
Nicarus: A Distributed Verilog Compiler

Jun Wang and Carl Tropper
School of Computer Science

McGill University
Montreal, Quebec, Canada
jwang90, carl@cs.mcgill.ca

Abstract

Software design tools, such as compilers and simulators,
are widely used in the integrated circuits (IC) industry. As
the circuit complexity grows, better and faster tools are re-
quired. One way to speed up a software system is to par-
allelize it and execute it on multiple CPUs. This idea is
particularly appealing when it comes to the compilers for
hardware description languages (HDL).

In this paper, we explore the parallelization of a Verilog
compiler on a network of computers using Parallel Virtual
Machine (PVM). Our design parallelizes the three most im-
portant and time-consuming phases of the compilation pro-
cess while minimizing the communications overhead. Ex-
perimental results reveal that the algorithms used for paral-
lelizing the compiler results in a speedup of the compilation
process.

1. Motivation

A Hardware Description Language, such as Verilog
[5][7][3], is an indispensable tool in the design and verifica-
tion process of very large scale integrated (VLSI) circuits.
Because of its power and flexibility in the modeling, simu-
lation, synthesis and testing of VLSI systems, Verilog has
gained widespread acceptance in the hardware design com-
munity.

As is the case with (imperative) programming languages
such as C, designing hardware with HDLs involves compil-
ing the source design into another form, called a netlist. The
netlist is essentially an enumeration of all of the circuit com-
ponents (e.g. AND,OR,XOR gates). The netlist is then sim-
ulated in order to verify the design. A typical design process
consists of several iterations of this compilation-simulation
cycle.

HDL source files are organized in a hierarchical and
modular manner, and the resulting netlist is a network of
primitive logical gates. This, to a certain extent, means that

the compilation time of HDL sources is proportional to the
size of the circuits.

With the complexity of today’s integrated circuits and
the never-ending challenge of fast design turn-around, it is
highly desirable to have the HDL compiler run as fast as
possible. In this paper, we present experimental work in
parallelizing a Verilog compiler over a network of com-
puters using the message-passing system PVM. Our ap-
proach parallelizes three of the most important and time-
consuming phases of the compilation process and at the
same time minimizes communication overhead. We intend
to make use of this compiler in conjunction with a dis-
tributed simulator.

The rest of the paper is organized as follows. Section
2 gives a brief introduction to Verilog and a description
of the Icarus Verilog compiler. Section 3 details the de-
sign and implementation of Nicarus, our distributed Verilog
compiler. In section 4 we present some test results and our
analysis. And finally section 5 contains our conclusions.

2. Background and related work

2.1. Verilog

Verilog has become the language of choice for a great
number of IC designers. It was created by Cadence and
became an IEEE standard in 1995 as IEEE Std 1364-1995
which was later updated as IEEE Std 1364-2001 [5].

Verilog provides a rich set of built-in primitives at dif-
ferent abstraction levels, such as logical gates, switches,
and user-defined primitives. Primitives are interconnected
to form modules, which are in turn interconnected to form
a design. The description of the connectivity of primitives
and modules is called a structural description. Verilog also
supports behavioral descriptions which model the function-
ality, as opposed to the gate-level connectivity, of a design.
Behavioral code is very much like the statements of an im-
perative programming language. The behavioral descrip-

a sum

 Add_half

b c_out a sum

 Add_half

b c_out

w1 w3

w2
M2

M1

c_out

sum

a

c_in

b

module Add_half(sum, c_out, a, b);
input a, b;
output sum, c_out;

xor G1(sum, a, b);
nand G2(c_out_bar, a, b);
not G3(c_out, c_out_bar);

endmodule

module Add_full(sum, c_out, a, b, c_in);
input a, b, c_in;
output c_out, sum;

Add_half M1(w1, w2, a, b);
Add_half M2(sum, w3, w1, c_in);
or G(c_out, w2, w3);

endmodule

module test_adder(sum, c_out, a, b, c_in);
input sum, c_out;
output a, b, c_in;
reg a, b, c_in;

initial
begin

$monitor($time,,
"a=%b b=%b c_in=%b c_out=%b sum=%b",
a, b, c, c_in, c_out, sum);

#10 a=0; b=0; c_in=0;
#10 a=1; b=1; c_in=1;
$finish;

end
endmodule

module testBench;
wire w1, w2, w3, w4, w5;

Add_full A(w1, w2, w3, w4, w5);
test_adder T(w1, w2, w3, w4, w5);

endmodule

Figure 1. Verilog design of a full adder.

Preprocessed Source

Preprocessor

Parser

Pform

Elaboration

Netlist

Optimizer

Optimized Netlist

Code Generator

Iverilog Compiler

Verilog Source

vvp Assembly Code

vvp Simulator

Figure 2. Structure of Icarus Verilog.

tion is processed by a synthesizer in order to create a gate-
level implementation of the circuit.

Modules are the basic building blocks of a Verilog de-
sign. Each module consists of structural code or behavioral
code, or a combination of structural and behavioral code. A
module can instantiate other modules. The module instan-
tiation hierarchy usually corresponds to the structure of the
physical circuits.

Figure 1 shows an example design of a full adder [3],
which will be used throughout the rest of the paper. A full
adder is modeled by an Add full module which has two
instantiations of module Add half, which models a half
adder. The test adder module consists of a behavior
begin-end block that provides simulation stimuli to the full
adder. The root module, testBench, consists of one in-
stantiation of Add full and one of test adder.

2.2. Icarus verilog

Icarus Verilog [8][6] is a set of open-source Verilog de-
velopment tools that includes a Verilog compiler, iverilog,
and a logic simulator called the vvp simulator. Figure 2
shows the overall structure of Icarus Verilog on the left and
the details of the iverilog compiler on the right.

As shown in Figure 2, the compilation process consists
of the following five major phases.

� Preprocessing. This phase mainly performs file inclu-
sion and macro substitution. The result can be written

to a file or sent through a pipe to the compiler proper.

� Parsing. The preprocessed source file is parsed and
an internal representation of the source, called pform
(parsed form), is generated.

� Elaboration. This phase transforms the hierarchical
pform into a flattened netlist, which is an enumera-
tion of all of the signals and logic gates of the cir-
cuit and their interconnections. This phase is carried
out in three steps. First, a tree of naming scopes is
created. Each module in the source file is a naming
scope. Each module instantiation, user-defined func-
tion, user-defined task, begin-end block, and fork-join
block, creates a sub-scope inside the enclosing mod-
ule. Secondly, each scope creates all of the signals that
it contains. Last, each scope creates all of the primi-
tive gates and the connections between signals and the
ports of all of the module instantiations are established.

� Optimization. This phase performs optimizations on
the generated netlist, including null circuitry elimina-
tion, combinational reduction, and constant propaga-
tion.

� Code Generation. Depending on the target type speci-
fied in the command-line, one of five code generators
is dynamically loaded and the final output is generated.
The default output format is the vvp assembly.

3. Parallelizing the Icarus compiler

The intrinsic parallelism of VLSI circuits makes them
an attractive target for the study of parallel computing. Our
analysis of the Icarus compiler has shown that three of the
major phases of the compilation process, i.e., parsing, elab-
oration, and code generation, can all be executed in paral-
lel with relatively small overhead. When the circuit size
reaches a certain point, the benefit of parallel execution will
exceed the overhead and produce an overall speedup.

In order to parallelize the compiler, we use one worksta-
tion, known as the master, to partition the source file into a
number of files such that each file contains only one mod-
ule definition. These files are then distributed among several
slave workstations and the compilation process is executed
in parallel. The generated code is also passed to the master
to create the final output file.

3.1. Parsing

Modules are the basic building blocks in a Verilog de-
sign. The Icarus compiler parses source files on a module by
module basis. Since there are no cross-references of names
across module boundaries in the parsing stage, it is obvious

partitioning_algorithm() {
while(there are more modules in the source file) {

create a file for the next module;
create a slave to handle the module;
if(all slaves have been created)

break;
}
// At this point we have created all slaves, the
// number of which is the smaller of the desired
// number, which is a command-line argument, and
// the number of modules in the source.
while(not all modules have been parsed) {

if(there are more modules in the source file)
create a file for the next module;

if(a slave asks for more modules AND
there are more)

assign the next module to the slave;
}

}

Figure 3. Algorithm for partitioning source.

that parsing can be performed in parallel if the source file is
partitioned along module boundaries.

We use a technique known as self-scheduling [1] to split
the source file along module boundaries and distribute the
modules to the slaves. First, as soon as a module is split
from the source, we spawn a slave to parse that module,
until the desired number of slaves have been started, or all
of the modules have been assigned, whichever comes first.
When a slave finishes parsing one module, it will ask the
master for more, and it will be given the next unassigned
module until all the modules have been assigned. In other
words, if there are M modules and N slaves (

�����
), each

of the N slaves is assigned one module, and the rest
�����

modules are assigned on a first-come-first-serve basis. In
this way, the partitioning is done at the same time that the
modules are being parsed and parsing is performed in par-
allel among the slaves. The partitioning algorithm is shown
in Figure 3.

3.2. Elaboration

During parsing, each slave will report to the master the
type of the module it has parsed, as well as the type of all of
the module instantiations within the module. For example,
with the circuit in Figure 1, the slave that parses the mod-
ule Add full will report to the master that it has parsed
Add full, and the module instantiates modules of the type
Add half. At the end of the parsing phase, the master will
have all the information about the module instantiation rela-
tionships among the modules. The master then determines
which modules are the root modules and starts the elabo-
ration phase by sending each of the root modules an ELAB
message.

Upon receiving an ELAB message, a slave creates a
thread in order to handle the request. The thread follows
the same three steps as in Icarus. First, it creates a naming

T A

M2 M1

testBench

test_adder Add_full

Add_half Add_half

Figure 4. Scope tree of the full adder.

scope for the module. Then it creates sub-scopes for all the
module instantiations, user-defined functions, tasks, begin-
end blocks, and fork-join blocks. For each module instan-
tiation, if the corresponding module definition is owned by
another task, the slave will send an ELAB message out be-
fore it handles local modules. This is done in order to max-
imize parallelism. Since each ELAB request corresponds to
a module instantiation, the requests, hence the threads, form
a tree that corresponds to the structural hierarchy of the cir-
cuit. The structure of the full adder in Figure 1 is shown in
Figure 4. Each node in Figure 4 represents a naming scope.
The tree of threads established via the ELAB messages is
isomorphic to the scope tree in Figure 4.

After the scope and the sub-scopes are created, a thread
then creates all of the signals within their scopes. The next
step is to create all of the primitive gates and to estab-
lish connectivity among signals. For example, the signals
testBench.A.a and testBench.T.a in Figure 1 are
connected together. For a module instantiation that has its
module definition on another task, the establishment of con-
nectivity of its ports and outside signals will have to be de-
ferred until after the remote task has finished the ELAB re-
quest. Note that during the elaboration process, slaves have
no interactions other than sending ELAB requests to each
other until the connectivity among modules needs to be es-
tablished.

One important task related to the establishment of con-
nectivity is the resolution of drive signal for each signal
in the circuit. For example, a Verilog register is a drive
whereas a net is not. When multiple signals are connected
together, we need to determine which one is the drive for
the juncture. In the Icarus compiler, this is done in the code
generation phase. For our distributed compiler, since the
netlist is distributed, the drive signals have to be resolved
by collecting the information in a bottom-up manner and
then disseminating the information top-down. In order to
do this, a thread, after finishing elaborating a module, will
send the information about the module ports, such as the
number of ports, the width of each port, etc., to the mas-

elaboration_algorithm() {
// Upon receiving an ELAB message
for each module instantiation whose module

definition is on a different task {
send an ELAB message to that task;

}
create naming scopes;
create signals within scopes;
create gates within scopes and make signal

connections;
send a REG_PORT message to the master to register

the module port information;
wait for all ELAB_END messages from remote tasks;
send an ELAB_END message back to the requester, with

signal drive information for all module ports;

wait for EMIT message;
}

Figure 5. Elaboration algorithm.

ter via an REG PORT message. It then resolves all signals
connected to the ports and sends the information to its re-
quester, i.e., its parent node in the netlist, via an ELAB END
message. The parent node will repeat the process until the
root node is reached, at which point, the information will be
passed downwards. For example, if modules test adder
and Adder full are assigned to different slaves, the two
slaves don’t know that the signals testBench.A.a and
testBench.T.a are connected to each other. Only when
the drive information of these two signals reaches the par-
ent node, testBench, can it be determined that the two
signals are both connected to testBench.w3, and the
drive is in fact testBench.T.a. Since testBench
is a root module, the results are final, and the informa-
tion will be sent downwards so that the slaves handling
test adder and Adder full will both know that the
drive signal for testBench.T.a and testBench.A.a
is testBench.T.a. The algorithm of the elaboration
phase is shown in Figure 5.

3.3. Code generation

The code generation phase has a few restrictions. First,
the final code is written to a single output file. Secondly, the
syntax of the vvp assembly requires that code from different
scopes not be interleaved, and code for a child scope not
appear before the code for its parent scope. For example, in
Figure 4, the scope A for the full adder has two child scopes
M1 and M2. In the output file, the code segments for M1 and
M2 can appear in any order, but they must appear after the
code segment for A.

Since all the code has to be written to a single output
file, we make all the slaves send their code outputs to the
master, which assembles the code in memory and eventually
writes to the file. Experiments have shown that it is more
efficient to write to a file in a centralized way. We maximize
parallelism in the code generation phase by having all the

code_generation_algorithm() {
// Upon receiving an EMIT message
update signal drive information;
compute the global ID for each remote child;
send an EMIT message to each child node with

the global ID for the child;
start generating code and send the code to

the master;
}

Figure 6. Code generation algorithm.

tasks perform code generation in parallel. Furthermore, the
slaves also send the code output to the master in parallel
as the code is being generated. This means the messages
carrying the code output from different tasks can reach the
master in any random order. In order to sort out the code
outputs, we assign each node in the distributed scope tree
a global identification number. The scheme to assign the
numbers ensures that the number for any scope is smaller
than the number for any of its child scopes. Therefore, when
the master finally writes the code segments to the output file
by the order of the global ID of the segments, we can be
assured that the code segment of any scope will appear in
the output file before the code segments of its child scopes.

As described above, at the end of the elaboration phase,
a node waits for an ELAB END message from each of its re-
mote child nodes. When all the ELAB END messages have
been received, the node performs signal drive resolution and
send an ELAB END to its parent node, if any. Carried inside
each ELAB ENDmessage is the number of nodes in the sub-
tree. This number is later used to assign a global ID to each
node.

The root node sends its ELAB END message to the mas-
ter, which in turn sends an EMIT message with the global
ID for the receiver.

Upon receiving an EMIT message, a node first updates
its signal drive information. It then immediately sends an
EMIT message to each of its child nodes with the updated
drive information as well as the global ID for the child
nodes. Again, this is done to maximize parallelism. Af-
ter all the EMIT messages have been sent out, the node then
starts generating code and sending the code to the master.
The code generation algorithm is shown is Figure 6.

4. Experimental results

Our distributed Verilog compiler was tested on an Eth-
ernet LAN comprised of a number of Pentium III comput-
ers running the FreeBSD operating system. The latency of
PVM is measured at 175 � s for our testing environment.
The Verilog source used was a reverse-engineered version
[4] of the C1355 circuit from the ISCAS-85 benchmark set
[2]. The C1355 is a 32-bit single-error correcting circuit
with 546 gates, and the reverse-engineered design consists

Table 1. Compilation time.
No. of CPUs 1 2 3 4
Parsing (ms) 92 70 74 84
Elaboration (ms) 1948 1292 1233 1239
Emission (ms) 1916 1802 1728 1733
Total (s) 3.959 3.175 3.041 3.070

1 2 3 4
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Number of CPUs

C
om

pi
la

tio
n

T
im

e
(s

ec
on

ds
)

Figure 7. Compilation time vs. number of
CPUs.

of four modules. Since all our timing measurements are the
elapsed real time obtained through the UNIX system call
gettimeofday, we replicate the circuit 50 times to create a
bigger circuit in order to compensate for the inaccuracy of
the measurements.

As the source design has four modules, we tested the
compiler with up to 4 CPUs. Table 1 shows the detailed
compilation time vs. the number of CPUs used. A chart for
the total compilation time is shown in Figure 7.

To compensate for network fluctuations and PVM’s
round-robin mapping of tasks to CPUs, each data-point is
the average of the 10 best results out of 12 measurements.
The output file is about 45,000 lines and 5.2 MB in size.

As is shown in Table 1, parsing time is fairly insignif-
icant in this case, accounting for only about 2.5% of the
total compilation time. Because of disk I/O, code emission
takes roughly the same amount of time as elaboration when
1 CPU was used. When multiple CPUs were used, we re-
duced the elaboration time by about 35%. However, we did
not reduce the emission time very much. This is due to the
fact that all the code has to be sent to the master for output
to the file, even though the code segments are generated by
the slaves in parallel, and apparently disk I/O is a dominant

Table 2. Speedup and number of messages.
No. of CPUs 2 3 4
Speedup 1.247 1.302 1.290
No. of Messages 3038 3445 3446

factor in this phase.
Among the four modules in the source design, two are

fairly large and the other two are much smaller. When two
CPUs were used, the partitioning algorithm happened to
place the two big modules onto different CPUs. This con-
tributes to the significant performance gain over the one-
CPU case. It also explains why further performance gain
was not as significant when more than two CPUs were used.

We define speedup ��������� to be the execution time 	�
 re-
quired for one CPU divided by the execution time 	�� when
� CPUs are used, i.e. ����������
�	
�� 	�� . In our exper-
iments, a speedup of 1.302 is achieved when using three
CPUs. The speedup results are presented in Table 2 along
with the number of messages sent. As is shown, it takes
over 3,000 messages to compile this particular circuit. Over
half of all the messages are the ones that carry the generated
code to the master. Another significant portion of messages
is related to the signal drive resolution. It is thus reasonable
to expect to have better results if we use faster networks.

5. Conclusions

HDLs are different from most programming languages
in that the compilation output is an enumeration of the hard-
ware components, such as gates and pins, of the circuit.
This, combined with the fact that HDL sources are usually
hierarchical and modular, makes it feasible to parallelize the
compilation process.

We have shown that the parsing, elaboration and code
generation phases can all be carried out in parallel with lit-
tle synchronization. Our experimental results for a small
circuit indicate that it is possible to achieve a speedup of the
compilation process, which should prove to be valuable for
larger circuits. Our future work will focus on the compila-
tion of larger circuits and on further identifying and reduc-
ing the sources of overhead, notably the communications
cost.

References

[1] S. Brawer. Introduction to Parallel Programming. Academic
Press, 1989.

[2] F. Brglez and H. Fujiwara. A neutral netlist of 10 combi-
national benchmark circuits and a target translator in fortran.
Proceedings of the IEEE International Symposium on Circuits
and Systems, pages 695–698, June 1985.

[3] M. D. Ciletti. Modeling, Synthesis, and Rapid Prototyping
with the Verilog HDL. Prentice Hall, 1999.

[4] M. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the ISCAS-
85 benchmarks: A case study in reverse-engineering. IEEE
Design and Test, 16(3):72–80, July-Sept. 1999.

[5] IEEE Computer Society. IEEE Std. 1364-2001, IEEE Stan-
dard Verilog Hardware Description Language. 2001.

[6] L. Li, H. Huang, and C. Tropper. DVS: An object-oriented
framework for distributed verilog simulation. Proceedings of
the 17th Workshop on Parallel and Distributed Simulation,
2003.

[7] D. E. Thomas and P. R. Moorby. The Verilog Hardware De-
scription Language, 5th Edition. Kluwer Academic Publish-
ers, 2002.

[8] S. Williams. Icarus verilog. http://icarus.com/eda/verilog/.

