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Abstract

Neural systems are composed of a large number of 
highly-connected neurons and are widely simulated within 
the neurological community. In this paper, we examine the 
application of parallel discrete event simulation 
techniques to networks of a complex model called the 
Hodgkin-Huxley neuron[1]. We describe the conversion of 
this model into an event-driven simulation, a technique 
that offers the potential of much greater performance in 
parallel and distributed simulations compared to time-
stepped techniques. We report results of an initial set of 
experiments conducted to determine the feasibility of this 
parallel event-driven Hodgkin-Huxley model and analyze 
its viability for large-scale neural simulations.  

1. Introduction 

Much work in parallel and distributed simulation 

focuses on synchronizing time in hundreds or thousands of 

entities. Researchers have been able to create scalable 

algorithms that efficiently coordinate the temporal 

activities of these entities. However, there are many 

domains in which one must synchronize a massive number 

of entities. Many of these domains have not been 

investigated.  In this paper, we will examine a relatively 

new domain in parallel and distributed simulation whose 

scale could eventually reach billions of entities making 

trillions of connections: the nervous system.  

In parallel and distributed simulation, there are two 

main techniques for incrementing time: a time-stepped 

approach and an event-driven approach. Event-driven 

simulations have been shown to offer better performance. 

Thus, many efforts are devoted to creating suitable event-

driven models. This allows one to abstract out the 

partitioning and synchronizing algorithms. In this paper, 

we will discuss the transformation of the Hodgkin-Huxley 

model [1] of a neuron, hence referred to as the “HH 

model”, into an event-driven process and discuss some of 

our preliminary findings in simulating a large scalable 

number of these neurons. 

We are investigating how network scale and 

interconnectivity affect the emergence of a large 

synchronous burst of neural activity called a “superburst” 

[2]. In order to investigate these network-level questions, 

we need the ability to run large network simulations. The 

computational requirements for such networks are much 

greater than those currently available on typical desktop 

computers. The effective use of parallel and distributed 

computation can help address these ever-increasing 

computational demands. 

This paper is organized into eight sections. In section 2, 

we provide a brief introduction to neural systems. In 

section 3, we discuss previous work in simulating these 

neuron models. In section 4, we describe how we 

converted the continuous HH model into a discrete event-

driven simulation model. In section 5, we discuss the 

implementation of the HH model using a parallel discrete 

event simulation engine called sik [3] and the methods by 

which we create networks of these HH neurons. In section 

6, we describe efforts to verify this model. In section 7, we 

discuss some initial scalability experiments on this event-

driven HH model. Finally in section 8, we provide some 

concluding thoughts on these results and how one might 

go about improving them. 

2. Neural Systems 

Like most biological systems, neural systems are 

typically comprised of cells and the fluid that they inhabit 

(extracellular medium). These cells are able to 

communicate with one another. For many cells, these 

communication mechanisms involve the movement of 

ions, which are atoms with an electric charge. Most cells, 

including neurons, have a charged membrane but only a 

few types of cells (e.g. neurons and cardiac cells) are 
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considered to be “electrically excitable” and are able to 

produce “electrical” responses that can be transmitted 

from cell to cell. It is important to remember that these 

“electrical” responses are in the form of ion flows, not 

flows of electrons.  

A neuron (depicted below in Figure 1) is an 

electrically-excitable cell found in the nervous system. A 

neuron lives in a medium similar to seawater, which 

contains various ions. The soma is the cell body and has a 

charge due to the presence of these ions. The soma is 

surrounded by a selectively permeable cell membrane. The 

soma of a “pre-synaptic” neuron can produce an electrical 

response called an “action potential” that is transmitted 

down its axon to its synaptic terminals with some 

transmission delay. This “output” charge is then received 

from the synaptic cleft by the “post-synaptic” neuron via 

its dendrites.

Figure 1: A schematized neuron

In the absence of any outside forces (i.e., at 

equilibrium), there will be differences in the amount of 

each ion on either side of the neuron’s membrane. When 

we account for all of the forces due to (a) differences in 

concentration of each type of ion (i.e., “diffusion”) and (b) 

the differences in the amount of positive and negative ions 

on each side (i.e., “electrostatic pressure”), we find that 

typically a neuron at equilibrium has a negative 

“membrane potential” (the charge difference on the 

neuron’s membrane) in the range of -65 mV to -90 mV. 

In the presence of outside forces, e.g., due to an 

injected current or the reception of a transmitted electrical 

response from another neuron, ions will flow into or out of 

the neuron through pores in the membrane called “ion 

channels”. One can think of these ion channels as small 

gates that are each operated by a gatekeeper according to 

the laws of chemistry and physics. A gatekeeper will only 

allow the flow of certain types of ions at certain times at 

certain rates and in certain conditions. The membrane 

potential of the neuron is governed by a combination of 

how open each of these gates is and thus what ion flow is 

permitted across the membrane (i.e. its permeability). This 

“combination” is modeled by a set of differential 

equations that many experimenters such as Hodgkin and 

Huxley have quantified.  

One of the most important processes that a neuron 

undergoes is the action potential, shown in Figure 2 

(henceforth called an “AP”). It is characterized electrically 

as a very large increase in the membrane potential (on the 

order of 100mV) followed by a sharp decrease in potential 

that sends the membrane potential below its equilibrium 

value, followed by a slow return to equilibrium. This also 

defines the shape of the AP. Consider this in terms of 

gates and gatekeepers. The gatekeepers manipulate these 

gates, much like an operator controlling floodgates at a 

reservoir, trying to maintain equilibrium. For the neuron, 

there are two main types of gatekeepers: sodium 

gatekeepers that permit sodium flow into the neuron, and 

potassium gatekeepers that permit potassium flow out of 

the cell. Since both sodium and potassium ions are 

positive, all of these gatekeepers must work together in 

order to maintain equilibrium. 

Figure 2: An action potential generated from a 
HH neuron in our simulation

In response to a sufficiently large positive input (e.g., 

injecting current into the cell) the sodium ion gatekeepers 

begin to open their gates to let sodium ions into the cell. 

This starts to increase the membrane potential, which in 

turn tells the sodium gatekeepers to let more sodium ions 

in. Meanwhile, there is a large number of potassium 

gatekeepers that prior to this sodium influx have been 

inactive and kept their gates closed. One of their jobs is to 

monitor the membrane potential and open up their gates 

when the membrane potential becomes too high. As the 

sodium level (and thus the membrane potential) begins to 

rise these potassium gatekeepers begin to take notice and 

open their gates to let potassium out of the cell. This 

would lower the membrane potential and return the cell to 

equilibrium. However, these potassium gatekeepers 

(letting potassium out) operate more slowly than the 

sodium gatekeepers (letting sodium in) so the membrane 
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potential keeps rising. When the sodium ion gatekeepers 

let in enough sodium ions to raise the membrane potential 

above some threshold, a flood of additional sodium ions 

rush into the cell and quickly raise the membrane potential 

(the “upstroke”). The sodium gatekeepers try to quickly 

close the gates to control the flood of incoming sodium 

ions and are only able to effectively do so after letting in a 

large number of sodium ions. The potassium gatekeepers 

try to compensate by opening their gates further. Through 

the combination of the sodium gates closing and the 

potassium gates opening the large influx of positive ions is 

controlled and the membrane potential stops rising (the 

“peak” of the AP). However, at this point much potassium 

efflux is being allowed through the open potassium gates 

and the membrane potential begins to drop dramatically 

(the “falling phase”). The potassium gatekeepers slowly 

begin to notice that the membrane potential is dropping 

rapidly (this is their other responsibility) and that they 

need to close their gates. By the time they close their 

gates, the membrane potential has shot well below its 

equilibrium value (“hyperpolarization”).  The sodium 

gatekeepers, however, quickly recover and begin to open 

their gates up just enough to increase the membrane 

potential to its equilibrium value. It is this process that 

experimenters such as Hodgkin and Huxley have 

mathematically modeled with a set of differential 

equations.   

Neuroscientists have created a wide range of neuronal 

models but are split concerning how to deal with the 

action potential. One class of models called integrate-and-

fire (henceforth called “IF”) or “spiking” neuron models 

[4, 5], does not model the AP itself. These models 

effectively model the relationship between the neuron and 

its responses to various input currents but when this 

“threshold” is crossed they assume that a “spike” is 

generated and the neuron is instantaneously reset to some 

reset voltage. Think of this spike as taking the action 

potential from Figure 2 and compressing it from both ends 

until it approaches a vertical line. They are unable to 

capture the shape of the AP or accurately capture how the 

neuron responds to input during the action potential and 

during recovery. Despite being biologically unrealistic, the 

differential equations that govern their behavior are much 

simpler, easier to analyze, and are solvable. Models such 

as the HH model that are more biologically realistic are 

typically governed by a more complex set of differential 

equations that cannot be solved explicitly and therefore 

must be approximated using numerical analysis. To put it 

more quantitatively, 1 ms. of simulation time of the IF 

model requires around 5 FLOPS while the HH requires 

1200 FLOPS [6].  For reasons such as these, large network 

simulations have been primarily limited to IF models. 

How might we be able to efficiently run large simulations 

of these more complex models? This is the driving 

question behind this work. 

3. Related Work 

Since IF models are primarily used in large scale 

network models, many iteratively-stepped parallel 

simulators have been created to efficiently simulate them: 

NEOSIM[13], the “Neocortex” simulator[11], 

SPIKELAB[14], SPIKENET [15] and Brettle and Niebur 

[16] to mention a few.  

Using an iterative approach, one would iterate the 

governing differential equations for each dt and determine 

if its threshold has been crossed. If so, it would fire a 

spike. However, since the governing equations of the IF 

model can be solved, one can determine when the next 

time the IF neuron will fire. One could just keep an 

estimate of this “firing time” and update it if any more 

input is received. This is an event-driven approach and can 

be used to dramatically speed up the simulation[10, 17-

19]. 

There are several existing parallel simulators capable of 

running networks of HH neurons: PNEURON, a parallel 

version of NEURON [7], PGENESIS [8], PARALLEL 

NEUROSYS[9], and the “Neocortex” simulator [10, 11]. 

Thomas [12] completed some work on running HH 

networks, which parallelizes time-stepped subsystems 

through waveform relaxation.  As far as the authors are 

aware, only the “Neocortex” simulator has looked into 

partitioning algorithms. All of these simulators use an 

iterative approach.  This paper explores the use of an 

event-driven framework on such HH networks. 

4. Model Design 

Muresan [10] states that ideally a large-scale neural 

simulator would support a high degree of interoperability 

in both the types of neurons that can be used and the 

techniques that each neuron employs. It would allow for 

both “implicit” and “explicit” synaptic representations. An 

explicit representation is one that says that neuron A 

connects to neuron B; in contrast, an implicit 

representation is one where neuron A connects to some 

other neuron as defined by some “rule of connectivity” 

[10]. This is in addition to the stereotypical desires of high 

accuracy, computational efficiency (speed), and minimal 

memory requirements.  

Two major, interrelated aspects that one must consider 

when designing a parallel, event-driven HH simulation are 

(a) how to define the distinct entities making up the 

network and (b) the time intervals inherent in the model 

that can be used to extract lookahead. It is well known that 

good lookahead properties are desirable for optimistic 

synchronization mechanisms and essential for 

conservative techniques. The means by which network 

entities are defined will determine the types of events that 

are exchanged between entities, greatly affecting the 
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partitioning strategy, and the types of optimizations that 

might be later applied.  

One can define the neural system as being composed of 

at least four components: the soma, the axon, the synapse 

(i.e., the synaptic terminals, the dendrites and the synaptic 

cleft) and the extracellular medium (environment). One 

important question is how one would represent each of 

these neural components in such a way that performance is 

maximized for the types of experiments that will be 

performed. There are two things that we should keep in 

mind as we go about defining these components. First, for 

scalability purposes, a fairly compact representation for 

these components is desirable as memory requirements 

will be large.  It is also important that we keep in mind 

that there are many simplifying assumptions that one 

makes in order to investigate network behavior. These can 

be made for a general class of neural systems or can be 

made purely on the nature of the experiment at hand.  

Foremost, we describe several general simplifications 

that one might make when looking at network-level 

questions. The first simplification is that we are not 

modeling changes in the environment. We assume 

isopotentiality in the neuron, i.e., space is uniform and 

does not have to be explicitly considered in our equations. 

We are not modeling the interactions of the AP as it 

travels down the axon (e.g. by cable equations). We 

characterize the axon purely in terms of the delay in which 

an AP is transmitted. This delay is typically much larger 

than the timesteps that are used in these types of 

simulations. This transmission is also one-way. These two 

facts suggest that the axon would provide a good means of 

separating the neuron components from the synapse 

components. 

Other important considerations arise when we consider 

a model for our synapses. The interactions between the 

post-synaptic neuron and the synapse itself are assumed to 

be instantaneous; i.e., the dendrites are not explicitly 

modeled. After an AP has been transmitted down the axon 

with some delay, it is considered to be instantly 

transmitted to the receiving neuron. Learning mechanisms 

inherent in a typical synaptic model (e.g., [20, 21]) 

describe instantaneous messages to be passed between the 

post-synaptic neuron and the synapse model. 

Unfortunately, this means that separating the neuron 

model from the synapse model would result in a zero-

lookahead simulation. To avoid this and to improve the 

efficiency of interaction between these components, the 

representations of the neuron model and the synaptic 

model are combined into a single “synapse-neuron” 

simulation entity (i.e., are mapped to a single logical 

process), allowing instantaneous messages to be 

implemented as manipulations of shared state. However, 

combining these representations can be potentially 

disastrous if one has to replicate and coordinate multiple 

synaptic models. Because of our desire to obtain good 

lookahead, we wish to partition the network by splitting a 

neural connection by its axon and base our lookahead on 

the axonal transmission time. Fortunately, the standard 

synaptic models employed here are unidirectional, 

meaning that the synapse only affects the post-synaptic 

neuron and does not need to pass messages back to the 

pre-synaptic neuron. Therefore, we incorporate the 

synaptic model into the post-synaptic neuron’s 

representation. The pre-synaptic neuron only needs to 

know to which synapses it should fire and what delays are 

involved in these firings. On the other hand, the post-

synaptic neuron doesn’t need to know this delay since it 

will receive this action potential as an event. The only 

replication of the synapse that is needed is the unique 

synaptic identifier.  

An important consideration that arises from this 

combined representation is a hierarchical notion of 

variable scope. A neuron “owns” many synaptic 

representations. Thus, variables that are common to all of 

its synapses may be abstracted from the synaptic 

representation and put in the neuron representation. As this 

is a one-to-many relationship this can result in large 

memory savings. Computationally, a common means of 

speeding up various synaptic calculations (e.g. how much 

current is being received by a neuron at this moment) is to 

allow these calculations to be performed in batch for all of 

the synapses thus making the calculation more 

computational efficient (see [22] for an excellent example 

of this technique). One can extend this variable abstraction 

technique two more levels and say that state common to 

all neurons in a simulation process can be abstracted to 

that simulation process itself and that variables common to 

all simulation processes can become “constants” in the 

simulation. Such abstraction is a powerful means for 

limiting memory consumption. 

One of the most challenging issues concerns how to 

define the “action potential event” and how to determine 

not only what it looks like but exactly when it occurred. 

Typically, they can be defined in terms of timing, kinetic 

models, and sometimes their “waveforms” (i.e., shape). 

Here we have chosen to use the synaptic model described 

in [22], which uses kinetic models to exhibit STDP[21] 

and short-term depression[20], but are not currently using 

any of the optimizations that they describe. STDP is a 

Hebbian learning mechanism based purely on timings of 

received and fired action potentials. Short-term depression 

describes a synapse as having limited resources and its 

output is affected by recent synaptic activity.  

We can effectively model the AP here as a singular 

event where we only need to know the time it is received. 

The advantage of this is that we are effectively modeling 

the relationship between the voltage on the soma and any 

input current at all times. The disadvantage of this is that 

any small variation in AP shape is not transmitted to a 

receiving neuron. We could effectively transmit a 
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waveform to a receiving neuron by knowing where it 

“starts” and “stops”. This event-driven approach can 

theoretically handle all three types of synaptic models and 

thus promotes interoperability. 

Since we are measuring the AP purely in terms of 

timing, we need to determine when the AP needs to be 

received. If we know the axonal delay then we need to 

determine when the AP was fired. This is essentially the 

same issue as the problem of finding the exact moment 

threshold crossing for an IF neuron (e.g. see the work in 

[17, 19, 24, 25]). For most IF models this is determined by 

explicitly solving the governing equations (see Brette [19] 

for an unsolvable IF model).  

The HH model does not explicitly have any notion of a 

“threshold”. However, this notion is quite useful here. For 

an event-driven HH model, one could set the “threshold” 

to be a voltage on the action potential with the idea that if 

this “threshold” was reached then a neuron must be firing 

an action potential (by definition, we must because the 

threshold is on the action potential). By experimentally 

varying the amount of a constant input current we can 

determine that the HH neuron will fire if the voltage is 

increased above -50mV. Thus we can say that -50mV is 

our threshold. This leaves us with the problem of 

determining the exact moment in which the threshold was 

crossed. One possible solution lies in the fact that the APs 

generated from a neuron generally have a narrow range of 

possible shapes. Given this, it seems plausible that we 

could better interpolate the exact crossing from the range 

of slopes that will occur at threshold crossing. 

As the reader may have noticed it is not absolutely 

necessary to determine when this HH threshold was 

crossed. In the above paragraphs, this notion of 

“threshold” was used because it is a convenient place to 

define the moment when the action potential event 

occurred. However, one must keep in mind that the focus 

of events in discrete event simulation is not when an event 

actually is “sent” but when it is received. Instead of 

calculating the threshold and using that to determine when 

the action potential event should be received, one could 

determine this received time from the current stepped 

value of time directly. This would conflate the issue of 

what lookahead would be used but it is indeed possible 

especially for optimistic protocols. This type of approach 

may be very useful for more complex neurons where the 

shape of the AP is not as well defined.  

The above description of an event-driven HH model 

affords several advantages. One such advantage is that it 

allows one to make various modeling optimizations 

concerning when the state of the neural components need 

not be updated. As an illustrative example, consider the 

‘synapse-neuron’ representation at equilibrium. In the 

absence of noise, none of the values are changing so there 

is no point in updating it during these times. This is 

essentially the same type of rationale that led to the 

creation of event-driven IF models. The next time that it 

must be updated is when it comes out of equilibrium. Or 

do we? If the input is small and enough time would pass 

that the system would quickly respond back to 

equilibrium, one might be able to ignore it completely. 

This type of optimizations would be more acceptable for 

many network-level questions where the concern is 

typically about the generation of action potentials and not 

minute changes in a neuron’s membrane potential. 

A vital point to be made here is that in these neural 

systems there is a significant amount of noise. This noise 

is accounted for in many of the models as a “noise 

current”. How might we be able to efficiently have 

random noise in the system? Does this make it a highly 

irregular problem and inherently more difficult to solve 

using this type of an approach? Does this dismiss the 

possible optimizations that are discussed above? These 

types of questions deserve further exploration (see [18] for 

an account of how to deal random noise in IF neurons). 

5. Model Implementation 

We chose to implement the neural system using the 

simulation engine sik [3] (pronounced “Musik”), which 

is written in C++. sik was developed to be able to 

efficiently simulate large-scale discrete-event simulations 

while allowing for maximum flexibility in its 

synchronization algorithm. It uses a micro-kernel design 

analogous to the one employed in operating systems. 

These inherent advantages are reminiscent of the design 

goals that were discussed in the previous section. As such, 

sik is well-suited as a simulation engine for modeling this 

neural system. It also will provide a seamless way for 

testing different synchronization methodologies and 

comparing the performance advantages and disadvantages 

of each. 

In sik, a physical process is referred to as a 

‘Simulator’ and is composed of many logical processes. 

Each logical process has its own synchronization 

algorithm. Logical processes communicate via discrete 

events. For conservative approaches, time is synchronized 

by determining the next event for each logical process via 

a global lower bound timestamp (LBTS) computation. 

Lookahead is important in these approaches for efficient 

synchronization as it allows the simulation engine to know 

when the federate will not schedule any new events. 

The neural simulation is implemented using the 

‘synapse-neuron’ representation as the logical process. 

Presently, a conservative protocol is used for 

synchronization. LPs send “action potential” events when 

their threshold is crossed. In order to meet the constraints 

of the conservative approach, each neuron updates its state 

at regular intervals. The reasoning behind this is outlined 

below.  
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In sik, the physical process, called NeuralSimulator, is 

defined as a subclass of ‘Simulator’. Inside this federate, 

there are pointers to output files for recording data. The 

logical processes are implemented as the class Neuron, a 

subclass of ‘NormalSimProcess’. Inside Neuron, several 

state variables are defined including the current timestep, 

the threshold of excitation, the membrane potential, the 

time the neuron was last updated, and two ids. One id 

serves as the unique LP identifier for a NeuralSimulator
instance. The other id is defined to be unique over the 

entire simulation and is used for determining noise current. 

In the previous section, the state of the synapse was 

described as being an explicit component in the 

representation for the post-synaptic neuron and only an 

identifier and a delay for the pre-synaptic neuron. We have 

implemented this as two C++ maps to which Neuron holds 

a pointer: one that holds a list of pointers to this Synapse
class and the other that holds a list of neurons, their 

federate ids and the appropriate axonal transmission delay 

(in a ConnectionInfo class) to whom this neuron fires. 

Both maps are keyed on the unique synapse id.  

The Neuron class sends and receives two types of 

messages. The first is an event called an 

“AP_ARRIVAL”, that signals the neuron that an action 

potential has arrived at the neuron. When this event is 

received, the neuron will update its time from the last time 

it was updated and then update the appropriate state 

variables. An adaptive Runge-Kutta timestep method with 

error control, as described in [23], is used to perform the 

necessary numerical approximations. This algorithm 

allows one to set a tolerance on the calculated error and 

lets the timestep grow or shrink as needed in order to 

minimally meet this tolerance. This timestep is bound to a 

certain range and will grow/shrink at a constant rate. Each 

neuron LP has its own timestep value which is retained 

between events. This adaptive timestep method is also 

consistent with the event-driven philosophy. 

One challenge is determining when this action potential 

event will actually be received. If the exact “firing time” 

were known then the AP event would need to be received 

at the firing time plus the axonal transmission time. For 

this implementation we simply see if the threshold was 

crossed during some timestep dt. If it was crossed then a 

neuron will fire an AP_ARRIVAL event at the end of this 

dt. We perform no interpolation to get a more exact 

crossing moment (within dt). 

Unlike the IF event models, it is not known 

deterministically when this threshold will be crossed and 

one cannot employ a simpler LBTS-maintained system-

wide “spike estimate” priority queue with conservative 

synchronization. To meet the constraints of the 

conservative protocol that we are currently using, we 

update the neuron periodically with a “WAKEUP” event. 

If the threshold has not been crossed then we could 

theoretically fire at any time (e.g. a supra-threshold input 

current arrives). In order to ensure that the received event 

occurs in the LPs future and meets the constraints of the 

conservative protocol we require that the WAKEUP event 

occurs at one-half the minimum axonal transmission 

delay. As a result of this, we must define our lookahead as 

also being one-half the minimum axonal transmission 

delay. 

However, if a threshold has been crossed and we are 

currently generating the AP we know that we cannot fire 

again until the AP finishes and a period of time that the 

neuron cannot fire again (called the “absolute refractory 

period”) has passed. We have experimentally calculated a 

very conservative estimate of the sum of these two periods 

as 10ms. Thus, one-half the minimal transmission time 

plus 10ms is the next time that our neuron would have to 

be updated.  

The use of this WAKEUP event has an interesting 

consequence in that the more the neuron fires the less 

often we need to update its state via a WAKEUP event. 

This suggests that the simulation may get better 

performance if there is a moderate amount of activity.  We 

investigate this quantitatively in section seven. 

To model noise in the system, we added a noise current 

to the HH model. The value used is obtained by a 

Gaussian distribution with a mean of 700nA and standard 

deviation of 7500 and is sampled upon every time 

increment. This was defined with the intuition that most of 

the noise will generate sub-threshold responses but 

occasionally a neuron will receive supra-threshold noise, 

generating an action potential. Experimentally, if these 

large noise currents did not exist then the dynamics of our 

ion channels would simply converge to a steady-state 

range of a few millivolts above equilibrium. 

The creation of these networks and its partitioning is 

done by a separate C++ program. This program will 

generate a network configuration based on [26]. The 

network generated is consistent with biological data in that 

synaptic connections between two neurons are much more 

likely if those neurons are near each other. It is important 

to note that the number of synapses generated will grow as 

the amount of neurons in the simulation grows! This 

relationship is shown in Figure 3. The current version of 

this program is extremely memory intensive and limits us 

to creating a network below 10,000 neurons.  
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The partitioning of these networks is currently done 

through a simple scoring system where each synapse is 

given a weighted score based on the transmission delay 

and the number of synapses that are firing to the same 

neuron. Qualitatively, this weighted score is a measure of 

how often events will be received by the post-synaptic 

neuron. We iterate through the synapses from highest 

score to lowest score assigning neurons to processors. If 

both neurons for a synapse are unassigned then both are 

assigned in a round robin order to the next processor. If 

only one of the neurons is unassigned then it is either 

assigned to the same processor as the already assigned 

neuron or to the next processor. The greater the score of 

the synapse the more likely it is that it will be assigned to 

the same processor. The partitioned network for each 

processor is written to a unique input file that a 

NeuralSimulator reads in when it is initialized. 

6. Model Verification 

It is very difficult to verify that the network that we 

have created will generate reasonable neuronal activity in 

the absence of experimental data. Such verification 

requires a fair amount of parameter tuning. In the present 

paper, we are more concerned with if the basic 

mechanisms are correct and how different parameters (e.g. 

those that increase the chance that a neuron will fire an 

AP) will affect simulator performance. In order to 

investigate this, we have conducted several efforts to 

verify the neuron and synaptic models used in our 

implementation.  

In order to verify our model of the HH neuron, we 

compared the event-driven model to a standard time-

stepped HH model. The event-driven model appears to 

generate a normal action potential shape (see Figure 2) and 

respond similarly to sub-threshold input currents. It is 

worth noting here that since we are using numerical 

approximation the results of the comparison will not be 

exact.

We have completed some preliminary verification on 

our synaptic model.  Initial testing on the mechanisms of 

STDP in our synaptic model and each of these variables 

indicates it appears to be responding correctly. We have 

done no testing with our short-term depression 

implementation so we have not included it in the 

experiments below. Verification of the biological accuracy 

of the networks that we generated remains an area of 

future work. 

7. Initial Results 

An initial set of simulation runs were conducted in 

order to test the feasibility of this event-driven Hodgkin-

Huxley model and to access its scalability and 

performance. The simulations were run on a single cluster 

node consisting of 8 550 MHz PIII Xeon SMP processors 

with an available 4GB RAM. All simulations were 

conducted on a single node and thus there is no overhead 

due to intern-node communications.  

Networks of size 25, 50, 100, 200, and 400 neurons 

were created according to the description in section five 

and simulated for 15 seconds of simulation time using 1, 

2, 4, and 8 processors. Each neuron initially received 

between zero and four action potentials at random times in 

the first twenty milliseconds of the simulation. These 

inputs were designed to augment the spontaneous activity 

of these networks. All synapses in these networks were 

excitatory, meaning that input currents increase the 

membrane potential of the neuron. The speedups for these 

networks are shown in Figure 4.  
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Figure 4: Speedup for networks of 25, 50, 100, 
200, and 400 neurons on 1, 2, 4 and 8 processors. 

As can be seen from the results in Figure 4, we are able 

to achieve good speedup in our neural networks. The 

network of 50 neurons offers particularly good speedup 

here because there are fewer remote events due to the way 

the network is partitioned. One might be able to achieve 

better speedup with other networks with better 

partitioning. These results suggest that one may be able to 

effectively run larger networks of these event-driven 

Hodgkin-Huxley neurons. 

Next, we conducted an experiment to determine how 

simulation performance changes as network activity 

increases. In order to test this, we varied the maximal 

synaptic conductance (gmax) in a set of 15 second 

simulations on a network of size 100 on a single processor. 

The results are shown in Table 1.  This experiment 

demonstrates that we are able to achieve better 

performance when there is a moderate amount of activity. 
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Table 1: Effects of Network Activity on Execution 
Time of a 100 HH Neuron Network 

gmax APs Fired Total Elapsed Time (s) 

0.010 402 11761.8 

0.015 425 11745.2 

0.030 398 11747.2 

0.050 399 11699.6 

0.065 412 11708.8 

0.075 461 11445.6 

0.090 417 11403.5 

0.100 427 11518.3 

0.130 481 10772.0 

Important factors that determine the execution time are 

the number of events that must be processed and the 

amount of computation required to process each event. In 

our model there are two types of events: a WAKEUP 

event and an AP_ARRIVAL event. In Table 2 below, we 

list the percentage of each event that we process in our 

simulations. As one can see the number of WAKEUP 

events is far greater than the number of AP_ARRIVAL 

events. Efforts to reduce the number of WAKEUP events 

needed or the regularity in which they occur would greatly 

reduce the number of events that need to be processed and 

could yield much better performance.  

Table 2: Percentage of Each Event in Simulations 
% AP_ARRIVAL 

Events 

% WAKEUP 

Events 

25 0.0677 99.9323 

50 0.0787 99.9213 

100 0.0604 99.9396 

200 0.1046 99.8954 

400 0.1567 99.8433 

It is important to be able to characterize the 

computation time of each of these events. In order to 

determine this, the time taken to process each type of 

event was recorded in a separate set of simulations that 

were setup as described above but ran for only 1s of 

simulation time.  

In Figure 5, we can see the amount of time to process 

each event increases as the size of our network increases. 

The WAKEUP event updates the state of the neuron to the 

timestamp in that event. The time to process this event 

grows roughly linearly with network size because the 

number of synapses for which we must calculate the 

synaptic input grows linearly (see Figure 3). Optimizations 

that try to pull out computations from individual synapses 

may greatly help speed up the computation here (e.g., see 

[22]).  
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Figure 5: Wall clock processing time for 
WAKEUP and AP_ARRIVAL events for networks 
of size 25, 50, 100, 200, and 400 neurons 

The AP_ARRIVAL event updates the state of our 

neuron to the timestamp of that event and then updates the 

state of the synapses for the arrival of an action potential. 

The time to process an AP_ARRIVAL event will grow 

similar to the WAKEUP event because of linear synaptic 

growth. In addition, we must find and update the 

appropriate synapse in our synaptic representation (a C++ 

map). This computation is logarithmic and accounts for 

the difference between the two types of events. 

8. Conclusion

In this paper, we have described an event-driven 

Hodgkin-Huxley neuron that offers promise for effective 

parallel simulation of larger networks. This technique 

offers good performance as the networks size increases, 

better performance when there is moderate activity in the 

network, and meets several of the design criteria described 

in [10] for large scale neural simulators.  

From the simulation side, there are many future 

directions that could be pursued. These include: improving 

the partitioning algorithm; investigating the use of other 

synchronization algorithms, experimentation on larger 

networks with a larger number of processors; achieving a 

lookahead based on action potential events only; 

characterizing and limiting the memory consumption of 

the simulation; and performing a comparison with a time-

stepped approach to determine what, if any, savings result 

from using this event-driven approach. 

From the modeling side, there are equally as many 

directions that deserve further investigation. These 

include: further verification of the neuron and synapse 

models and networks for biological realism and parameter 

sensitivity; a better characterization of the noise current 

and the questions that it begs; and investigating other 

techniques and optimizations that may be employed to 
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improve the computational speed in which events are 

processed. 

Appendix: Model Details 

The Hodgkin-Huxley model is a set of four differential 

equations (1-4). The synaptic model is also a set of four 

differential equations (5-8).  

(1) -C * dV/dt = Inoise – (INa + IK + Ileak )

a. INa = gna*m(t)3*h(t)* (V – ENa)

b. IK = gK * n(t)4 * (V – EK)

c. Ileak = gleak * (V – Eleak)

(2) dm/dt = (minf – m) / 

(3) dn/dt = (ninf – n) / 

(4) dh/dt = (hinf – h) / 

(5) dgex/dt = -gex / ex (Excitatory Synapses) 

(6) dgin/dt = -gin / in (Inhibitory Synapses) 

(7) dM/dt = -M/ -

(8) dPa/dt = -Pa/ +

Equation 1 was solved using adaptive Runge-Kutta 

using a tolerance of 10-11. Equations 2-8 were formulated 

in terms of an update rule (of the form x(t + dt) = … ) and 

evaluated for the appropriate value of V. These parameters 

resulted in average timesteps in the range of 0.001 ms. to 

0.00004 ms. for the first set of experiments described in 

section seven.  

Parameter values for these equations were given in 

their respective papers. Similar to [21], we set the initial 

value of ga to gmax in order to maximize network activity 

(gmax = 150 pS). 
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