
 Page 1

µsik – A Micro-Kernel for Parallel/Distributed Simulation Systems
Kalyan S. Perumalla
kalyan@cc.gatech.edu
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract
We present a novel micro-kernel approach to building parallel/distributed simulation systems. Using
this approach, we develop a unified system architecture for incorporating multiple types of simulation
processes. The processes hold potential to employ a variety of synchronization mechanisms, and could
alter their choice of mechanism dynamically. Supported mechanisms include traditional lookahead-
based conservative and state saving-based optimistic execution approaches, as well as newer
mechanisms such as reverse computation-based optimistic execution and aggregation-based event
processing, all within a single parsimonious application programming interface. We also present the
internal implementation and a preliminary performance evaluation of this interface in µsik, which is an
efficient parallel/distributed realization of our micro-kernel architecture in C++.

1. Introduction
High-performance parallel and distributed discrete

event simulation (PDES) systems have traditionally
been built from the ground up, for each major variant
of various PDES techniques. However, it is desirable
to have the freedom to add new techniques without
having to develop entirely new systems from scratch
for each variant. To this end, we are interested in
isolating the core invariant portion of PDES
techniques, and in providing a generalized framework
for building traditional as well as newer techniques on
top of the core. The core constitutes the micro-kernel,
and the traditional implementations (conservative or
optimistic) form the system services on top of the
micro-kernel. This permits the incorporation of newer
techniques on top of the core, as well as optimization
of existing system services, without the need for
system-wide changes.

The PDES micro-kernel approach is based on
analogy with operating systems[1]. In operating
systems that are based on micro-kernel architecture, a
very basic set of services is provided by the operating
system core (e.g., process identifiers and address
spaces). Using such primitive services, the rest of the
system services are in fact built outside the core (e.g.,
file systems and networking). We borrow this
approach in our system. A micro-kernel operating
system provides an easy and safe way of adding new
system/kernel services, such as new network protocols
and file systems. Similarly, a PDES micro-kernel
provides an easy way to add new types of simulation
processes without the need for an overhaul of the
entire PDES system implementation. Our micro-

kernel approach is experimental in nature to test the
feasibility of developing such a system that can
accommodate multiple synchronization techniques and
endure additions over time, while at the same time
maintaining high-performance execution without
undue performance penalty.

The rest of the document is organized as follows.
Section 2 presents the motivation and background for
the design and development of the micro-kernel
approach. The micro-kernel concepts for PDES are
introduced in Section 3. Implementation details of the
micro-kernel interface are described in Section 4. A
preliminary performance study of our microkernel
implementation on a distributed platform is presented
in Section 5. Finally, current status and future work
are presented in Section 6.

2. Motivation and Background
In some of our current projects in collaboration

with modeling experts in physical sciences, we are
pursuing development of physics simulation models
(e.g., of Earth’s magnetosphere). These physics
simulations are complex, and employ fine-grained
events. It is unknown as to which synchronization
method works best for these models, hence a specific
synchronization scheme cannot be chosen a priori.
More ideally, the models can benefit from a single
engine that not only semi-transparently supports
multiple synchronization approaches, but also entails
execution with sufficiently low overheads. A
generalization of the goals is for the simulation system
to allow simulation processes the freedom to adopt any
event processing scheme, or freely switch between
schemes at runtime. Additionally, since our focus is

Kalyan S. Perumalla
To Appear in ACM/IEEE Workshop on Principles of Advanced and Distributed Simulation (PADS),
Monterey, CA, May 2005

 Page 2

on very large-scale simulations, especially of physics
models in our current projects, we need scalable
parallel/distributed execution capabilities.

2.1. Traditional vs. New Systems
Approach

The method of prevalence in building PDES
systems is to build the system specifically for one
synchronization method (e.g., one conservative
algorithm, or one optimistic variant). This tradition
has two fallouts. First, additions to the underlying
framework involve major overhauls. Secondly,
modelers need to either determine and stick to one
mechanism, or re-code their models to switch to a new
mechanism. Such a limitation is deplorable: the PDES
research community has developed a host of
techniques for high-performance execution; yet, an
elegant systems framework is lacking for incorporating
the multitude of techniques in an easy and modular
fashion.

Our thesis is that a large number of techniques in
PDES can be supported transparently in a single
unified framework, with a small set of fundamental
primitives. Based on this premise, we develop a
unified application program interface (API) that
encompasses most, if not all, synchronization
approaches. Using this interface, simulation models
can be written in a manner that is resilient to changes
and optimizations.

2.2. Related Work
The High Level Architecture (HLA)[2] defined by

the US Department of Defense provides services for
integrating a wide variety of simulator
implementations, including space and/or time parallel
(conservative, optimistic) discrete event simulations,
and time-stepped continuous simulations. However,
the architecture has been designed for interoperation
of coarse integration entities, such as distributed
programs communicating over the network. As such,
it is not well-suited for integration of fine-grained
entities, as in the hosting of multiple event-oriented
logical processes and/or threads within a single UNIX
process. In particular, primitives to facilitate efficient
process scheduling are not addressed in the standard;
such primitives turn out to be the key to efficient
execution of fine-grained autonomous entities.

A more closely related work is by Jha and
Bagrodia[3] in which a unified framework is presented
to permit optimistic and conservative protocols to
interoperate and alternate dynamically. (A variation of
Jha and Bagrodia’s protocols is later discussed in [4],
but in the context of VLSI applications). High-level

algorithms are presented in [3] that elegantly state the
problem along with their solution approach. However,
they do not address system implementation details or
performance data. Their treatment provides proof of
correctness, but lacks an implementation approach and
a study of runtime performance implications. Our
work differs in that we are interested in defining the
interface in a way that guarantees efficient
implementation, and we describe details of a high-
performance implementation of such a unified
interface. Some of our terms share their definitions
with analogous terms in their work, but our interface
uses fewer primitives and diverges in semantics for
others. For example, our interface does not require the
equivalent of their Earliest Output Time (EOT).
Similarly, in contrast to their need for lookahead, we
do not require that the application always specify a
non-zero lookahead. Also, their related PARSEC
system supported an API for processes to dynamically
switch between optimistic and conservative modes,
but we differ in our systems approach in implementing
similar functionality.

SPEEDES[5] is a commercial optimistic simulation
framework that is capable of distributed execution;
however, we were unable to find evidence on its large-
scale parallel performance capabilities for fine-grained
applications. GTW[6] and ROSS[7] are representative
of high-performance implementations of optimistic
simulators, but they are restricted to parallel execution
on symmetric shared memory multiprocessor (SMP)
platforms. The SMP-only constraint sometimes limits
the user’s choice of hardware as well as scalability.
An exception is the WARPED simulator[8], a shared-
memory time warp system extended to execute on
distributed memory platforms, but it has only been
evaluated on relatively small hardware configurations.
We are interested in scalable execution on large-scale
computing platforms, such as large clusters (hundreds)
of quad-processor SMP machines typically available
in supercomputing installations for academic research.
The cluster-of-SMPs platform is appealing since it is
relatively less expensive as compared to a comparable
SMP system for large number of processors.

We note that, while the possibility of switching
between types of protocol is not entirely new, our
parsimonious API and our high-performance
implementation approach are novel.

3. PDES Micro-Kernel Concepts
In this section, we introduce some terminology and

concepts, and provide high-level descriptions of
important micro-kernel operations. It is assumed that
PDES models are written in terms of simulation
processes that exchange events, with multiple
simulation processes (also called logical processes)

 Page 3

hosted on each processor. Operationally, one
operating system process (e.g., a UNIX process) hosts
several simulation processes on each processor.

In the PDES micro-kernel system view, simulation
processes are fully autonomous entities. They are free
to determine for themselves when and in what internal
order they would process their received events. The
micro-kernel does not process events in and by itself –
it only acts as a router of events. In particular, it does
not generate, consume or buffer any events. It does
not examine event contents, except for the event’s
header (source, destination and timestamp). The
micro-kernel does not distinguish between regular
events, retraction events, anti-events or multicast
events. It also does not perform event buffer
management (memory reuse, fossil collection, etc.), in
contrast to traditional parallel/distributed simulation
engines. The distinctions among event types and their
associated optimizations are deferred to protocol-
specific functionality of services outside the kernel
proper. The responsibility of a micro-kernel is
restricted to only providing services to the simulation
processes such that the processes can efficiently
communicate events with each other, and collectively
accomplish “asymptotic” time-ordered processing of
events.

3.1. Core Services
The micro-kernel core consists of naming, routing

and scheduling services, as follows:
! Naming: The micro-kernel provides a uniform

way for simulation processes to locate and
refer to each other, within and across
processors in a parallel/distributed execution
setting. A list of valid identifiers is maintained
to map identifiers to processes and vice versa.

! Routing: The routing services ensure that
events are transparently forwarded to the
receiver process, regardless of whether the
sender and receiver are co-located or
distributed across processors. This is coupled
with a guarantee that no event timestamp is
overlooked in global timestamp-ordered
processing.

! Scheduling: The micro-kernel takes care of
allocating CPU cycles among multiple
simulation processes in a manner that best
promotes simulation progress, and ensures
absence of livelock or deadlock.

A wide variety of PDES mechanisms can be built
around this parsimonious set of core services, as
outlined in Figure 1. Classical services include
support for conservative and optimistic processing –

event processing/commitment, rollback support and
lookahead specification services. They also include
kernel process support for remote communication,
retractions and multicast (group) communication.
Extensions are placeholders for newer techniques in
the future, such as “aggregate event processing”,
“constrained out-of-order execution” and the like
(discussion on these omitted due to space limitations).
Convenience services include routines such as
initialization, timers, and reversible random number
generation.

Figure 1: Elements of the micro-kernel architecture, and

their inter-relationships.

3.2. Event Lifecycle and Categories
Events can be considered to go through different

stages in their life cycle. First an event is allocated
and scheduled by a sender simulation process. Next,
the receiver simulation process performs initial
processing of the event. This stage includes executing
application (model) code associated with that event
type. Eventually, in a following stage, final actions
associated with the event are committed. Finally, the
memory used by the event is released and recycled.

Figure 2: Illustration of the simulation timeline and

important event categories in each simulation process.
The relation LCTS!ECTS!EETS always holds.

Based on the disposition of event lifecycle stages,
at any given snapshot moment during simulation, all
events belonging to a simulation process can be
categorized into four distinct classes – committed,
committable, processable and emittable. The first set

ECTS EPTS EETS

Simulation time !

Committed
Committable
Processable
Emittable

ECTS=Earliest Committable Time Stamp
EPTS=Earliest Processable Time Stamp
EETS=Earliest Emittable Time Stamp

LCTS

LCTS=Latest Committed Time Stamp

Application Models

Classical
Services

Extensions

Micro-Kernel
Core

C
on

ve
ni

en
ce

M
od

ul
es

 Page 4

of events (committed set) is those that have been
processed, committed and whose memory has been
released for reuse. The second set (committable set)
consists of those that have been processed but are
waiting to be committed. The third set (processable
set) consists of events received by this simulation
process that are waiting to be processed. The final set
(emittable set) is a logical set that comprises those
events that are potentially schedulable by this
simulation process to other simulation processes
(excluding itself) during the processing of its current
set of committable and processable events. Event
categories and their mutual ordering are illustrated in
Figure 2.

In purely conservative processes, all application
code executes during “commit” stages of events. In
optimistic processes, revocable portions (slices) of
code execute during the “process” stage, while
irrevocable portions are done in the “commit” stage.

A Lower Bound on Time Stamp (LBTS) value is
defined as a distributed snapshot[9, 10] of the least
EETS value among all processes in the simulation. It
is essentially a guarantee on the value of the smallest
timestamp receivable by any process in future.

When LBTS advances to/beyond the timestamp of
a committable event, examples of actions performed
when committing the event include, but are not limited
to, the following:

! State vector release: Release of state vectors,
if any, used for state saving during optimistic
processing of the event.

! Input/Output: Operations such as
conservatively printing output to the terminal,
or reading from a file.

! Memory allocation/release: Finalizing the
effect of dynamic memory operations initiated
by the application while processing the event.

3.3. Determining Event-Category Times
For classical services, assume that the events in a

process are logically stored in two data structures: FEL
and PEL. The Future Event List (FEL) consists of
events in the process’ processable event set.
Processed Event List (PEL) consists of events in the
process’ committable event set. For a simulation
process i, let FELi

top be the minimum timestamp in
FELi (infinity if FELi is empty) and PELi

top be the
minimum timestamp in PELi (infinity if PELi is
empty). Note that PELi

top is always infinity for
conservative simulation processes.

The earliest time stamp for each event category is
determined as follows:

1. ECTSi = Min(FELi
top, PELi

top)
2. EPTSi = infinity if conservative

FELi
top if optimistic

3. EETSi = Min(FELi
top + Lookaheadi,

PELi
top)

In the preceding equations, EETSi is defined rather
simplistically, but could include additional complexity
if so desired. For example, if lookahead is highly
variable across events, EETSi could be defined on a
per-event basis: EETSi=min(Ej+LAj) for each event Ej
in FELi, and LAj is the lookahead for event Ej. Similar
refinements can be made based on limiting it by the set
of destination processes of process i. Additional
refinements can be made for optimistic processes as
well. The main idea is that the event categories
provide simple yet powerful abstractions that enable
several types of synchronization.

3.4. Process Scheduling
On each processor, the scheduling algorithm

proceeds by executing the code in Figure 3 within a
loop (a formal proof of correctness is relegated to a
separate document, due to space limitations):

1. if(ECTSmin < LBTS)
2. PECTS-min.advance(LBTS)
3. else
4. PEPTS-min.advance_opt(EPTSmin2)

Figure 3: Micro-kernel's scheduler loop (simplified).
ECTSmin is the minimum ECTS among all

processes on that processor. ProcessECTS-min is the
process with the minimum ECTS value. ProcessEPTS-

min is the process with the minimum EPTS value.
EPTSmin2 is the second least EPTS value among all
processes on that processor. The method
P.advance(T) conservatively processes all events of
process P with timestamps less than or equal to time
T. The method P.advance_opt(T) optimistically
processes all events of process P with timestamps less
than or equal to time T. Either method is a no-op if P
is null. The operation of this loop will become clearer
in the following two subsections.

The LBTS itself is computed as the minimum
EETS among all processes across all processors. Any
transient event (in transit across processors) is
accounted for by the sender process’ queues until the
event reaches its receiver process. The LBTS
computation can either be performed concurrently
with the scheduler, or, periodically inside the
scheduler loop just prior to each optimistic processing
step (line 4).

 Page 5

3.5. Conservative Processing
During normal processing, the micro-kernel only

schedules conservatively executable actions in
increasing order of their committable timestamps.
Only those processes whose ECTS values are less than
or equal to the LBTS value are considered for
conservative scheduling. The process with the least
ECTS value is scheduled, and it is permitted to
advance up to and including the current LBTS value.
When that process is finished with its processing, the
micro-kernel schedules the process with the next
minimum ECTS value, and so on. Note that new
events, if any, generated by the scheduled process will
necessarily have timestamps greater than or equal to
the current LBTS value.

If no process exists whose ECTS value is less than
or equal to the current LBTS, then the micro-kernel
initiates a new LBTS computation (if one is not
already in progress). A new LBTS value typically
takes time to be computed, due to communication
latency across processors. It is this delay that induces
blocking of conservative computation. This blocking
period can be utilized as an opportunity to perform
optimistic event processing. Hence, while a new
LBTS value is being computed, the micro-kernel
schedules those processes that are capable and willing
to perform optimistic event processing, as described
next.

3.6. Optimistic Processing
In optimistic mode, the micro-kernel schedules the

process that has the least EPTS value. Recall that the
EPTS value for conservative processes is infinity, and
for optimistic processes it is equal to the minimum
timestamp among unprocessed events (or, infinity if
FEL is empty). Thus, if there are any optimistic
processes, their EPTS values can make them
schedulable for optimistic processing.

When at least one optimistic process exists for
scheduling, optimistic execution is scheduled as
follows: two processes with the minimum and the next
minimum EPTS values (say, EPTSm1 and EPTSm2) are
selected. If only one optimistic process exists, EPTSm2
is set to infinity (in this case, this limit needs to be
customized, if necessary, to throttle unbounded
optimism). Then, the process with EPTSm1 is allowed
to optimistically process its events with timestamps
less than or equal to EPTSm2.

Initiating optimistic execution only when all
conservative processing is blocked ensures that time
spent in correct execution is maximized, and the
potential for incorrect execution (in optimistic mode)
is minimized.

4. Micro-Kernel Implementation
We now describe our implementation of the micro-

kernel approach in a new software system named µsik
(micro simulation kernel, pronounced “mew-seek”).
sik is written in C++, linkable to an application as a
library, and provides class hierarchies rooted at base
classes corresponding to micro-kernel concepts.

A naïve implementation of the micro-kernel
approach could entail significant overheads, as
compared to the traditional monolithic simulator
implementations. In a monolithic simulator, it is
possible to optimize the implementation by employing
centralized data structures such as event buffers, event
lists and state vectors. On the other hand, in a micro-
kernel, the key data structures are, by design,
encapsulated inside simulation processes. The
challenge is to find efficient ways of implementing the
micro-kernel framework so as to minimize or
eliminate overheads.

A key issue is the problem of always keeping
accurate ordering among processes with respect to
their ECTS, EPTS and EETS values. For example,
when a new event is sent from one simulation process
to another, the receiver’s ECTS, EPTS and EETS
values can change. Similarly, a simulation process
will have its values changed at the end of processing
an event. Event retractions need to be dealt with
appropriately, as they too alter timestamp ordering.

It is clear that the right choice of data structures
determines the efficiency of micro-kernel operation.
As its main components, the micro-kernel maintains a
list of local user processes, a hash table for mapping
process identifiers to processes, and a list of kernel
processes. For scheduler operations, three important
priority queues are maintained. Each of these
components is described next.

4.1. Naming Services
To provide naming services, the micro-kernel

maintains a mapping of process identifiers to process
instances. Process identifiers are specified as a pair of
integers: (processor number, local process number).
Simulation processes can be kernel processes or user
processes. Kernel processes are used for internal
implementation of services on top of the micro-kernel
(see Section 4.3). User processes are part of
application model.

 Page 6

Figure 4: Every simulation process is assigned a locally
unique identifier as soon as it is added to the simulation.
User processes are assigned positive identifiers starting

with 0, while kernel processes are assigned negative
identifiers starting with -1. Identifiers are assigned from

an incrementing counter, and are not recycled when
processes are deleted.

User processes are assigned local identifiers as
positive integers, starting at 0, while kernel processes
are assigned negative integers, as shown in Figure 4.
The rationale behind this scheme is that it allows
applications to rely on their processes being identified
from 0 to n-1 (this is a common way in which models
are written). Using negative identifiers for kernel
processes makes them transparent to the application,
and will not interfere with the traditional modeling
methods. Special identifiers are also defined for
specifying an invalid identifier, and to specify
multicast destinations.

4.2. Scheduling Services
The scheduler is implemented as a loop inside a

micro-kernel method.
Process Ordering

Three in-place min-heaps are used, one each for
tracking the ECTS, EPTS and EETS values of
simulation processes. Each heap maintains the
minimum time-stamped process at the top. For
example, the process with the least ECTS value is
always available as the top of ECTS heap. The heaps
are designed to rapidly update and readjust the
elements when the key of an element is increased or
decreased. This rapid update is essential to quickly
keep the heaps consistent before and after every
scheduling action by the scheduler (see also Section
4.4).
Readjusting Timestamp Orders within Scheduler

When events are sent or received by simulation
processes, their relative ordering can change with
respect to their ECTS, EPTS, and EETS values. The
heaps of the micro-kernel scheduler need to be
readjusted to restore correct timestamp order. This
readjustment is accomplished via a pair of
before_dirtied() and after_dirtied() methods within
the base simulation process. These methods keep
track of whether any changes occurred to the key
timestamps. If (and only if) any of the ECTS, EPTS
or EETS values of an affected process changes, the
corresponding scheduler heap is readjusted. The
affected process that needs to be updated could be the
active (sending) process that is currently scheduled, or,

it could also be the set of processes to which the
currently scheduled process generates new events.
Distributed Time Synchronization

To compute LBTS values, we employ the
distributed snapshot algorithm described in [11]. We
use the publicly available implementation [12] of this
algorithm. Its current implementation includes two
different modules: one is based on efficient global
hierarchical reductions[11, 13], while the other is
based on an optimized variant[14] of the Chandy-
Misra-Bryant null message algorithm[15]. These are
reported to have been tested by their authors on large-
scale platforms, and demonstrated to scale very well,
even up to supercomputing configurations of more
than 1500 processors[13, 14, 16].

4.3. Routing Services
Local event exchange is trivially handled by

enqueueing the event in the local destination process.
Remote communication is implemented via a special
delegation mechanism using kernel processes (see
next). As indicated earlier, the micro-kernel itself
never stores or buffers any events at any time. Every
event routed through the micro-kernel is immediately
delegated either to the destination process (if it is a
local user process), or delegated to a local kernel
process (if the destination is a remote process or a
multicast group). We omit discussion of multicast
communication due to space limitations.
Kernel Processes

Kernel processes are used to implement remote
federate communication and multicast event
exchanges. The reason they are implemented this way
is that the functionality can be quite seamlessly
implemented using the scheduling services provided
by the micro-kernel core. This is fairly analogous to
operating system micro-kernels. Services such as
networking, file I/O, etc. are implemented as processes
outside the micro-kernel core, which themselves
utilize many of the services that user processes utilize.

A notion of kernel processes for PDES is
introduced (for improving rollback efficiency) in
ROSS[7]. Our concept of kernel processes and its
usage is quite different and unrelated, serving a
different notion and purpose.
Remote Event Communication

On each processor, one kernel process is
instantiated for every other (remote) processor. These
kernel processes for remote communication act as
local representative proxies for the corresponding
remote processors. This scheme operates as follows.

Let us denote by KPi
j the j’th kernel process on

0 1 2 3 … … -3 -2 -1

User processes Kernel processes

 Page 7

processor i. When a user process on processor i
attempts to send an event to a user process on a remote
processor j, the micro-kernel on processor i forwards
that event to its local kernel process KPi

j. KPi
j is then

responsible for forwarding the event to KPj
i, which is

its peer kernel process on processor j. When KPj
i

receives that event, it forwards to the destination user
process (guaranteed to be local) via the micro-kernel.

This scheme, despite its simplicity, affords elegant
implementation of a wide range of features and
optimizations studied in PDES literature.
Sophisticated variants can be incorporated with few
changes to the rest of the system. Here we briefly
discuss a few possibilities:

Optimistic Sends: In this most common method,
an event scheduled to a remote process is immediately
sent over the wire to its corresponding remote
processor. A downside with this scheme is that the
network communication cost becomes a wasted
overhead if the event is later retracted. The event
retraction could be initiated either by the user (in
conservative or optimistic processing) to take back a
previously scheduled event, or by the kernel for event
cancellation (anti-messages for secondary rollbacks in
optimistic processing).

Lazy Sends: Instead of forwarding the event
immediately over the wire to the remote processor, the
event could be withheld within the kernel process for
dt simulation time units, where 0<dt"(Tevent-Tnow).
Delaying the event longer will postpone the network
communication cost, which is beneficial in case the
event is retracted later. On the flip side, it might
increase the event communication latency, and stall
the receiving processor waiting to receive the event for
its own progress. Adaptive schemes could be devised
and implemented in the kernel process to exploit this
“lazy send” optimization.

Non-aggressive Sends: The kernel process can
also be used to easily implement non-aggressive sends
– i.e., to send remote messages if and only if they
cannot be retracted in the future. This is a well-known
PDES variant in optimistic simulation to separate risk
and aggressiveness [17], in which events are processed
optimistically locally, but only “correct” events are
propagated across processors. The kernel process
adds the event in its FEL, and “processes” the events
in a conservative fashion. The event is actually sent
over the wire to the remote processor only when it is
committed. Since events are committed only when
they are guaranteed to be not retracted, non-
aggressiveness is assured.

Message Bundling: To amortize the cost of
network communication, it is possible to bundle
multiple events into one message. The cost savings

can be good especially when events are small in size,
as compared to network message headers (e.g., TCP
header size). Again, such bundling techniques can be
incorporated into the kernel process responsible for
remote communication.

All KPi
j are responsible for maintaining a mapping

from event identifiers to event buffers. Such a
mapping is necessary in order to implement event
retractions (during conservative and/or optimistic
execution) and anti-events (to realize secondary
rollback/cancellation in optimistic execution). The
kernel process is also responsible for periodically
flushing the hash table when events are committed and
can no longer be retracted or canceled.

The beauty of this kernel process scheme lies in the
fact that the kernel processes themselves are time-
synchronized automatically (since they are simulation
processes themselves). This fact can be exploited to
easily and modularly implement the aforementioned
variants.

4.4. Optimized Queues and Lists
The micro-kernel uses priority queue and list data

structures in its implementation. The efficiency of
these data structures is critical for keeping runtime
overheads low. We define our own heap and list data
types, to avoid overheads of dynamic memory
allocation of conventional libraries. Our definitions
are different from other standard library templates in
that our definitions permit the same object to be linked
into multiple instances of the same container type,
without the need to allocate container headers to hold
the elements. Standard template libraries are difficult
to use or inefficient when the same element needs to
belong to multiple instances of the same type of
container.

For example, in our micro-kernel, we need to link
each simulation process into three different priority
queues simultaneously. This is to order the processes
along their three basic timestamps: ECTS, EPTS and
EETS. The key used for ordering in each queue is
different, yet, the container data type is exactly the
same (a min-heap priority queue).

5. Performance Study
We now turn to a study of runtime performance.

Platform: Our implementation currently runs on a
network of shared-memory multiprocessors, and is
portable across homogeneous configurations of
Windows, Mac and Unix/Linux platforms. All
performance data reported here are collected on a
cluster of 8-way Intel SMP systems, each system with
8 Intel Xeon 550MHz processors and 4GB memory.

 Page 8

Applications: sik is currently being used in multiple
projects, exercising its conservative and optimistic
execution modes, as well as experimenting with a few
newer mechanisms. It has successfully been used as
the engine for a scalable conservative parallel
execution (on up to 128 processors) of discrete event
models of 1-dimensional particle-in-cell physics[18].
Another application of sik is in parallel simulation of
the nervous system, presented in [19]. Yet another
application of sik is in optimistic parallel execution
of a plasma simulation model of spacecraft charging in
outer space. Reverse computation is used for rollback
in this application, and a performance study is reported
in [20]. Here, we focus on performance study using a
synthetic benchmark, namely, the classical PDES
benchmark known as Phold[21].

In our Phold implementation, NLP simulation
processes are evenly mapped to all available
processors. A fixed population of events, NLP*R, is
generated at initialization, with random destinations.
R, an integer, is the ratio of number of events to
number of processes. When a process receives an
event, it schedules a new event into the future to
another random destination (possibly to itself) with a
minimum time increment called lookahead. With
probability L, the destination is on the same processor
as the source. We use a uniform random number
generator (URNG) to randomly determine event
destinations, and another URNG stream to determine
time increment. Since Phold is fine-grained, with very
little computation performed per event, it represents a
worst-case scenario that can expose runtime overheads
of the simulation engine.

In the following, we evaluate sik for its sequential
execution performance, its parallel time-
synchronization costs, its optimistic execution
performance and mixed conservative-optimistic
performance.

5.1. Sequential Performance
Analysis of sequential execution can help reveal

overheads of process scheduling and event exchanges.
Figure 5 shows the average time taken to process an
event in Phold, for increasing number of simulation
processes and events. The time per event includes
send/receive costs, process scheduling costs, as well as
random number generation costs.
Context Switching Cost: The process scheduling
costs are accentuated when the event population is
low. For example, when R=1, each simulation process
has a single event to process on average, and holds a
high probability that its next send is not to self. This
forces a “context switch” from one process to another
for each and every event. In a context switch, the

micro-kernel is required to update the time queues for
the scheduled process as well as the destination
process for the newly scheduled event. When R=10,
each process has ten events to process on average,
which implies processing an average of ten events
between two context switches.

It is seen that our micro-kernel implementation
scales excellently with the number of simulation
processes, without drastic overheads for the
maintenance of ECTS, EPTS and EETS values. In the
largest sequential configuration on one processor, we
are able to simulate an event population of 10 million
events and 100,000 simulation processes, with less
than 10 microseconds per event.

0

10

20

30

40

50

1 10 100 1000 10000 100000
Number of Simulation Processes (log scale)

M
ic

ro
-s

ec
 p

er
 e

ve
nt

R=1 R=10 R=100

Figure 5: Performance of µsik on Phold, demonstrating
scalability up to 10 million events and hundred thousand

simulation processes on one processor.

5.2. Parallel Time-Synchronization Cost
Figure 6 shows the average processing time per

event while the number of processors is varied. This
experiment is intended to measure the cost of
synchronizing simulation time across processors in
isolation from remote event exchange costs. This is
achieved (L=100%) by choosing random destinations
only from among local processes (i.e., no event goes
across processors). The entire distributed execution,
however, is still time synchronized – LBTS
computations are performed, and time advances of
simulation processes are permitted only upon LBTS
advances. For comparison, performance with a slight
amount of inter-processor event communication is also
plotted (L=99%).

 Page 9

0

50

100

150

200

250

32 48 64 80 96 112 128
Number of Processors

M
ic

ro
-s

ec
 p

er
 e

ve
nt

L=100% L=99%

Figure 6: Conservative parallel performance of µsik on

Phold with 1 million LPs and 1 million event population.
While Figure 6 shows performance for relatively

large simulation configurations (million LPs and
events), Figure 7 is intended to show that significantly
lower runtime costs can be observed when the number
of context switches is low. This is done by using one
million event population as in Figure 6, but using only
1000 LPs, resulting in a event/process ratio of
R=1000, which in turn results in 1000-fold reduction
in the average number of context switches.

0
20
40
60
80

100
120
140

64 80 96 112 128
Number of Processors

M
ic

ro
-s

ec
 p

er
 e

ve
nt

L=100% L=90%

Figure 7: Conservative parallel performance of µsik on

Phold with 1000 LPs and 1 million event population.

5.3. Optimistic Simulation Performance
In the optimistic configuration, each of the Phold

processes executes its events optimistically ahead in
time. Rest of the application is unmodified. In fact,
the only source-code change between the conservative
and optimistic executions is setting an optimistic
execution flag in the simulation process.

0
20
40
60
80

100
120
140

0 16 32 48 64
Number of Processors

M
ic

ro
-s

ec
 p

er
 e

ve
nt

L=100% L=99%

Figure 8: Optimistic parallel performance of µsik on

Phold with 1 million LPs and 1 million event population.
Figure 8 shows the performance of optimistic

parallel execution on a 1-million LPs & 1-million
event configuration of Phold. This execution is
intended to demonstrate the capability as a working
proof-of-concept of our prototype. Further work is
needed to reduce overheads in larger parallel
executions, especially by incorporating flow-control
mechanisms that can adaptively throttle over-
optimistic execution. In particular, we are
incorporating non-blocking TCP communication to
send events across processors, to overcome potential
deadlocks due to blocking sends.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16
Number of Processors

M
ic

ro
-s

ec
 p

er
 e

ve
nt

L=99%

Figure 9: Optimistic parallel performance of µsik on
Phold with 1000 LPs and 100,000 event population.
On smaller number of processors, the application is

relatively well balanced, and optimistic mode delivers
excellent performance. Figure 9 shows costs under 15
microseconds per event when operating entirely with
shared memory communication (up to 8 processors),
and under 20 microseconds per event even involving
TCP communication across the 8-CPU SMPs nodes.

It is worth noting that these experiments were
executed on 550MHz CPUs, and can be expected to be
significantly better on more recent platforms (e.g.,
3GHz CPUs).

5.4. Mixed Simulation Performance
A simple change of the configuration yields an

 Page 10

example in which every alternate process in Phold is
conservative, and every other process is optimistic.
This configuration is once again intended to serve as
proof-of-concept demonstration of the micro-kernel
approach that can accommodate both types of
processes. Figure 10 shows the performance of such a
mixed configuration executing in parallel on up to 128
processors.

0

50

100

150

200

250

300

0 32 64 96 128
Number of Processors

M
ic

ro
-s

ec
 p

er
 e

ve
nt

NLP=1million,R=1 NLP=1000,R=1000

Figure 10: Mixture of optimistic and conservative

processes parallel performance of µsik on Phold, with
one million event population, and localized

communication.

5.5. Memory Usage
Figure 11 demonstrates that memory is recycled

efficiently on large configurations. With active time-
synchronized committing of events, events are
committed (and hence freed) as early & aggressively
as possible, in a scalable fashion.

0

200

400

600

800

1000

1000 10000 100000
No. of Simulation Processes (log scale)

M
em

or
y

by
te

s/
pr

oc
es

s-
ev

en
t

R=1 R=10 R=100

Figure 11: Memory usage of µsik in sequential execution
of Phold.

Memory usage in bytes on the y-axis is computed
as: (MRP-M1)/(R*P+P). Here, MRP is the memory
usage for a Phold execution of P simulation processes
and R*P event population. M1 is the memory usage of
1 process and 1 event (fixed cost of the simulator).
When R=1, processes and events are equally weighted
in the average. When R=100, event memory usage
dominates, showing that each event on the average

consumes 110 bytes.
The data shows that sik’s usage of memory per

event is bounded in proportion to the actual number of
events, and scales with the both number of events as
well as the number of simulation processes.

6. Status and Future Work
µsik is a general-purpose parallel/distributed

simulation kernel built upon a micro-kernel
architecture consisting of autonomous simulation
processes. Simulation processes are autonomous in the
sense that they hold and manage their own events, and
can be optimistic or conservative in their event
processing, or adopt other techniques such as
aggregate event processing. The micro-kernel
overhead is kept very low by design, and runtime and
memory are scalable with both the number of events
as well as the number of logical simulation processes.
µsik also uses the concept of kernel processes, which
serve to push kernel-functionality to outside the micro-
kernel, as simulation processes themselves.

The current implementation is portable across
UNIX/Linux and Windows platforms. The micro-
kernel source-code is compact, comprising less than
4000 lines of C++ code. The sik software release
includes the micro-kernel source code, example
applications, and a user’s manual. The most recent
version is available for download from
www.cc.gatech.edu/fac/kalyan/musik.htm.

µsik currently supports: lookahead-based
conservative execution; rollback-based optimistic
execution with both state-saving and reverse
computation; resilient computation (zero rollbacks)
and any combination of them; flow control; per-
process limits to optimism; user-level retractions;
dynamic process addition/deletion; automated
network-throttled flow control; shared-
memory/distributed execution; and (conservative)
process-oriented views based on POSIX threads. It is
being successfully used in non-trivial applications with
both conservative as well as optimistic modes.

Analogous to the performance of micro-kernel
based operating systems, observed performance is tied
to the number of process context switches. We are
currently working on profiling the run-time
performance to identify the most time-critical paths in
execution. We envision being able to further reduce
runtime overheads for process scheduling, and
distributed synchronization on larger number of
processors. We are also planning to port our system to
supercomputing platforms for testing scalability to
hundreds of processors. To further exercise generality
and extensibility, we are investigating ways of
accommodating Critical Channel Traversal algorithms

 Page 11

and Approximate Time notions over the micro-kernel.

Acknowledgements
This work was supported in part by the National

Science Foundation grant ATM-0326431.

References
[1] J. Liedtke, "On Micro-Kernel Construction," presented at

ACM Symposium on Operating Systems Principles,
Copper Mountain, Colorado, USA, 1995.

[2] "IEEE Std. 1516: High Level Architecture," in Institute of
Electrical and Electronic Engineers, 2000.

[3] V. Jha and R. Bagrodia, "A unified framework for
conservative and optimistic distributed simulation,"
presented at Workshop on Parallel and Distributed
Simulation, 1994.

[4] D. Lungeanu and C.-J. R. Shi, "Distributed simulation of
VLSI systems via lookahead-free self-adaptive optimistic
and conservative synchronization," presented at
IEEE/ACM International Conference on Computer-
Aided Design, San Jose, California, United States, 1999.

[5] Metron, "SPEEDES: Synchronous Parallel Environment
for Emulation and Discrete-Event Simulation," vol. 2004,
2004.

[6] S. R. Das, R. M. Fujimoto, K. Panesar, D. Allison, and M.
Hybinette, "GTW: A Time-Warp System for Shared
Memory Multiprocessors," presented at Winter
Simulation Conference, 1994.

[7] C. Carothers, D. Bauer, and S. Pearce, "ROSS: A High-
Performance, Low Memory, Modular Time Warp
System," Journal of Parallel and Distributed Computing, vol. 62,
pp. 1648-1669, 2002.

[8] G. D. Sharma, R. Radhakrishnan, U. K. V. Rajasekaran,
N. Abu-Ghazaleh, and P. A. Wilsey, "Time Warp
Simulation on CLUMPS," presented at Workshop on
Parallel and Distributed Simulation, Atlanta, Georgia,
USA, 1999.

[9] K. M. Chandy and L. Lamport, "Distributed Snapshots:
Determining Global States of Distributed Systems,"
ACM Transaction on Computer Systems, vol. 3, pp. 63-75,
1985.

[10] F. Mattern, "Efficient Algorithms for Distributed
Snapshots and Global Virtual Time Approximation,"
Journal of Parallel and Distributed Computing, vol. 18, pp. 423-
434, 1993.

[11] K. S. Perumalla and R. M. Fujimoto, "Virtual Time
Synchronization over Unreliable Network Transport,"
presented at Workshop on Parallel and Distributed
Simulation, 2001.

[12] K. S. Perumalla, "libSynk Home Page," 2004.
[13] K. S. Perumalla, A. Park, R. M. Fujimoto, and G. F. Riley,

"Scalable RTI-based Parallel Simulation of Networks,"
presented at Workshop on Parallel and Distributed
Simulation, San Diego, 2003.

[14] A. Park, R. M. Fujimoto, and K. S. Perumalla,
"Conservative Synchronization of Large-scale Network
Simulations," presented at Workshop on Parallel and
Distributed Simulation, 2004.

[15] K. M. Chandy and J. Misra, "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,"
Communications of the ACM, vol. 24, pp. 198-205, 1981.

[16] R. M. Fujimoto, K. S. Perumalla, A. Park, H. Wu, M.
Ammar, and G. F. Riley, "Large-Scale Network
Simulation -- How Big? How Fast?" presented at
IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer
Telecommunication Systems (MASCOTS), 2003.

[17] P. F. Reynolds, Jr., "A Spectrum of Options for Parallel
Simulation," in Proceedings of the 1988 Winter Simulation
Conference, 1988, pp. 325-332.

[18] H. Karimabadi, Y. Omelchenko, J. Driscoll, R. Fujimoto,
and K. Perumalla, "A New Approach to Modeling
Physical Systems: Discrete Event Simulations of Grid-
based Models," presented at Workshop on State-Of-The-
Art in Scientific Computing (PARA), Denmark, 2004.

[19] C. J. Lobb, R. M. Fujimoto, and Z. Chao, "Parallel Event-
Driven Neural Network Simulations Using the Hodgkin-
Huxley Model," presented at Workshop on Principles of
Advanced and Distributed Simulation, Monterey, CA,
2005.

[20] Y. Tang, K. S. Perumalla, R. M. Fujimoto, H. Karimabadi,
J. Driscoll, and Y. Omelchenko, "Optimistic Parallel
Discrete Event Simulations of Physical Systems using
Reverse Computation," presented at Workshop on
Principles of Advanced and Distributed Simulation,
Monterey, CA, 2005.

[21] R. M. Fujimoto, "Performance of Time Warp Under
Synthetic Workloads," in Proceedings of the SCS
Multiconference on Distributed Simulation, vol. 22, SCS
Simulation Series, 1990, pp. 23-28.

Appendix – Classical Simulation
Process Base Implementation

While conforming to the API required by the
micro-kernel, the simulation processes have the
flexibility to be implemented in a variety of ways.
Here, we describe one such implementation, whose
methods are used for classical interfaces of both
conservative as well as optimistic application
processes.

The base (classical) simulation process interface
has three tiers. Tier I consists of methods invoked by
the micro-kernel on simulation processes on various
occasions, as described in preceding sections. Tier II
consists of implementation-specific methods provided
by the simulation process to its subclasses, for a
variety of synchronization modes, including
conservative and optimistic execution. Tier III
consists of some convenience methods, such as for
initialization and termination.

All events belonging to a simulation process are
maintained in two data structures encapsulated within
that process: FEL and PEL, as shown in Figure 13.
Unprocessed events (previously processed events that
are later rolled back, or new incoming events that are
not processed yet) are stored in the FEL, which is a
min-heap ordered by events’ receive timestamps.

 Page 12

Processed events are stored in PEL, which is a doubly-
linked list stored in increasing timestamp.

Ti
er

 I enqueue()
dequeue()

advance()
advance_opt()

ects()
epts()
eets()

Ti
er

 II
 dispatch()

undispatch()
undo_event()
commit_event()

save_state()
free_state()

Ti
er

 II
I init()

execute()
wrapup()

set_timer()
timedout()

retract()

Figure 12: A subset of methods of µsik simulation
processes. Tier I defines the interface that the micro-
kernel expects from all simulation processes. Tier II

defines services provided by the classical implementation
to its subclasses. Tier III are convenience services.

Lookahead
Lookahead can be specified on a per-destination

basis: add_dest() method can be used to specify a
destination process ID and associated lookahead. A
generic lookahead can be given by specifying a
wildcard process ID.
State Saving

State saving is supported in the base process
implementation via calls to two abstract methods:
save_state() and free_state(). The base
implementation for an optimistic process can utilize
these two hooks, in addition to commit_event(), to
implement most variants of state saving – e.g., copy,
incremental and periodic.

Figure 13: Internal state of the base simulation process.
FEL is a min-heap priority queue, and PEL is a linear

linked list of events ordered by their timestamp.
Reverse Computation

Similar to state saving, the base process
implementation provides hooks to add reverse event
handlers that are automatically invoked if/as needed
for rollback. The application provides reverse event
handlers by overloading the undo_event() method.

FEL LVT

FEL: Future Event List
PEL: Processed Event List
LVT: Local Virtual Time

!
t PEL !t

