wheel veloc-
ity and steering angle controllers. These drive over a course with speed bumps and
an array of 400 spherical pendulums. Robots simulates 20 eight-link manipulators
that repeatedly pick up boxes and throw them. The robots are fully dynamic objects,
controlled via joint torques commanded by callback functions. Callbacks also use an
inverse kinematic model for motion planning. Finally avalanche simulates 300 rigid
bodies tumbling down a mountainside, creating a vast number of interactions. With the
exception of atoms, all simulations use realistic values for length, mass, time and earth
gravity. Each was generated from a single run.

5.1 Full Timewarp Simulation Data
Table 1 shows data collected over the course of performing the full simulations. The
percentages in the total integration and rollback columns are with respect to the simu-
lation duration. Computation times were measured on an SGI Onyx (200MHz R10000
CPU). Integration and rollback intervals of multibodies and groups were weighted by
the number of individual rigid bodies involved. The reason that total integration minus
rollback exceeds duration is because of the added integration involved in localizing dis-
continuities. When a discontinuity is detected over an interval, the simulator must com-
pute new states of the relevant bodies in order to localize it. This means re-integrating
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over certain time intervals, increasing the total integration time.3
Worth noting is the amount by which the average integration step exceeds the aver-

age interval between discontinuities. This of course is a key advantage of the timewarp
algorithm: integration of a body does not halt at every discontinuity but only at the ones
which are relevant to it. The fact that the actual integration steps are 2–16 times larger
than the average interval between discontinuities is especially noteworthy since any
simulation strategy (RD, CA, or timewarp) must check for discontinuities at a much
higher rate than they actually occur. In our experiments, checks outnumbered actual
discontinuities by two orders of magnitude. Under RD or CA, all bodies are halted at
every check, although the problem is less severe under RD since collision checks are
synchronized. Table 1 also shows that rollback is a modest cost. Through judicious un-
doing, timewarp avoids the large amount of wasted work inherent in RD as the number
of bodies increases.

In several performance measures, the avalanche simulation is an outlier. The slow
simulation speed is not because timewarp is not working. The ratio of average integra-
tion step to average time between discontinuities is quite good, and the total integration
per body, while high, is not prohibitive. The main difficulty is the complexity of the
contact groups: over 16,000 groups are formed, some having as many as 64 mov-
ing bodies and 217 simultaneous contacts. Simulating an avalanche using particle or
position-based physics may be more practical, but the example shows that timewarp
can handle even extreme cases well.

5.2 Comparative Simulation Data
Table 1 suggests the timewarp algorithm is a good idea. Further experiments give a
more quantitative measure of the improvement it brings. We added alternate main loops
to the simulator to let it use RD and CA policies instead of timewarp (TW). The RD
algorithm is parameterized by the basic timestep to attempt on each iteration; we used
values of 0.001, 0.01, and 1/30 second. All five algorithms were run on a two-second
segment of an atoms simulation, with the divider stationary in the middle of the box and
with the number of bodies varying from 25 to 200. The upper part of Figure 6 shows
the average integration step taken by the simulator under the various algorithms. The
results confirm the key problem with CA: as the number of bodies increases the average
time to the next discontinuity check decreases. As Figure 2 shows, the small steps have
a drastic effect on computational cost. RD’s average timestep is not as sensitive to
the number of bodies since it always tries to take a fixed size step forward. TW is
also not sensitive to it since the bodies are decoupled. The lower portion of the figure
exposes the problem with RD: wasted work. For a two-second, 200-body simulation
and a frame rate timestep, RD integrates each body an average of 30 seconds. This is
to be compared with TW’s value of 2.3 seconds and the modest percentages in the total
integration column of Table 1. CA never integrates more than two seconds per body
since it uses a one-sided approach to each discontinuity.

Actual execution times shed further light. For 100 atoms, RD-1/30 is the narrow
3Baraff cleverly avoids this waste by using internal values of the Runge-Kutta integrator to obtain a

polynomial approximation of the state over an integration step for free [5].
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Figure 6: Integration statistics for various atoms simulations.

winner at 0.142 s/frame, while TW was 0.147 s/frame and CA was 1.15 s/frame. By
200 atoms, TW is clearly superior at 0.388 s/frame, while RD-0.01, the fastest RD
algorithm, was 2.61 s/frame, and CA was 4.74 s/frame.
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6 Conclusion
Timewarp rigid body simulation is clearly able to simulate larger systems with more
interactions than traditional synchronized simulation algorithms. The most obvious av-
enues for future research involve parallel rigid body simulation. Timewarp simulation
helps pave the way to this goal since the individual bodies are evolved asynchronously.
If the algorithm runs on multiple processors, delays due to communication latencies
are handled in the same way as bad predictions of discontinuity times: with minimal
rollback.

The simplest way to structure a parallel simulator would be to have one master
processor that repeatedly sends integration tasks to a bevy of slave processors. All of
the global data structures could be kept on the master processor, requiring little change
in the algorithms presented here. This could significantly boost performance over the
uniprocessor case but suffers from a bottleneck at the master. An egalitarian approach
in which bodies are distributed among processors is ultimately more scalable. Impor-
tant open questions are how to parcel the bodies among processors and how to balance
workloads. At odds are the goals of minimizing inter-processor communication by
keeping bodies in the same spatial region on a common processor and minimizing idle
time by shifting bodies to idle processors. At any rate some method and strategy for mi-
grating the bodies between processors seems appropriate. Rollback probably requires
a full antimessage mechanism since the state graph is likely to be distributed. Other
questions surround how and where to store data structures like the spatial hash table,
which is frequently accessed by all bodies. Events involving multiple bodies might be
redundantly stored and processed on multiple processors or on only one of the relevant
processors. Finally, there are various protocol choices for passing state information
between processors. Clearly there are many challenges to building a large simulation
farm. Yet the prospect of rich virtual environments built on a physics-based substrate
is adequate motivation to pursue them.

A Implementation Details
Our system is implemented in C++. All geometries are modeled as convex polyhe-
dra or unions thereof. The v-clip algorithm [27] is used for narrow-phase collision
detection; a hierarchical spatial hash table [26, 29] containing axes-aligned bounding
boxes is used for the broad phase. For nearby bodies not in contact, times to impact are
estimated from current positions and velocities as in [26], but the predictions are not
conservative. Persistent contact is modeled using a penalty force method; spring and
damper constants are specified per body pair. Inspired by [1] we use an implicit inte-
grator (4th order Rosenbrock [30]) with a sparse solver [15] to handle stiffness induced
by the penalty method. This is only necessary for contact groups; isolated bodies are
integrated with a 5th order Runge-Kutta integrator [30]. We use a smooth nonlinear
friction law, [34]; static friction is not modeled. Reduced coordi-
nates are used for multibodies, with dynamics computed by a generalized Featherstone
algorithm [16] in the isolated case and by the spatial composite-rigid-body algorithm
[24] within contact groups. The latter is more suited to generating the acceleration
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Jacobian required by the implicit integrator.

Figure 7: Left to Right: snapshots from the atoms, cars and robots simulations (thanks
to Larry Gritz for Blue Moon Rendering Tools).
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