
Parallel Event-Driven Neural Network Simulations
Using the Hodgkin-Huxley Neuron Model

Collin J. Lobb
1
, Zenas Chao

2
, Richard M. Fujimoto

1
, Steve M. Potter

2

1 College of Computing
Georgia Institute of Technology
{collin,fujimoto)@cc.gatech.edu

2 Laboratory for Neuroengineering
Georgia Institute of Technology

zenas@neuro.gatech.edu
stpotter@ece.gatech.edu

Abstract

Neural systems are composed of a large number of
highly-connected neurons and are widely simulated within
the neurological community. In this paper, we examine the
application of parallel discrete event simulation
techniques to networks of a complex model called the
Hodgkin-Huxley neuron[1]. We describe the conversion of
this model into an event-driven simulation, a technique
that offers the potential of much greater performance in
parallel and distributed simulations compared to time-
stepped techniques. We report results of an initial set of
experiments conducted to determine the feasibility of this
parallel event-driven Hodgkin-Huxley model and analyze
its viability for large-scale neural simulations.

1. Introduction

Much work in parallel and distributed simulation

focuses on synchronizing time in hundreds or thousands of

entities. Researchers have been able to create scalable

algorithms that efficiently coordinate the temporal

activities of these entities. However, there are many

domains in which one must synchronize a massive number

of entities. Many of these domains have not been

investigated. In this paper, we will examine a relatively

new domain in parallel and distributed simulation whose

scale could eventually reach billions of entities making

trillions of connections: the nervous system.

In parallel and distributed simulation, there are two

main techniques for incrementing time: a time-stepped

approach and an event-driven approach. Event-driven

simulations have been shown to offer better performance.

Thus, many efforts are devoted to creating suitable event-

driven models. This allows one to abstract out the

partitioning and synchronizing algorithms. In this paper,

we will discuss the transformation of the Hodgkin-Huxley

model [1] of a neuron, hence referred to as the “HH

model”, into an event-driven process and discuss some of

our preliminary findings in simulating a large scalable

number of these neurons.

We are investigating how network scale and

interconnectivity affect the emergence of a large

synchronous burst of neural activity called a “superburst”

[2]. In order to investigate these network-level questions,

we need the ability to run large network simulations. The

computational requirements for such networks are much

greater than those currently available on typical desktop

computers. The effective use of parallel and distributed

computation can help address these ever-increasing

computational demands.

This paper is organized into eight sections. In section 2,

we provide a brief introduction to neural systems. In

section 3, we discuss previous work in simulating these

neuron models. In section 4, we describe how we

converted the continuous HH model into a discrete event-

driven simulation model. In section 5, we discuss the

implementation of the HH model using a parallel discrete

event simulation engine called sik [3] and the methods by

which we create networks of these HH neurons. In section

6, we describe efforts to verify this model. In section 7, we

discuss some initial scalability experiments on this event-

driven HH model. Finally in section 8, we provide some

concluding thoughts on these results and how one might

go about improving them.

2. Neural Systems

Like most biological systems, neural systems are

typically comprised of cells and the fluid that they inhabit

(extracellular medium). These cells are able to

communicate with one another. For many cells, these

communication mechanisms involve the movement of

ions, which are atoms with an electric charge. Most cells,

including neurons, have a charged membrane but only a

few types of cells (e.g. neurons and cardiac cells) are

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

considered to be “electrically excitable” and are able to

produce “electrical” responses that can be transmitted

from cell to cell. It is important to remember that these

“electrical” responses are in the form of ion flows, not

flows of electrons.

A neuron (depicted below in Figure 1) is an

electrically-excitable cell found in the nervous system. A

neuron lives in a medium similar to seawater, which

contains various ions. The soma is the cell body and has a

charge due to the presence of these ions. The soma is

surrounded by a selectively permeable cell membrane. The

soma of a “pre-synaptic” neuron can produce an electrical

response called an “action potential” that is transmitted

down its axon to its synaptic terminals with some

transmission delay. This “output” charge is then received

from the synaptic cleft by the “post-synaptic” neuron via

its dendrites.

Figure 1: A schematized neuron

In the absence of any outside forces (i.e., at

equilibrium), there will be differences in the amount of

each ion on either side of the neuron’s membrane. When

we account for all of the forces due to (a) differences in

concentration of each type of ion (i.e., “diffusion”) and (b)

the differences in the amount of positive and negative ions

on each side (i.e., “electrostatic pressure”), we find that

typically a neuron at equilibrium has a negative

“membrane potential” (the charge difference on the

neuron’s membrane) in the range of -65 mV to -90 mV.

In the presence of outside forces, e.g., due to an

injected current or the reception of a transmitted electrical

response from another neuron, ions will flow into or out of

the neuron through pores in the membrane called “ion

channels”. One can think of these ion channels as small

gates that are each operated by a gatekeeper according to

the laws of chemistry and physics. A gatekeeper will only

allow the flow of certain types of ions at certain times at

certain rates and in certain conditions. The membrane

potential of the neuron is governed by a combination of

how open each of these gates is and thus what ion flow is

permitted across the membrane (i.e. its permeability). This

“combination” is modeled by a set of differential

equations that many experimenters such as Hodgkin and

Huxley have quantified.

One of the most important processes that a neuron

undergoes is the action potential, shown in Figure 2

(henceforth called an “AP”). It is characterized electrically

as a very large increase in the membrane potential (on the

order of 100mV) followed by a sharp decrease in potential

that sends the membrane potential below its equilibrium

value, followed by a slow return to equilibrium. This also

defines the shape of the AP. Consider this in terms of

gates and gatekeepers. The gatekeepers manipulate these

gates, much like an operator controlling floodgates at a

reservoir, trying to maintain equilibrium. For the neuron,

there are two main types of gatekeepers: sodium

gatekeepers that permit sodium flow into the neuron, and

potassium gatekeepers that permit potassium flow out of

the cell. Since both sodium and potassium ions are

positive, all of these gatekeepers must work together in

order to maintain equilibrium.

Figure 2: An action potential generated from a
HH neuron in our simulation

In response to a sufficiently large positive input (e.g.,

injecting current into the cell) the sodium ion gatekeepers

begin to open their gates to let sodium ions into the cell.

This starts to increase the membrane potential, which in

turn tells the sodium gatekeepers to let more sodium ions

in. Meanwhile, there is a large number of potassium

gatekeepers that prior to this sodium influx have been

inactive and kept their gates closed. One of their jobs is to

monitor the membrane potential and open up their gates

when the membrane potential becomes too high. As the

sodium level (and thus the membrane potential) begins to

rise these potassium gatekeepers begin to take notice and

open their gates to let potassium out of the cell. This

would lower the membrane potential and return the cell to

equilibrium. However, these potassium gatekeepers

(letting potassium out) operate more slowly than the

sodium gatekeepers (letting sodium in) so the membrane

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

potential keeps rising. When the sodium ion gatekeepers

let in enough sodium ions to raise the membrane potential

above some threshold, a flood of additional sodium ions

rush into the cell and quickly raise the membrane potential

(the “upstroke”). The sodium gatekeepers try to quickly

close the gates to control the flood of incoming sodium

ions and are only able to effectively do so after letting in a

large number of sodium ions. The potassium gatekeepers

try to compensate by opening their gates further. Through

the combination of the sodium gates closing and the

potassium gates opening the large influx of positive ions is

controlled and the membrane potential stops rising (the

“peak” of the AP). However, at this point much potassium

efflux is being allowed through the open potassium gates

and the membrane potential begins to drop dramatically

(the “falling phase”). The potassium gatekeepers slowly

begin to notice that the membrane potential is dropping

rapidly (this is their other responsibility) and that they

need to close their gates. By the time they close their

gates, the membrane potential has shot well below its

equilibrium value (“hyperpolarization”). The sodium

gatekeepers, however, quickly recover and begin to open

their gates up just enough to increase the membrane

potential to its equilibrium value. It is this process that

experimenters such as Hodgkin and Huxley have

mathematically modeled with a set of differential

equations.

Neuroscientists have created a wide range of neuronal

models but are split concerning how to deal with the

action potential. One class of models called integrate-and-

fire (henceforth called “IF”) or “spiking” neuron models

[4, 5], does not model the AP itself. These models

effectively model the relationship between the neuron and

its responses to various input currents but when this

“threshold” is crossed they assume that a “spike” is

generated and the neuron is instantaneously reset to some

reset voltage. Think of this spike as taking the action

potential from Figure 2 and compressing it from both ends

until it approaches a vertical line. They are unable to

capture the shape of the AP or accurately capture how the

neuron responds to input during the action potential and

during recovery. Despite being biologically unrealistic, the

differential equations that govern their behavior are much

simpler, easier to analyze, and are solvable. Models such

as the HH model that are more biologically realistic are

typically governed by a more complex set of differential

equations that cannot be solved explicitly and therefore

must be approximated using numerical analysis. To put it

more quantitatively, 1 ms. of simulation time of the IF

model requires around 5 FLOPS while the HH requires

1200 FLOPS [6]. For reasons such as these, large network

simulations have been primarily limited to IF models.

How might we be able to efficiently run large simulations

of these more complex models? This is the driving

question behind this work.

3. Related Work

Since IF models are primarily used in large scale

network models, many iteratively-stepped parallel

simulators have been created to efficiently simulate them:

NEOSIM[13], the “Neocortex” simulator[11],

SPIKELAB[14], SPIKENET [15] and Brettle and Niebur

[16] to mention a few.

Using an iterative approach, one would iterate the

governing differential equations for each dt and determine

if its threshold has been crossed. If so, it would fire a

spike. However, since the governing equations of the IF

model can be solved, one can determine when the next

time the IF neuron will fire. One could just keep an

estimate of this “firing time” and update it if any more

input is received. This is an event-driven approach and can

be used to dramatically speed up the simulation[10, 17-

19].

There are several existing parallel simulators capable of

running networks of HH neurons: PNEURON, a parallel

version of NEURON [7], PGENESIS [8], PARALLEL

NEUROSYS[9], and the “Neocortex” simulator [10, 11].

Thomas [12] completed some work on running HH

networks, which parallelizes time-stepped subsystems

through waveform relaxation. As far as the authors are

aware, only the “Neocortex” simulator has looked into

partitioning algorithms. All of these simulators use an

iterative approach. This paper explores the use of an

event-driven framework on such HH networks.

4. Model Design

Muresan [10] states that ideally a large-scale neural

simulator would support a high degree of interoperability

in both the types of neurons that can be used and the

techniques that each neuron employs. It would allow for

both “implicit” and “explicit” synaptic representations. An

explicit representation is one that says that neuron A

connects to neuron B; in contrast, an implicit

representation is one where neuron A connects to some

other neuron as defined by some “rule of connectivity”

[10]. This is in addition to the stereotypical desires of high

accuracy, computational efficiency (speed), and minimal

memory requirements.

Two major, interrelated aspects that one must consider

when designing a parallel, event-driven HH simulation are

(a) how to define the distinct entities making up the

network and (b) the time intervals inherent in the model

that can be used to extract lookahead. It is well known that

good lookahead properties are desirable for optimistic

synchronization mechanisms and essential for

conservative techniques. The means by which network

entities are defined will determine the types of events that

are exchanged between entities, greatly affecting the

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

partitioning strategy, and the types of optimizations that

might be later applied.

One can define the neural system as being composed of

at least four components: the soma, the axon, the synapse

(i.e., the synaptic terminals, the dendrites and the synaptic

cleft) and the extracellular medium (environment). One

important question is how one would represent each of

these neural components in such a way that performance is

maximized for the types of experiments that will be

performed. There are two things that we should keep in

mind as we go about defining these components. First, for

scalability purposes, a fairly compact representation for

these components is desirable as memory requirements

will be large. It is also important that we keep in mind

that there are many simplifying assumptions that one

makes in order to investigate network behavior. These can

be made for a general class of neural systems or can be

made purely on the nature of the experiment at hand.

Foremost, we describe several general simplifications

that one might make when looking at network-level

questions. The first simplification is that we are not

modeling changes in the environment. We assume

isopotentiality in the neuron, i.e., space is uniform and

does not have to be explicitly considered in our equations.

We are not modeling the interactions of the AP as it

travels down the axon (e.g. by cable equations). We

characterize the axon purely in terms of the delay in which

an AP is transmitted. This delay is typically much larger

than the timesteps that are used in these types of

simulations. This transmission is also one-way. These two

facts suggest that the axon would provide a good means of

separating the neuron components from the synapse

components.

Other important considerations arise when we consider

a model for our synapses. The interactions between the

post-synaptic neuron and the synapse itself are assumed to

be instantaneous; i.e., the dendrites are not explicitly

modeled. After an AP has been transmitted down the axon

with some delay, it is considered to be instantly

transmitted to the receiving neuron. Learning mechanisms

inherent in a typical synaptic model (e.g., [20, 21])

describe instantaneous messages to be passed between the

post-synaptic neuron and the synapse model.

Unfortunately, this means that separating the neuron

model from the synapse model would result in a zero-

lookahead simulation. To avoid this and to improve the

efficiency of interaction between these components, the

representations of the neuron model and the synaptic

model are combined into a single “synapse-neuron”

simulation entity (i.e., are mapped to a single logical

process), allowing instantaneous messages to be

implemented as manipulations of shared state. However,

combining these representations can be potentially

disastrous if one has to replicate and coordinate multiple

synaptic models. Because of our desire to obtain good

lookahead, we wish to partition the network by splitting a

neural connection by its axon and base our lookahead on

the axonal transmission time. Fortunately, the standard

synaptic models employed here are unidirectional,

meaning that the synapse only affects the post-synaptic

neuron and does not need to pass messages back to the

pre-synaptic neuron. Therefore, we incorporate the

synaptic model into the post-synaptic neuron’s

representation. The pre-synaptic neuron only needs to

know to which synapses it should fire and what delays are

involved in these firings. On the other hand, the post-

synaptic neuron doesn’t need to know this delay since it

will receive this action potential as an event. The only

replication of the synapse that is needed is the unique

synaptic identifier.

An important consideration that arises from this

combined representation is a hierarchical notion of

variable scope. A neuron “owns” many synaptic

representations. Thus, variables that are common to all of

its synapses may be abstracted from the synaptic

representation and put in the neuron representation. As this

is a one-to-many relationship this can result in large

memory savings. Computationally, a common means of

speeding up various synaptic calculations (e.g. how much

current is being received by a neuron at this moment) is to

allow these calculations to be performed in batch for all of

the synapses thus making the calculation more

computational efficient (see [22] for an excellent example

of this technique). One can extend this variable abstraction

technique two more levels and say that state common to

all neurons in a simulation process can be abstracted to

that simulation process itself and that variables common to

all simulation processes can become “constants” in the

simulation. Such abstraction is a powerful means for

limiting memory consumption.

One of the most challenging issues concerns how to

define the “action potential event” and how to determine

not only what it looks like but exactly when it occurred.

Typically, they can be defined in terms of timing, kinetic

models, and sometimes their “waveforms” (i.e., shape).

Here we have chosen to use the synaptic model described

in [22], which uses kinetic models to exhibit STDP[21]

and short-term depression[20], but are not currently using

any of the optimizations that they describe. STDP is a

Hebbian learning mechanism based purely on timings of

received and fired action potentials. Short-term depression

describes a synapse as having limited resources and its

output is affected by recent synaptic activity.

We can effectively model the AP here as a singular

event where we only need to know the time it is received.

The advantage of this is that we are effectively modeling

the relationship between the voltage on the soma and any

input current at all times. The disadvantage of this is that

any small variation in AP shape is not transmitted to a

receiving neuron. We could effectively transmit a

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

waveform to a receiving neuron by knowing where it

“starts” and “stops”. This event-driven approach can

theoretically handle all three types of synaptic models and

thus promotes interoperability.

Since we are measuring the AP purely in terms of

timing, we need to determine when the AP needs to be

received. If we know the axonal delay then we need to

determine when the AP was fired. This is essentially the

same issue as the problem of finding the exact moment

threshold crossing for an IF neuron (e.g. see the work in

[17, 19, 24, 25]). For most IF models this is determined by

explicitly solving the governing equations (see Brette [19]

for an unsolvable IF model).

The HH model does not explicitly have any notion of a

“threshold”. However, this notion is quite useful here. For

an event-driven HH model, one could set the “threshold”

to be a voltage on the action potential with the idea that if

this “threshold” was reached then a neuron must be firing

an action potential (by definition, we must because the

threshold is on the action potential). By experimentally

varying the amount of a constant input current we can

determine that the HH neuron will fire if the voltage is

increased above -50mV. Thus we can say that -50mV is

our threshold. This leaves us with the problem of

determining the exact moment in which the threshold was

crossed. One possible solution lies in the fact that the APs

generated from a neuron generally have a narrow range of

possible shapes. Given this, it seems plausible that we

could better interpolate the exact crossing from the range

of slopes that will occur at threshold crossing.

As the reader may have noticed it is not absolutely

necessary to determine when this HH threshold was

crossed. In the above paragraphs, this notion of

“threshold” was used because it is a convenient place to

define the moment when the action potential event

occurred. However, one must keep in mind that the focus

of events in discrete event simulation is not when an event

actually is “sent” but when it is received. Instead of

calculating the threshold and using that to determine when

the action potential event should be received, one could

determine this received time from the current stepped

value of time directly. This would conflate the issue of

what lookahead would be used but it is indeed possible

especially for optimistic protocols. This type of approach

may be very useful for more complex neurons where the

shape of the AP is not as well defined.

The above description of an event-driven HH model

affords several advantages. One such advantage is that it

allows one to make various modeling optimizations

concerning when the state of the neural components need

not be updated. As an illustrative example, consider the

‘synapse-neuron’ representation at equilibrium. In the

absence of noise, none of the values are changing so there

is no point in updating it during these times. This is

essentially the same type of rationale that led to the

creation of event-driven IF models. The next time that it

must be updated is when it comes out of equilibrium. Or

do we? If the input is small and enough time would pass

that the system would quickly respond back to

equilibrium, one might be able to ignore it completely.

This type of optimizations would be more acceptable for

many network-level questions where the concern is

typically about the generation of action potentials and not

minute changes in a neuron’s membrane potential.

A vital point to be made here is that in these neural

systems there is a significant amount of noise. This noise

is accounted for in many of the models as a “noise

current”. How might we be able to efficiently have

random noise in the system? Does this make it a highly

irregular problem and inherently more difficult to solve

using this type of an approach? Does this dismiss the

possible optimizations that are discussed above? These

types of questions deserve further exploration (see [18] for

an account of how to deal random noise in IF neurons).

5. Model Implementation

We chose to implement the neural system using the

simulation engine sik [3] (pronounced “Musik”), which

is written in C++. sik was developed to be able to

efficiently simulate large-scale discrete-event simulations

while allowing for maximum flexibility in its

synchronization algorithm. It uses a micro-kernel design

analogous to the one employed in operating systems.

These inherent advantages are reminiscent of the design

goals that were discussed in the previous section. As such,

sik is well-suited as a simulation engine for modeling this

neural system. It also will provide a seamless way for

testing different synchronization methodologies and

comparing the performance advantages and disadvantages

of each.

In sik, a physical process is referred to as a

‘Simulator’ and is composed of many logical processes.

Each logical process has its own synchronization

algorithm. Logical processes communicate via discrete

events. For conservative approaches, time is synchronized

by determining the next event for each logical process via

a global lower bound timestamp (LBTS) computation.

Lookahead is important in these approaches for efficient

synchronization as it allows the simulation engine to know

when the federate will not schedule any new events.

The neural simulation is implemented using the

‘synapse-neuron’ representation as the logical process.

Presently, a conservative protocol is used for

synchronization. LPs send “action potential” events when

their threshold is crossed. In order to meet the constraints

of the conservative approach, each neuron updates its state

at regular intervals. The reasoning behind this is outlined

below.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

In sik, the physical process, called NeuralSimulator, is

defined as a subclass of ‘Simulator’. Inside this federate,

there are pointers to output files for recording data. The

logical processes are implemented as the class Neuron, a

subclass of ‘NormalSimProcess’. Inside Neuron, several

state variables are defined including the current timestep,

the threshold of excitation, the membrane potential, the

time the neuron was last updated, and two ids. One id

serves as the unique LP identifier for a NeuralSimulator
instance. The other id is defined to be unique over the

entire simulation and is used for determining noise current.

In the previous section, the state of the synapse was

described as being an explicit component in the

representation for the post-synaptic neuron and only an

identifier and a delay for the pre-synaptic neuron. We have

implemented this as two C++ maps to which Neuron holds

a pointer: one that holds a list of pointers to this Synapse
class and the other that holds a list of neurons, their

federate ids and the appropriate axonal transmission delay

(in a ConnectionInfo class) to whom this neuron fires.

Both maps are keyed on the unique synapse id.

The Neuron class sends and receives two types of

messages. The first is an event called an

“AP_ARRIVAL”, that signals the neuron that an action

potential has arrived at the neuron. When this event is

received, the neuron will update its time from the last time

it was updated and then update the appropriate state

variables. An adaptive Runge-Kutta timestep method with

error control, as described in [23], is used to perform the

necessary numerical approximations. This algorithm

allows one to set a tolerance on the calculated error and

lets the timestep grow or shrink as needed in order to

minimally meet this tolerance. This timestep is bound to a

certain range and will grow/shrink at a constant rate. Each

neuron LP has its own timestep value which is retained

between events. This adaptive timestep method is also

consistent with the event-driven philosophy.

One challenge is determining when this action potential

event will actually be received. If the exact “firing time”

were known then the AP event would need to be received

at the firing time plus the axonal transmission time. For

this implementation we simply see if the threshold was

crossed during some timestep dt. If it was crossed then a

neuron will fire an AP_ARRIVAL event at the end of this

dt. We perform no interpolation to get a more exact

crossing moment (within dt).

Unlike the IF event models, it is not known

deterministically when this threshold will be crossed and

one cannot employ a simpler LBTS-maintained system-

wide “spike estimate” priority queue with conservative

synchronization. To meet the constraints of the

conservative protocol that we are currently using, we

update the neuron periodically with a “WAKEUP” event.

If the threshold has not been crossed then we could

theoretically fire at any time (e.g. a supra-threshold input

current arrives). In order to ensure that the received event

occurs in the LPs future and meets the constraints of the

conservative protocol we require that the WAKEUP event

occurs at one-half the minimum axonal transmission

delay. As a result of this, we must define our lookahead as

also being one-half the minimum axonal transmission

delay.

However, if a threshold has been crossed and we are

currently generating the AP we know that we cannot fire

again until the AP finishes and a period of time that the

neuron cannot fire again (called the “absolute refractory

period”) has passed. We have experimentally calculated a

very conservative estimate of the sum of these two periods

as 10ms. Thus, one-half the minimal transmission time

plus 10ms is the next time that our neuron would have to

be updated.

The use of this WAKEUP event has an interesting

consequence in that the more the neuron fires the less

often we need to update its state via a WAKEUP event.

This suggests that the simulation may get better

performance if there is a moderate amount of activity. We

investigate this quantitatively in section seven.

To model noise in the system, we added a noise current

to the HH model. The value used is obtained by a

Gaussian distribution with a mean of 700nA and standard

deviation of 7500 and is sampled upon every time

increment. This was defined with the intuition that most of

the noise will generate sub-threshold responses but

occasionally a neuron will receive supra-threshold noise,

generating an action potential. Experimentally, if these

large noise currents did not exist then the dynamics of our

ion channels would simply converge to a steady-state

range of a few millivolts above equilibrium.

The creation of these networks and its partitioning is

done by a separate C++ program. This program will

generate a network configuration based on [26]. The

network generated is consistent with biological data in that

synaptic connections between two neurons are much more

likely if those neurons are near each other. It is important

to note that the number of synapses generated will grow as

the amount of neurons in the simulation grows! This

relationship is shown in Figure 3. The current version of

this program is extremely memory intensive and limits us

to creating a network below 10,000 neurons.

0

50

100

150

0 500 1000 1500 2000 2500 3000

Network Size

M
ea

n
sy

na
ps

es
pe

r
ne

ur
on

Figure 3: Neural connectivity in the generated
HH networks

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

The partitioning of these networks is currently done

through a simple scoring system where each synapse is

given a weighted score based on the transmission delay

and the number of synapses that are firing to the same

neuron. Qualitatively, this weighted score is a measure of

how often events will be received by the post-synaptic

neuron. We iterate through the synapses from highest

score to lowest score assigning neurons to processors. If

both neurons for a synapse are unassigned then both are

assigned in a round robin order to the next processor. If

only one of the neurons is unassigned then it is either

assigned to the same processor as the already assigned

neuron or to the next processor. The greater the score of

the synapse the more likely it is that it will be assigned to

the same processor. The partitioned network for each

processor is written to a unique input file that a

NeuralSimulator reads in when it is initialized.

6. Model Verification

It is very difficult to verify that the network that we

have created will generate reasonable neuronal activity in

the absence of experimental data. Such verification

requires a fair amount of parameter tuning. In the present

paper, we are more concerned with if the basic

mechanisms are correct and how different parameters (e.g.

those that increase the chance that a neuron will fire an

AP) will affect simulator performance. In order to

investigate this, we have conducted several efforts to

verify the neuron and synaptic models used in our

implementation.

In order to verify our model of the HH neuron, we

compared the event-driven model to a standard time-

stepped HH model. The event-driven model appears to

generate a normal action potential shape (see Figure 2) and

respond similarly to sub-threshold input currents. It is

worth noting here that since we are using numerical

approximation the results of the comparison will not be

exact.

We have completed some preliminary verification on

our synaptic model. Initial testing on the mechanisms of

STDP in our synaptic model and each of these variables

indicates it appears to be responding correctly. We have

done no testing with our short-term depression

implementation so we have not included it in the

experiments below. Verification of the biological accuracy

of the networks that we generated remains an area of

future work.

7. Initial Results

An initial set of simulation runs were conducted in

order to test the feasibility of this event-driven Hodgkin-

Huxley model and to access its scalability and

performance. The simulations were run on a single cluster

node consisting of 8 550 MHz PIII Xeon SMP processors

with an available 4GB RAM. All simulations were

conducted on a single node and thus there is no overhead

due to intern-node communications.

Networks of size 25, 50, 100, 200, and 400 neurons

were created according to the description in section five

and simulated for 15 seconds of simulation time using 1,

2, 4, and 8 processors. Each neuron initially received

between zero and four action potentials at random times in

the first twenty milliseconds of the simulation. These

inputs were designed to augment the spontaneous activity

of these networks. All synapses in these networks were

excitatory, meaning that input currents increase the

membrane potential of the neuron. The speedups for these

networks are shown in Figure 4.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

Number of Processors

S
p

ee
d

u
p

Size 25

Size 50

Size 100

Size 200

Size 400

Figure 4: Speedup for networks of 25, 50, 100,
200, and 400 neurons on 1, 2, 4 and 8 processors.

As can be seen from the results in Figure 4, we are able

to achieve good speedup in our neural networks. The

network of 50 neurons offers particularly good speedup

here because there are fewer remote events due to the way

the network is partitioned. One might be able to achieve

better speedup with other networks with better

partitioning. These results suggest that one may be able to

effectively run larger networks of these event-driven

Hodgkin-Huxley neurons.

Next, we conducted an experiment to determine how

simulation performance changes as network activity

increases. In order to test this, we varied the maximal

synaptic conductance (gmax) in a set of 15 second

simulations on a network of size 100 on a single processor.

The results are shown in Table 1. This experiment

demonstrates that we are able to achieve better

performance when there is a moderate amount of activity.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

Table 1: Effects of Network Activity on Execution
Time of a 100 HH Neuron Network

gmax APs Fired Total Elapsed Time (s)

0.010 402 11761.8

0.015 425 11745.2

0.030 398 11747.2

0.050 399 11699.6

0.065 412 11708.8

0.075 461 11445.6

0.090 417 11403.5

0.100 427 11518.3

0.130 481 10772.0

Important factors that determine the execution time are

the number of events that must be processed and the

amount of computation required to process each event. In

our model there are two types of events: a WAKEUP

event and an AP_ARRIVAL event. In Table 2 below, we

list the percentage of each event that we process in our

simulations. As one can see the number of WAKEUP

events is far greater than the number of AP_ARRIVAL

events. Efforts to reduce the number of WAKEUP events

needed or the regularity in which they occur would greatly

reduce the number of events that need to be processed and

could yield much better performance.

Table 2: Percentage of Each Event in Simulations
% AP_ARRIVAL

Events

% WAKEUP

Events

25 0.0677 99.9323

50 0.0787 99.9213

100 0.0604 99.9396

200 0.1046 99.8954

400 0.1567 99.8433

It is important to be able to characterize the

computation time of each of these events. In order to

determine this, the time taken to process each type of

event was recorded in a separate set of simulations that

were setup as described above but ran for only 1s of

simulation time.

In Figure 5, we can see the amount of time to process

each event increases as the size of our network increases.

The WAKEUP event updates the state of the neuron to the

timestamp in that event. The time to process this event

grows roughly linearly with network size because the

number of synapses for which we must calculate the

synaptic input grows linearly (see Figure 3). Optimizations

that try to pull out computations from individual synapses

may greatly help speed up the computation here (e.g., see

[22]).

WC Time per Event

0
5000

10000
15000
20000

25000
30000
35000

40000
45000

25 50 100 200 400

Network Size (in Neurons)

A
vg

 P
ro

ce
ss

in
g

 T
im

e
(m

s)

WAKEUP

AP_ARRIVAL

Figure 5: Wall clock processing time for
WAKEUP and AP_ARRIVAL events for networks
of size 25, 50, 100, 200, and 400 neurons

The AP_ARRIVAL event updates the state of our

neuron to the timestamp of that event and then updates the

state of the synapses for the arrival of an action potential.

The time to process an AP_ARRIVAL event will grow

similar to the WAKEUP event because of linear synaptic

growth. In addition, we must find and update the

appropriate synapse in our synaptic representation (a C++

map). This computation is logarithmic and accounts for

the difference between the two types of events.

8. Conclusion

In this paper, we have described an event-driven

Hodgkin-Huxley neuron that offers promise for effective

parallel simulation of larger networks. This technique

offers good performance as the networks size increases,

better performance when there is moderate activity in the

network, and meets several of the design criteria described

in [10] for large scale neural simulators.

From the simulation side, there are many future

directions that could be pursued. These include: improving

the partitioning algorithm; investigating the use of other

synchronization algorithms, experimentation on larger

networks with a larger number of processors; achieving a

lookahead based on action potential events only;

characterizing and limiting the memory consumption of

the simulation; and performing a comparison with a time-

stepped approach to determine what, if any, savings result

from using this event-driven approach.

From the modeling side, there are equally as many

directions that deserve further investigation. These

include: further verification of the neuron and synapse

models and networks for biological realism and parameter

sensitivity; a better characterization of the noise current

and the questions that it begs; and investigating other

techniques and optimizations that may be employed to

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

improve the computational speed in which events are

processed.

Appendix: Model Details

The Hodgkin-Huxley model is a set of four differential

equations (1-4). The synaptic model is also a set of four

differential equations (5-8).

(1) -C * dV/dt = Inoise – (INa + IK + Ileak)

a. INa = gna*m(t)3*h(t)* (V – ENa)

b. IK = gK * n(t)4 * (V – EK)

c. Ileak = gleak * (V – Eleak)

(2) dm/dt = (minf – m) /

(3) dn/dt = (ninf – n) /

(4) dh/dt = (hinf – h) /

(5) dgex/dt = -gex / ex (Excitatory Synapses)

(6) dgin/dt = -gin / in (Inhibitory Synapses)

(7) dM/dt = -M/ -

(8) dPa/dt = -Pa/ +

Equation 1 was solved using adaptive Runge-Kutta

using a tolerance of 10-11. Equations 2-8 were formulated

in terms of an update rule (of the form x(t + dt) = …) and

evaluated for the appropriate value of V. These parameters

resulted in average timesteps in the range of 0.001 ms. to

0.00004 ms. for the first set of experiments described in

section seven.

Parameter values for these equations were given in

their respective papers. Similar to [21], we set the initial

value of ga to gmax in order to maximize network activity

(gmax = 150 pS).

Acknowledgements

 This research was supported in part by NSF grant

ATM-0326431.

References

[1] A. L. Hodgkin and A. F. Huxley, "A quantitative description

of membrane current and its application to conduction and

excitation in nerve." Journal of physiology, vol. 117, pp. 500-

544, 1952.

[2] Nadasdy Z. , W. D. A., Potter S.M. (2003). “Attractor

dynamics of superbursts in living neural networks.” SFN

2003, New Orleans, LA.

[3] K.Perumalla, “Musik – A Micro-kernel for

Parallel/Distributed Simulation Systems”, PADS 2005.

[4] L. Lapicque, "Recherches quantitatives sur l'excitation

electrique des nerfs traitée comme une polarisation," vol. 9,

pp. 620-635, 1907.

[5] W. Gerstner and W. M. Kistler, Spiking neuron models:
single neurons, populations, plasticity. New York: Cambridge

University Press, 2002.

[6] E. M. Izhikevich, "Which model to use for cortical spiking

neurons?" IEEE transactions on neural networks, vol. 15, pp.

1063-1070, 2004.

[7] M. Hines and N. T. Carnevale, "The NEURON Simulation

Environment," Neural Computation, vol. 9, pp. 1179-1209,

1997.

[8] J. M. Bower and D. Beeman, The book of GENESIS:
exploring realistic neural models with the GEneral NEural
SImulation System. Santa Clara, Calif.: Telos, 1995.

[9] P. Pacheco, M. Camperi, and T. Uchino, "PARALLEL

NEUROSYS: a system for the simulation of very large

networks of biologically accurate neurons on parallel

computers," Neurocomputing, July 1999, vol. 32-33, pp.

1095-1102, 2000.

[10]I. I. Muresan R.C., "Principles of Design for Large Scale

Neural Simulators," presented at International Conference on

Automation, Quality and Testing, Robotics, Cluj-Napoca,

2004.

[11]I. I. Muresan R.C., "The "Neocortex" Neural Simulator. A

Modern Design," presented at International Conference on

Intelligent Engineering Systems, Cluj-Napoca, 2004.

[12]E. A. Thomas, "A parallel algorithm for simulation of large

neural networks," Journal of Neuroscience Methods, vol. 98,

pp. 123-34, 2000.

[13]N. Goddard, G. Hood, F. Howell, M. Hines, and E. De

Schutter, "NEOSIM: portable large-scale plug and play

modelling," Neurocomputing, vol. 38-40, pp. 1657-61, 2001.

[14]C. Grassman and J. K. Anlauf, "Fast digital simulation of

spiking neural networks and neuromorphic integration with

SPIKELAB," International Journal of Neural Systems, vol. 9,

pp. 473-8, 1999.

[15]A. Delorme, J. Gautrais, R. van Rullen, and S. Thorpe,

"SpikeNET: a simulator for modeling large networks of

integrate and fire neurons," Neurocomputing, vol. 26-27, pp.

989-996, 1999.

[16]D. Brettle and E. Niebur, "Detailed parallel simulation of a

biological neuronal network," IEEE Computational Science
& Engineering, vol. 1, pp. 31-43, 1994.

[17]M. Mattia and P. Del Giudice, "Efficient event-driven

simulation of large networks of spiking neurons and

dynamical synapses," Neural Computation, vol. 12, pp. 2305-

29, 2000.

[18]J. Reutimann, M. Giugliano, and S. Fusi, "Event-driven

simulation of spiking neurons with stochastic dynamics,"

Neural Computation, vol. 15, pp. 811-30, 2003.

[19]R. Brette, "Event-driven simulation of integrate-and-fire

neurons with exponential synaptic conductances," Submitted,

2005.

[20]H. Markram, Y. Wang, and M. Tsodyks, "Differential

signaling via the same axon of neocortical pyramidal

neurons," Proceedings of the National Academy of Sciences
of the United States of America, vol. 95, pp. 5323, 1998.

[21]S. Song, Miller, K.D. and Abbott, L.F., "Competitive

Hebbian Learning Through Spike-Timing Dependent

Synaptic Plasticity," Nature Neurosci, vol. 3, pp. 919-926,

2000.

[22]M. Giugliano, M. Bove, and M. Grattarola, "Fast calculation

of short-term depressing synaptic conductances," Neural
Computation, vol. 11, pp. 1413-26, 1999.

[23]W. H. Press, Numerical recipes in C: the art of scientific
computing, 2nd ed. Cambridge; New York: Cambridge

University Press, 1992.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

[24]M. J. Shelley and L. Tao, "Efficient and accurate time-

stepping schemes for integrate-and-fire neuronal networks,"

Journal of Computational Neuroscience, vol. 11, pp. 111-19.

[25]T. Makino, "A discrete-event neural network simulator for

general neuron models," Neural Computing & Applications,

vol. 11, pp. 210-23, 2003.

[26]R. Segev and E. Ben-Jacob, "Generic modeling of

chemotactic based self-wiring of neural networks," Neural
Networks, vol. 13, pp. 185-99, 2000.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

