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Abstract—Numerical simulation of gravitational N-body systems
is an important tool for studying the dynamic behaviour of stellar
systems, and in some cases is the only option available given the
extremely large time scales involved. The direct summation
approach, which evaluates the force between each pair of
particles at each time step, produces the most accurate results.
However despite many algorithmic advances this method remains

a computationally challenging problem owing to its O(N?) scaling
characteristics. The desire to model increasingly larger systems
has spurred the adoption of parallel computation techniques, but
unfortunately many of the strategies used to accelerate sequential
direct N-body simulations hinder their efficient parallelization.
This paper investigates the use of parallel discrete event
simulation as an alternative to the usual iterative time-stepping
approach. By decomposing typical operations into finer-grained
events, it is shown that there exists considerable potential for
exploiting the model's inherent concurrency. In addition, it is
demonstrated how certain optimizations that are normally
difficult to parallelize are incorporated naturally into the parallel
discrete event paradigm.

Keywords-parallel, distributed, discrete event, numerical
simulation, n-body dynamics.

1. INTRODUCTION

The simulation of physical systems, often modelled by
partial differential equations covering multiple spatial and
temporal scales, has traditionally been one of the main driving
forces behind research in the field of high-performance
computing. Larger and more complex models place ever-
increasing demands on computational resources, and in many
cases harnessing the potential of parallel computers is the only
way to achieve significant performance improvements.

Most algorithms for simulating physical systems employ a
time-stepping approach. The model is represented by variables
and data structures at some moment in simulation time t. In
order to integrate the state forward, the simulation clock is
advanced by some small amount At, and the new state is
computed to represent the model at time t+At. The process is
thereafter repeated until the simulation clock reaches some
maximum value or some other convergence criterion has been
met. The parallel implementation of time-stepping algorithms
is relatively straightforward. Each CPU is allocated a portion
of the model, and each integrates its portion of the global state
forward from time t to time t+At, whereupon all processes

synchronize and exchange updated state information.

Parallel and distributed discrete event simulation (PDES) is
an alternative to the more common time-stepping or time-
driven approaches, and has successfully been used to
accelerate the execution of spatially discretized physical
models [24]. Domain decomposition is performed as before,
however afterwards the processes advance their subset of the
state variables independently at their own rate, communicating
asynchronously via time-stamped messages.

Unlike many time-stepping schemes which force a costly
global synchronization after every major integration step,
PDES synchronization strategies fall into two broad
categories:  conservative or optimistic. Conservative
mechanisms avoid processing any messages beyond a certain
simulation time until it can be ascertained that no message
with a lower time stamp can possibly arrive [5],[21]. In other
words, conservative methods avoid scenarios where an
incoming message could arrive in the logical past, which
would indicate a causality violation. Optimistic PDES
algorithms, on the other hand, do not wait until it is safe to
process a message, but do provide mechanisms to detect and
recover from causality violations should they occur [14]. By
speculatively  executing messages and avoiding the
inefficiencies associated with global synchronization,
optimistic strategies are ideal for extracting a model's inherent
parallelism.

In addition to conservative and optimistic synchronization
strategies, it is possible to create application-specific protocols
when necessary. A given application may present a particular
set of requirements, or may be important enough to merit such
customized treatment. We argue that the gravitational N-body
problem is just such a problem, and present a parallel event-
driven synchronization algorithm that exploits additional
concurrency not accessible to either conservative or optimistic
methods.

A. Paper outline

This paper is structured as follows. Section II discusses the
time-stepping and event-driven simulation methods, with a
focus on highlighting the differences between the two
strategies. Section III describes the N-body problem, including
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a description of the integration scheme employed to advance
particle data. This section also details the impediments to
efficiently porting optimizations useful for sequential
simulations to parallel computers. Section IV builds on the
previous two sections, describing a parallel discrete event
implementation of an N-body solver. Section V provides an
analysis of the performance of the discrete event algorithm.
Section VI covers future research and possible extensions of
the work presented herein, while section VII concludes.

II.  DISCRETE SIMULATION METHODS

Simulation methods that discretize time are distinguishable
by the manner in which they order and control the flow of
simulation time. The most common strategies for advancing
simulation time are normally either of the time-stepped or
event-driven variety.

A. Time-stepped execution

In the time-stepped approach simulation time is advanced in
constant-sized steps, with state variables being updated as the
system progresses through the sequence of steps. The choice
of step size is crucial to both the performance and accuracy of
the time-stepping method. Choosing a time step that
minimizes computational costs while still managing to capture
essential simulation characteristics often requires care and
experience.

Time-stepping schemes lend themselves naturally to parallel
implementation. Each processor is assigned a subset of the
state space and is responsible for updating only that subset.
Each CPU is then free to advance its own local simulation
time and update its own segment of the global state space. The
simulation proceeds in a lock-step pattern, with all processors
required to block at the end of each step in order to
synchronize newly updated state data.

For any given time step it's possible that some processors
will have less work to do than others and hence will spend a
relatively larger amount of time idling at the global
synchronization barrier, unable to continue until the others
catch up. The pathological case has only a single heavily-
loaded CPU active during a given time step, while all others
remain idle. Proper load balancing, arising from the initial
partitioning of the state space and potentially dynamically
adjusted over the course of the simulation, is crucial to
maximizing the performance of the time-stepping schemes.

B. Event-driven execution

The trial-and-error process of choosing the right time step is
problematic. Rather than updating the state of the system at
fixed intervals, the event-driven approach targets pertinent
state changes that take place at instantaneous moments in
simulation time. Events scheduled at specific times are
processed by invoking application-defined event handling
functions.

By focusing on interesting moments over the course of the
simulation, event-driven schemes have the potential to be
more efficient that their time-stepping counterparts. In
particular, when the state trajectory is relatively stable except
for a few key irregularly dispersed moments, the event-driven
method does not waste time recomputing state information
when nothing much is going on.

Between the time-stepping and event-driven paradigms, the
latter is traditionally seen as the more complex to parallelize.
The first difficulty stems from the absence of a fixed time step
known to all processors, such that at any given moment in wall
clock time one should expect a disparity amongst the
simulation times of each processor. The processors advance
asynchronously and it becomes more difficult to know when it
is safe to advance local state, as receiving a time-stamped
message in one's logical past would indicate that a causality
violation has occurred.

III. Tue N-Bopy PrOBLEM

This section provides the background information on the N-
body problem necessary to later introduce the parallel discrete
event implementation of an N-body solver.

A. Overview

Despite a long history, N-body simulation remains a
computationally challenging problem. The general N-body
problem refers to the study of the dynamics of N interacting
bodies, in particular the motion of particles under the influence
of their mutual gravitational attraction. N-body simulations
have been used to study a wide range of astrophysical models,
from the dynamics of galaxies and globular clusters containing
on the order of 10° stars to the relatively small scale of
planetary systems containing dozens of bodies [1],[4].

An N-body system consists of N particles, represented as
infinitesimal point masses. The total force acting on a particle
is the sum of its pairwise interactions with all other particles.
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B. Numerical Method

The dynamic evolution of particles in the system is driven
by their time-varying mutual gravitational field. Direct
summation approaches involve the straightforward application
of Newton's law (1). The force on each particle is calculated
by accumulating the contributions of all other particles in the
system, for a total of N(N-1)/2 partial force calculations. By
explicitly computing the inter-particle forces for all pairs of
particles in the system, this approach scales as O(N?) and is
thus computationally very demanding for systems involving
large numbers of particles. Direct evaluation methods are
typically employed for star clusters containing on the order of



10 stars [18], whereas the use of special-purpose hardware
has enabled systems with 10° stars to be studied using direct
evaluation techniques [17].

A variety of methods have been developed to alleviate the
burdensome O(N?) scaling properties of the brute force
scheme. The basic idea is to reduce the number of direct
particle-particle force evaluations by using approximation
techniques. For example, the Barnes-Hut tree method works
by partitioning the simulation volume into an hierarchical tree
of axis-aligned sub-volumes or cells [3]. The leaf nodes of the
tree contain the particles, and the force on each particle is
calculated by walking the tree. The hierarchical nature of the
tree allows for the gravitational potential due to entire groups
of particles to be approximated by low-order multipole
expansion [3].

Despite the advantageous scaling characteristics of the
Barnes-Hut scheme and its ability to handle significantly more
particles, in many cases the direct calculation method remains
preferable owing to its superior accuracy, algorithmic
simplicity, and the fact that no a priori assumptions need to be
made regarding the system being simulated (e.g. uniform
particle distribution) [23]. For these reasons we shall restrict
ourselves to direct summation methods for the remainder of
this paper.

C. Individual Time Steps

In the physical systems modelled by N-body simulations it
is typical to observe various phenomena operating at vastly
different time scales [1]. Correspondingly, the optimal choice
of time step to best capture particle interactions can vary
greatly over the course of each particle's trajectory.

Individual time steps (ITS) are a significant improvement
over the constant time step method, offering several orders of
magnitude increase in performance as well as improved
accuracy [19]. The idea is to assign each particle P; a suitable
time step At, reserving small time steps for only those
particles that require them while allowing others to take larger
steps whenever possible. In essence, stepping forward on a
per-particle basis is a response to a commonly observed
characteristic of N-body simulations wherein few particles
require frequent and smaller time steps in order to preserve the
numerical stability of their trajectory [1]. Most direct N-body
codes incorporate some variation of the individual time step
approach, however the use of ITS often precludes an efficient
parallel implementation [25].

D. The Hermite Scheme

In this section we describe the widely-used 4™ order
Hermite integration scheme with individual time steps [18].
Each particle P; has mass m; position x; velocity v
acceleration a;, as well as the first time derivative of the
acceleration k; (known as the “jerk”). In the case of individual
time steps, each particle also has its own time t; and step Ati.. A

particle's time reflects the last time it was updated, and its
update time ut; = t; + At; is the next time at which the forces
acting on the particle will be calculated.

The time-stepping algorithm proceeds
follows:

iteratively, as

1) Each particle's initial time step is calculated using (2). As
per Makino and Aarseth [18], a scaling constant with value of
Ns ~ 0.01 is typically sufficient.

1

k;

2) Select particle P; with the smallest update time ut; = t; + At;
and set the global simulation clock to this time.

At,=n, 2

3) Predict the positions and velocities of all particles to the
update time ut;. This prediction is done via extrapolation using
the values x, v, a and k, as per (3) and (4). Note that in general
for individual time step methods each particle will have its
own local time and hence the value of dt;= ut;- t; will differ.
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4) Calculate the acceleration a, and jerk k, using direct
summation as per (6) and (7). This is the most compute-
intensive part of any N-body kernel.
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5) Using a Hermite interpolation based on the acceleration and
jerk, calculate the higher order derivatives of the acceleration
with (8) and (9).
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6) The predicted position and velocity from step 3) are then
corrected to higher order using (10) and (11).
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7) At this point particle P; is fully updated. We set t; = t; + At;
and then choose a new time step At; for P's next update
according to the standard Aarseth formula [18] given by (12).
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8) If the global simulation clock hasn't reached the simulation
end time, go back to step 2) and repeat.

(12)

E. Parallelization

Many important astrophysical problems, for example the
simulation of globular clusters, involve large numbers of
particles (on the order of 10°) and require a highly accurate
integration method. The direct force computation scheme,
owing to its O(N?) scaling characteristics, is not normally
employed for such extremely large systems. With the use of
special purpose hardware such as the GRAPE-6, simulating
systems on the order of 10° particles has become possible [17],
[10]. However as with most custom hardware configurations,
accessibility remains limited and thus there has been
considerable effort put towards parallelizing N-body kernels
for execution on general purpose parallel computers [25], [9].

There are two common strategies employed when
partitioning N-body systems amongst multiple processors. In
the distributed data method, each processor stores particle data
for only a subset of the overall system. To compute the forces
acting on particles in its local subset, the processor sends a
copy to the other nodes, either via broadcast or with an
overlaid logical topology as in the systolic ring algorithm [9].
Partial force contributions are computed by the receiving
node, after which particles are returned to the source node for
the correction phase of the integrator. In the case of the
systolic ring method, partial forces are aggregated as the data
cycles from neighbour to neighbour.

By contrast, in the replicated data strategy each processor
has a complete copy of all particles in the system and is
responsible for updating a subset of these particles. This has
the advantage that each node can independently compute the
forces on its local group. The downside is the higher memory
consumption and the costly global synchronization at the end
of each update step. For large enough values of N, the
performance of the systolic ring and replicated data algorithms
is comparable [9]. We thus test only against the replicated data
strategy in this paper.

Unfortunately, many of the methods traditionally used to
accelerate direct N-body codes appear to hinder the effective
parallelization of the algorithms. In the case of individual time
steps, it's possible for too few particles to be active on a given
update step. In a distributed context, this could result in some

processors having little or no particles to update, forcing them
to wait idly until the next global synchronization.

Most parallel implementations of the Hermite scheme use
some form of hierarchical or block time step [25],[9]. In this
approach, time steps are constrained to certain blocks of
allowable step sizes, resulting in larger groups of particles
being advanced concurrently during each step.

The block time step approach is a compromise between the
accuracy provided by individual time steps and the simple
parallel implementation afforded by constant time steps. For
situations where even a small reduction in accuracy is
unacceptable, we seek a method that can retain the original
benefits of the individual time step strategy while also being
naturally extensible to parallel implementation.

IV. PARALLEL DISCRETE EVENT N-BODY SIMULATION

A. Discrete event formulation

Although normally seen as an iterative time-stepping
algorithm, numerical N-body simulations exhibit enough traits
of typical discrete event problems so as to render them
amenable to treatment as such. In this section we detail
discrete event formulations of the N-body problem for both
constant-sized and variable per-particle time steps. In the
descriptions that follow, we focus exclusively on systems
where all processors have a complete copy of the system's
particles and are responsible for advancing a subset of the
overall particles. As the processors advance their state
asynchronously local copies of remote particle data may
become out of date; it is the responsibility of the distributed
control mechanism to ensure that causality violations are
avoided.

The following two sections introduce parallel discrete event
N-body algorithms, firstly for the constant time step (CTS)
case and thereafter extended to handle individual time steps
TS).

B. Discrete event CTS

The obvious and natural place to start is to treat each
iteration of the integration loop as a distinct STEP event, with
each such event scheduling its successor. Hence an update
event at time t; will schedule the next update event at time
t,=t;+At;, which in turn will schedule an event at t;=t,+At,, and
so on. In the case of constant time steps this is simplified to
ta1=t,+At since the size of the time step is invariable.

When considering a parallelized version of this strategy, we
must also take into account the updates from neighbouring
processors, thus local step events are only scheduled once all
outstanding updates have arrived from the other processors.
This ensures that no local step is taken before first having an
up-to-date copy of the global state, without resorting to a
costly global synchronization barrier. The rest of this section



N
L
P

set of all particles
set of local particles
set of all processors

# Event handler for step events in CTS mode.
procedure event_step cts(Event e)

# Get the timestamp of the event.
t = timestamp(e)

# Predict position and velocity of all particles to the update
# time t.
predict (N, t)

# Calculate acceleration and jerk of all local particles
# at time t.
calculate_force(N, L, t)

# Correct predicted quantities for all local particles.
correct(L, t)

# Pack updated position, velocity, acceleration and jerk into a
# message.
msg = create_message(L, t)

# Send the message to all other nodes.
broadcast_message(msg, P)

Figure 1. Step event for constant time steps.

describes the algorithm in more detail.

The various phases of the Hermite algorithm are clearly
evident in the pseudocode for the step event (Fig. 1).
Operating on the local copy of the particle system, we first
predict the positions and velocities of all particles to the
update time t. We then compute the acceleration and time
derivative of the acceleration for all local particles, using the
predicted particle state. As before, this is the most
computationally intensive part of the overall simulation. Again
while only operating on local particles, we compute the higher
order derivatives of the acceleration and jerk, and use them to
apply the correction to the position and velocities that were
predicted earlier on. At this point, the local particles have been
updated.

The next portion of the step event is a divergence from the
time-stepping algorithm. Recall that in the parallel discrete
event simulation paradigm, processors communicate by
sending time-stamped messages that have the dual effect of
updating local copies of state data as well as providing
information essential for local synchronization. The updated
portion of each local particle, namely its position, velocity,
acceleration and jerk, are packed into a message structure. The
message is stamped with the current local virtual time, which
corresponds to the new time at which the particle information
is valid.

The reception of an incoming message containing updated
particle data triggers a second type of event: the remote update
(RUP) event. Each processor sends its updated state
information to all other nodes, which implies that each should
expect to receive P-1 such RUP messages (where P is the
number of processors). Only when all outstanding messages
have been processed can we proceed to the next step event,
and correspondingly we refrain from scheduling the next local
step event until all particles have been updated.

Fig. 2 shows the pseudocode for the RUP event handler.

N
L
P

set of all particles
set of local particles
set of all processors

# Event handler for step events in CTS mode.
procedure event_rup_cts(Event e)
{

# Get the timestamp of the RUP event.

t = timestamp(e)

# Update counter that tracks the number of outstanding updates.
remaining updates = remaining updates - 1

# Apply remote update to synchronize local data.
apply_rup(e, R)

# Test if there are still outstanding remote updates for
# this step.
if (remaining updates == 0)
{
# Reset the update count (expect one update from each
# other node)
remaining_updates = |P| - 1

# Schedule the next event
dt = time_of next_step(L, t)
schedule_step(dt)

Figure 2. Remote update event for constant time steps.

The function apply_rup(), which  performs the actual
processing of the contents of the remote message, is
straightforward (Fig. 3). For each remote particle in the
message, we update the position, velocity, acceleration and
jerk fields in our local copy. Once this is done, our local copy
of the sending processor's particles has been synchronized.

We have shown so far that the discrete event method can be
used to emulate the more common time-stepping approach for
N-body simulation. Since all required updates are sent and
eventually arrive at the destination nodes, there is no risk of
deadlock. Since no new STEP events are scheduled until all
remote updates have been processed, particles are guaranteed
to be advanced in the correct order and no causality violations
can occur.

Unlike the time-stepping approach, no costly global
synchronization is required at the end of each step. This is
beneficial because the performance of barrier synchronization
methods can vary widely due to hardware configuration and
software implementation. Nevertheless, the computational
workload must be evenly balanced amongst the processors in

N
u
R

set of all particles
local update list
set of remote particles contained in message

# Apply remote update to synchronize local data.
procedure apply rup(Event e, Set R)
{

# Get the timestamp of the RUP event.

t = timestamp(e)

# Apply the remote update

for r in R:

{
# Find local copy of this remotely-owned particle
p = find particle(N, r->id)

# Copy the updated component vectors
p->position r->position
p->velocity r->velocity
p->acceleration r->acceleration
p->jerk r->jerk

Figure 3. Applying a RUP event to update local image of remotely-owned
particles.



order to avoid situations where some CPUs wait idly for the
remote updates to arrive from the slower or more heavily
loaded processors. For direct evaluation methods this is
achieved simply by allocating an equal amount of particles to
each processor, however this task is made more difficult in the
context of heterogeneous clusters where the relative clock
speeds of CPUs may vary, meaning that slower processors
should be allocated less work than faster processors. We
therefore seek to improve on this scheme by permitting
processors to do useful work while waiting for incoming
messages, effectively taking advantage of additional
concurrency inherent in the N-body problem that's not
available when constant time steps are used.

C. Discrete event ITS

This section describes a discrete event implementation of
the Hermite scheme using individual per-particle time steps
(ITS). We seek an algorithm that alleviates some of the
difficulties in parallelizing ITS that were discussed previously
in section III.

The primary impediment to the efficient parallelization of
the time-stepping kernel when ITS is used is that some
processors may remain idle while others advance their local
particles. The particles on the smallest time step are selected
for updating at the start of an iteration, and since all processors
need to synchronize at the end of each iteration in order to
exchange updated state data, processors with no particles on
the smallest step have nothing to do. The problem is
exacerbated as the range of allowable time steps is expanded,
as we should expect more variation amongst the time steps of
the system's particles.

The question then is whether the idle processors can
manage to do useful work while waiting for outstanding
updates from other processors. Although the particles on the
smallest time step must be advanced prior to any others, we
observe that some of the information necessary to advance
particles on the next smallest time step is already available (in
general, the results of all smaller time steps are missing). For
example, if the smallest time step is at time t; and the next
smallest steps are t,, t; and ts respectively, then we can
compute the acceleration of particles on step t, due to the
particles on steps t; and ts, but not due to those particles on
step t;. Upon completion of step ti, the updated state
information is disseminated amongst the nodes and can be
used to calculate the remaining force contributions for the
particles on step t,. The crux of the strategy is thus to partially
advance the particles on future time steps, completing these
steps later as the required missing data arrives. We note that
such an approach is not possible if processors are forced to
synchronize at the end of each step prior to commencing the
next step, as is the case with the time-stepping approach.

For a given particle P; with update time ut=ti+At, we say
that all particles with update times less than ut; are unsafe. In

ut: 0.25 ut: 0.50 ut: 0.75
Particles: Particles: Particles:
P1, P2, P8 [ P6, P4 — " P3, P5, P7
Force: 3 Force: 8 Force: 30

Figure 4. Update list sorted by increasing update time (ut).

other words, in order to be factored into the computation of
P/'s acceleration at time ut;, unsafe particles must be advanced
to a time such that their next update time is equal to or greater
than ut;. Naturally, without all the required force contributions
at ut;, P; cannot be advanced and so we say it is blocked.
Unsafe particles can be either local or remote particles. Safe
particles, on the other hand, are all particles with update times
equal to or greater than ut;. Note that with the ITS approach
each particle has its own update time, and so the set of
particles considered as safe or unsafe will in general be
different from particle to particle. In the proper sequential
ordering of particle updates, P; will be updated before (or at
the same time as) the particles it considers as safe. The crucial
observation here is that we can calculate all force
contributions on P; at time ut; due to safe particles, but we can
only advance P; when there are no unsafe particles relative to
P.

To implement this strategy, each processor maintains an
update list sorted by increasing update time. Each item in the
list contains a list of local particles to update (the update
group), the time at which these particles are to be updated, and
a counter to track the number of force computations necessary
to completely advance the particles on the update step. Fig. 4
shows an example of a processor's local update list. The item
at the head of the list represents the local particles to be
updated at time t=0.25. There are three particles in the update
group, and a total of three force calculations are needed to
completely advance the group. Thus we can deduce that there
is exactly one unsafe particle residing on some other processor
that is blocking this update.

N
u

set of all particles
local update list

# Event handler for step events in ITS mode.
procedure event_step_its(Event e)
{

# Get the timestamp of the event.

t = timestamp(e)

# Find the update object associated with this step.
u = find update(U, t)

# Predict all particles that can contribute.
safe_predict(N, t)

# Compute partial acceleration and jerk contributions
# from safe particles only.
safe force(N, u)

# Check if all required force contributions were calculated.
if (force_remaining(u) == 0)
{

# Complete this step.

complete_updates(U)

# Schedule future steps.
schedule_steps(N, U)

Figure 5. Step event for individual time steps.



# Event handler for step events in ITS mode.
procedure event_rup_ its(Event e)
{

# Get the timestamp of the RUP event.

t = timestamp(e)

# Apply remote update to synchronize local data.
apply_rup(e, R)

# Propagate RUP forward for in-progress updates
propagate_rup(t)

# Scan update list for any completed updates
complete_updates (U)

# Schedule future steps.
schedule_ steps(N, U)

Figure 6. Remote update event for individual time steps.

The second update in the update list (at time t=0.50)
contains two particles. Note that to complete this group eight
force contributions are required, which implies that this group
depends on four particles: the same unsafe remote particle that
blocks the t=0.25 update, and the three local particles in the
t=0.25 group. The final element in the list contains three local
particles and has 30 outstanding force contributions, hence it
depends not only on the five local particles in the t=0.25 and
t=0.50 groups, but also on 5 other unspecified remote
particles. Naturally those groups furthest in the future will
have the most dependencies, since more particles will have to
be updated prior to the group being advanced.

The parallel discrete event implementation of this scheme
uses the same two events as in the CTS case, namely a STEP
event to schedule local particle updates and a remote update
(RUP) event to incorporate incoming updates from other
processors. Fig. 5 shows the general outline of a STEP event
for the individual time step method. We first search the update
list for the group corresponding to the time stamp of the STEP
event. (The update group is guaranteed to exist as it is created
and inserted into the update list when the STEP event is
scheduled.) We then proceed to predict the position and

= set of all particles
:= local update list
= set of remote particles contained in message

c =z

R

# Propagate RUP forward for in-progress updates
procedure propagate_rup(time t)
{
# Loop over the local update list.
for u in U:
{
# The update time of the in-progress update
ut = update time(u)

# Only contribute to partially done future updates
if (started(u) AND t < ut)
{

# Predict the remote particles to ut.

predict (R, ut)

# Predict local particles in update set to ut.
predict(u, ut)

# Calculate acceleration and jerk components
# due to remote particles.
for r in R:

# Calculate force contribution of r on particles in u.
calculate_force(r, u)

}

Figure 7. Propagation of a remote update through the local update list.

N
u
P

set of all particles
local update list
set of all LPs

# Scan update list for any completed updates.
procedure complete_updates(Set U)
{
for u in U:
{
# Complete u if there are no more force contributions to
calculate.
if (force_remaining(u) == 0)
{
# Correct predicted positions and velocities.
correct(u)

# Compute next time steps for all particles in u.
update_time_steps(u)

# Merge completed update into other ongoing updates.
merge_update(U, u)

# Pack updated position, velocity, acceleration
# and jerk into a message.
msg = create_message(u, update time(u))

# Send the message to all other processors.
broadcast_message(msg, P)

# Remove u from the update list.
remove_from list(U, u)

Figure 8. Advancing local particles in update groups that have received all
outstanding force contributions.

velocity of all safe particles only, and then calculate the force
contributions of these particles on those in the update group. If
after this operation all force contributions have been accounted
for, then there were no unsafe particles to block this step, and
we can advance the particles in the update group and schedule
future steps. If however there are additional force calculations
to be performed, then we must wait for the unsafe particles
blocking this group to be advanced via RUP events and any
subsequent unblocking of local particles upon which this
group depends.

Remote update events for the ITS scheme (Fig. 6) are
likewise slightly more involved than in the CTS case. After
first applying the update to synchronize the local image of
remotely-owned particles, we then propagate the newly
updated state data through the local update list (Fig. 7). This
has the effect of adding more force contributions to the in-
progress local updates, since the particles updated as part of
this RUP event must have been classified as unsafe for any
update group with update time after the time stamp of this
event.

When there are no remaining force contributions to be
calculated on the particles of a local update group, we can
complete this update step (Fig. 8). We first apply the
correction phase of the Hermite integrator to correct the
positions and velocities predicted at the start of the STEP
event. Afterwards, we compute a new time step for each of the
updated local particles using (12). Care must be taken if the
next update time for one of these particles matches another
that's already in the local update list. In this situation, there are
two options. If no force contributions have been calculated for
this update group (i.e. the corresponding STEP event has been



TABLE 1. DETAILED SPECIFICATIONS FOR LINUX CLUSTERS

Clock Memory
Name CPU model Node Configuration (per
speed
node)
AMD Opteron 27 dual-socket, 2.3
krylov 2376 quad core GHz 16GB
Intel Xeon 8 dual socket, 2.33
alef E5410 quad core GHz 16GB
Intel Nehalem- x6275 blades (dual- 28
colosse EP node, dual socket) GHz 24 GB
7680 cores total

scheduled but not executed), we simply append the particle to
the update group and continue. However if the update group
has already been partially advanced, then we must ensure that
the same force calculations are applied to the particle before
it's added to the group. In other words, the particle must catch
up to this group prior to joining it. Merging particles into an
update group is a two phase operation. First we compute the
safe forces on the newcomers, and then we compute the forces
on the update group due to the newcomers. This ensures that
all the particles in the update group will have interacted with
exactly the same list of particles, which in turn guarantees that
no force contributions will be missed later on.

V. PERFORMANCE OF THE DISCRETE EVENT METHOD

In this section we compare the performance of the time-
stepping and discrete event implementations of the individual
time step N-body algorithm.

A. Experimental Setup

Data was generated on three Linux clusters, krylov, alef, and
colosse. The krylov cluster is actually a heterogeneous system
consisting of 21 quad-core nodes (2.2 GHz) and 27 eight-core
nodes (2.3GHz), although we restrict our usage to the 8-core
nodes in order to ensure that execution times between runs
remain comparable. All computations were performed in
double-precision floating-point arithmetic.

B. The Plummer model

We use the well known Plummer model for all experiments
(Fig. 9). The Plummer model is a spherically symmetric,
centrally concentrated potential model created to fit
observational data [4]. We use the system of standard N-body
units whereby the total mass of all particles, the radius of
volume containing all particles, and the gravitational constant
G are all set to unity [12]. We measure wall clock time for the
integration of one N-body time unit, referred to as the crossing
time, which is proportional to the number of particles in the
system.

Initially, the total energy of the Plummer sphere is E=-1/4
[1]. As the simulation progresses, the finite precision of
floating-point numerical calculations causes this value to drift;
measuring this drift at periodic intervals is a common method
of evaluating the accuracy of an N-body integrator. We

Figure 9. Plummer model (N=16384)

compute the total energy every 1/8 of a crossing time. The
results of the time stepping code are perfectly reproducible,
whereas since the discrete event method may process events in
a different order from one run to the next (without, of course,
introducing any causality violations), the total energy values
may vary slightly. We have failed to find any significant
difference in energy drift between the two methods,
confirming the viability of the discrete event approach and
validating the correctness of both codes.

C. Performance analysis

Fig. 10 shows a comparison between the discrete event (DE)
and time-stepping (TS) algorithms. The maximum time step
was set to tmwx=1/4 and the minimum time step to tmx=1/512.
We measured the total execution time on alef using 8 and 16
CPUs, for particles systems of size 2'° to 2'. The total
execution time increases dramatically with the number of
particles, illustrating the problematic O(N?) nature of the direct
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Figure 10. Scaling of the discrete event and time stepping methods on alef.
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Figure 11. Scaling of the discrete event and time stepping methods on krylov.
evaluation method for N-body problems. The discrete event
algorithm (shown by the solid lines in all the graphs that
follow, as opposed to the dashed line for time-stepping) scales
better as the number of particles increases. It is particularly
interesting to note that the performance of the time-stepping
algorithm is worse for 16 processors than for 8, implying that
synchronization overhead and wasted CPU cycles nullify any
performance benefits seen when using the individual time step
scheme on a single processor. Additionally, since the nodes of
alef contain 8 cores, performing a barrier synchronization is
clearly more expensive once more than 8 processors are
involved, resulting in this surprising performance reversal
when 16 processors are used. The discrete event method, on
the other hand, is better able to utilize the extra processors,
resulting in a 64% reduction for N=16384 when the number of
processors is doubled.

Fig. 11 shows the results of a similar run on the krylov cluster.
A larger minimum time step of twm,=1/128 was used to
demonstrate how both algorithms fare when faced with a
smaller range of particle step sizes. We also tested 8, 16 and
32 processor configurations, again restricting ourselves to the
8-core nodes. Both algorithms perform better as more
processors are added, however the improvement is more
evident in the discrete event case. Perhaps more importantly,
the discrete event algorithm outperforms the time-stepping
strategy by a significant margin. In particular, even with only
8 processors the discrete event code manages to be almost
27% faster than the time stepping run with 32 processors. It
appears that the discrete event method is better able to exploit
the additional concurrency not available to methods that rely
on global synchronization and lock-step execution.

The next example (Fig. 12) demonstrates how both
approaches scale as the number of processors is increased.
Data for this run was generated on colosse, the biggest of the
three Linux clusters. Each data point displayed represents an
average over four runs with identical parameters. The dashed
lines representing the execution times of the time stepping
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Figure 12. Scaling of the discrete event and time stepping methods on colosse.

method are all grouped together; clear evidence that adding
additional processors does not yield any performance
improvements in this case.

There is much more variety for the solid lines representing
the results of the discrete event runs. For N=65536 particles
the discrete event code outperforms the time stepping code by
approximately 49%, 72%, 83% and 85% when 16, 32, 64 and
128 processors are used, respectively. The processors are kept
busier by partially computing particle updates with the
information on hand, and do not waste nearly as many cycles
idling. The cost of performing a global barrier synchronization
increases with the number of processors, which is another
factor behind the poor performance of the time stepping code.

Although adding more processors does reduce the total
execution time for the discrete event algorithm, we note in Fig.
12 that the is little difference between runs using 64 and 128
processors. In order to determine if larger particle systems are
required for performance to continue to scale well with the
number of processors, we increased the maximum number of
particles to 2'. To reduce the overall simulation time, the
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Figure 13. Scaling of the discrete event algorithm for larger particle systems.



minimum time step was increased to tm»=1/16. Fig. 13 shows
the results for 16 to 256 processors (as before, execution time
is the average from four runs). For the largest particle systems
tested, we observe successive speed-ups of approximately
44%, 43%, 27% and 14% each time the number of processors
is doubled, from the initial 16 to a total 256 CPUs.

VI. FUTURE WORK

We believe the novel application of parallel discrete event
simulation techniques presented herein provides an overture to
additional applications within the domain of numerical N-
body methods. In particular, we plan on extending our method
to handle a variation of the Hermite integrator that employs
particle-centric neighbourhoods to divide the force acting on a
particle into near and far components, as described by Makino
and Aarseth [18]. We plan on further extending our scope to
encompass the spatial partitioning trees used in the Barnes-Hut
scheme [3].

VIL

We have described a discrete event implementation of an N-
body solver using individual per-particle time steps. Whereas
the use of individual time steps tends to accelerate sequential
N-body simulations, in practice is is often an impediment to
the efficient parallel implementation of N-body kernels. We
have shown that the discrete event implementation using an
application-specific control protocol outperforms the time
stepping implementation and scales better with the number of
processors. In various other application domains such as
molecular dynamics and rigid body simulation, event-driven
methods have been employed successfully to accelerate
sequential simulations. Despite this potential, event-driven
schemes are often seen as more difficult to parallelize than
traditional time stepping approaches. We believe the work
presented herein will lead to simple, efficient parallel discrete
event simulations in other these and other domains.

CONCLUSION
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