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Abstract 
We present a novel micro-kernel approach to building parallel/distributed simulation systems.  Using 
this approach, we develop a unified system architecture for incorporating multiple types of simulation 
processes.  The processes hold potential to employ a variety of synchronization mechanisms, and could 
alter their choice of mechanism dynamically.  Supported mechanisms include traditional lookahead-
based conservative and state saving-based optimistic execution approaches, as well as newer 
mechanisms such as reverse computation-based optimistic execution and aggregation-based event 
processing, all within a single parsimonious application programming interface.  We also present the 
internal implementation and a preliminary performance evaluation of this interface in µsik, which is an 
efficient parallel/distributed realization of our micro-kernel architecture in C++. 

1. Introduction 
High-performance parallel and distributed discrete 

event simulation (PDES) systems have traditionally 
been built from the ground up, for each major variant 
of various PDES techniques.  However, it is desirable 
to have the freedom to add new techniques without 
having to develop entirely new systems from scratch 
for each variant.  To this end, we are interested in 
isolating the core invariant portion of PDES 
techniques, and in providing a generalized framework 
for building traditional as well as newer techniques on 
top of the core.  The core constitutes the micro-kernel, 
and the traditional implementations (conservative or 
optimistic) form the system services on top of the 
micro-kernel.  This permits the incorporation of newer 
techniques on top of the core, as well as optimization 
of existing system services, without the need for 
system-wide changes. 

The PDES micro-kernel approach is based on 
analogy with operating systems[1].  In operating 
systems that are based on micro-kernel architecture, a 
very basic set of services is provided by the operating 
system core (e.g., process identifiers and address 
spaces).  Using such primitive services, the rest of the 
system services are in fact built outside the core (e.g., 
file systems and networking).  We borrow this 
approach in our system.  A micro-kernel operating 
system provides an easy and safe way of adding new 
system/kernel services, such as new network protocols 
and file systems.  Similarly, a PDES micro-kernel 
provides an easy way to add new types of simulation 
processes without the need for an overhaul of the 
entire PDES system implementation.  Our micro-

kernel approach is experimental in nature to test the 
feasibility of developing such a system that can 
accommodate multiple synchronization techniques and 
endure additions over time, while at the same time 
maintaining high-performance execution without 
undue performance penalty. 

The rest of the document is organized as follows.  
Section 2 presents the motivation and background for 
the design and development of the micro-kernel 
approach.  The micro-kernel concepts for PDES are 
introduced in Section 3.  Implementation details of the 
micro-kernel interface are described in Section 4.  A 
preliminary performance study of our microkernel 
implementation on a distributed platform is presented 
in Section 5.  Finally, current status and future work 
are presented in Section 6. 

2. Motivation and Background 
In some of our current projects in collaboration 

with modeling experts in physical sciences, we are 
pursuing development of physics simulation models 
(e.g., of Earth’s magnetosphere). These physics 
simulations are complex, and employ fine-grained 
events.  It is unknown as to which synchronization 
method works best for these models, hence a specific 
synchronization scheme cannot be chosen a priori.  
More ideally, the models can benefit from a single 
engine that not only semi-transparently supports 
multiple synchronization approaches, but also entails 
execution with sufficiently low overheads.  A 
generalization of the goals is for the simulation system 
to allow simulation processes the freedom to adopt any 
event processing scheme, or freely switch between 
schemes at runtime.  Additionally, since our focus is 
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on very large-scale simulations, especially of physics 
models in our current projects, we need scalable 
parallel/distributed execution capabilities. 

2.1. Traditional vs. New Systems 
Approach 

The method of prevalence in building PDES 
systems is to build the system specifically for one 
synchronization method (e.g., one conservative 
algorithm, or one optimistic variant).  This tradition 
has two fallouts.  First, additions to the underlying 
framework involve major overhauls.  Secondly, 
modelers need to either determine and stick to one 
mechanism, or re-code their models to switch to a new 
mechanism.  Such a limitation is deplorable: the PDES 
research community has developed a host of 
techniques for high-performance execution; yet, an 
elegant systems framework is lacking for incorporating 
the multitude of techniques in an easy and modular 
fashion. 

Our thesis is that a large number of techniques in 
PDES can be supported transparently in a single 
unified framework, with a small set of fundamental 
primitives.  Based on this premise, we develop a 
unified application program interface (API) that 
encompasses most, if not all, synchronization 
approaches.  Using this interface, simulation models 
can be written in a manner that is resilient to changes 
and optimizations. 

2.2. Related Work 
The High Level Architecture (HLA)[2] defined by 

the US Department of Defense provides services for 
integrating a wide variety of simulator 
implementations, including space and/or time parallel 
(conservative, optimistic) discrete event simulations, 
and time-stepped continuous simulations.  However, 
the architecture has been designed for interoperation 
of coarse integration entities, such as distributed 
programs communicating over the network.  As such, 
it is not well-suited for integration of fine-grained 
entities, as in the hosting of multiple event-oriented 
logical processes and/or threads within a single UNIX 
process.  In particular, primitives to facilitate efficient 
process scheduling are not addressed in the standard; 
such primitives turn out to be the key to efficient 
execution of fine-grained autonomous entities. 

A more closely related work is by Jha and 
Bagrodia[3] in which a unified framework is presented 
to permit optimistic and conservative protocols to 
interoperate and alternate dynamically. (A variation of 
Jha and Bagrodia’s protocols is later discussed in [4], 
but in the context of VLSI applications).  High-level 

algorithms are presented in [3] that elegantly state the 
problem along with their solution approach.  However, 
they do not address system implementation details or 
performance data.  Their treatment provides proof of 
correctness, but lacks an implementation approach and 
a study of runtime performance implications.  Our 
work differs in that we are interested in defining the 
interface in a way that guarantees efficient 
implementation, and we describe details of a high-
performance implementation of such a unified 
interface.  Some of our terms share their definitions 
with analogous terms in their work, but our interface 
uses fewer primitives and diverges in semantics for 
others.  For example, our interface does not require the 
equivalent of their Earliest Output Time (EOT).   
Similarly, in contrast to their need for lookahead, we 
do not require that the application always specify a 
non-zero lookahead. Also, their related PARSEC 
system supported an API for processes to dynamically 
switch between optimistic and conservative modes, 
but we differ in our systems approach in implementing 
similar functionality. 

SPEEDES[5] is a commercial optimistic simulation 
framework that is capable of distributed execution; 
however, we were unable to find evidence on its large-
scale parallel performance capabilities for fine-grained 
applications.  GTW[6] and ROSS[7] are representative 
of high-performance implementations of optimistic 
simulators, but they are restricted to parallel execution 
on symmetric shared memory multiprocessor (SMP) 
platforms.  The SMP-only constraint sometimes limits 
the user’s choice of hardware as well as scalability.  
An exception is the WARPED simulator[8], a shared-
memory time warp system extended to execute on 
distributed memory platforms, but it has only been 
evaluated on relatively small hardware configurations.  
We are interested in scalable execution on large-scale 
computing platforms, such as large clusters (hundreds) 
of quad-processor SMP machines typically available 
in supercomputing installations for academic research.  
The cluster-of-SMPs platform is appealing since it is 
relatively less expensive as compared to a comparable 
SMP system for large number of processors. 

We note that, while the possibility of switching 
between types of protocol is not entirely new, our 
parsimonious API and our high-performance 
implementation approach are novel. 

3. PDES Micro-Kernel Concepts 
In this section, we introduce some terminology and 

concepts, and provide high-level descriptions of 
important micro-kernel operations.  It is assumed that 
PDES models are written in terms of simulation 
processes that exchange events, with multiple 
simulation processes (also called logical processes) 
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hosted on each processor.  Operationally, one 
operating system process (e.g., a UNIX process) hosts 
several simulation processes on each processor. 

In the PDES micro-kernel system view, simulation 
processes are fully autonomous entities.  They are free 
to determine for themselves when and in what internal 
order they would process their received events.  The 
micro-kernel does not process events in and by itself – 
it only acts as a router of events.  In particular, it does 
not generate, consume or buffer any events.  It does 
not examine event contents, except for the event’s 
header (source, destination and timestamp).  The 
micro-kernel does not distinguish between regular 
events, retraction events, anti-events or multicast 
events.  It also does not perform event buffer 
management (memory reuse, fossil collection, etc.), in 
contrast to traditional parallel/distributed simulation 
engines.  The distinctions among event types and their 
associated optimizations are deferred to protocol-
specific functionality of services outside the kernel 
proper.  The responsibility of a micro-kernel is 
restricted to only providing services to the simulation 
processes such that the processes can efficiently 
communicate events with each other, and collectively 
accomplish “asymptotic” time-ordered processing of 
events. 

3.1. Core Services 
The micro-kernel core consists of naming, routing 

and scheduling services, as follows: 
! Naming: The micro-kernel provides a uniform 

way for simulation processes to locate and 
refer to each other, within and across 
processors in a parallel/distributed execution 
setting.  A list of valid identifiers is maintained 
to map identifiers to processes and vice versa. 

! Routing: The routing services ensure that 
events are transparently forwarded to the 
receiver process, regardless of whether the 
sender and receiver are co-located or 
distributed across processors.  This is coupled 
with a guarantee that no event timestamp is 
overlooked in global timestamp-ordered 
processing. 

! Scheduling: The micro-kernel takes care of 
allocating CPU cycles among multiple 
simulation processes in a manner that best 
promotes simulation progress, and ensures 
absence of livelock or deadlock. 

A wide variety of PDES mechanisms can be built 
around this parsimonious set of core services, as 
outlined in Figure 1.  Classical services include 
support for conservative and optimistic processing – 

event processing/commitment, rollback support and 
lookahead specification services.  They also include 
kernel process support for remote communication, 
retractions and multicast (group) communication.  
Extensions are placeholders for newer techniques in 
the future, such as “aggregate event processing”, 
“constrained out-of-order execution” and the like 
(discussion on these omitted due to space limitations).  
Convenience services include routines such as 
initialization, timers, and reversible random number 
generation. 

 
Figure 1: Elements of the micro-kernel architecture, and 

their inter-relationships. 

3.2. Event Lifecycle and Categories 
Events can be considered to go through different 

stages in their life cycle.  First an event is allocated 
and scheduled by a sender simulation process.  Next, 
the receiver simulation process performs initial 
processing of the event.  This stage includes executing 
application (model) code associated with that event 
type.  Eventually, in a following stage, final actions 
associated with the event are committed.  Finally, the 
memory used by the event is released and recycled. 

 
Figure 2: Illustration of the simulation timeline and 

important event categories in each simulation process.  
The relation LCTS!ECTS!EETS always holds. 

Based on the disposition of event lifecycle stages, 
at any given snapshot moment during simulation, all 
events belonging to a simulation process can be 
categorized into four distinct classes – committed, 
committable, processable and emittable.  The first set 
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of events (committed set) is those that have been 
processed, committed and whose memory has been 
released for reuse.  The second set (committable set) 
consists of those that have been processed but are 
waiting to be committed.  The third set (processable 
set) consists of events received by this simulation 
process that are waiting to be processed.  The final set 
(emittable set) is a logical set that comprises those 
events that are potentially schedulable by this 
simulation process to other simulation processes 
(excluding itself) during the processing of its current 
set of committable and processable events.  Event 
categories and their mutual ordering are illustrated in 
Figure 2. 

In purely conservative processes, all application 
code executes during “commit” stages of events.  In 
optimistic processes, revocable portions (slices) of 
code execute during the “process” stage, while 
irrevocable portions are done in the “commit” stage. 

A Lower Bound on Time Stamp (LBTS) value is 
defined as a distributed snapshot[9, 10] of the least 
EETS value among all processes in the simulation.  It 
is essentially a guarantee on the value of the smallest 
timestamp receivable by any process in future. 

When LBTS advances to/beyond the timestamp of 
a committable event, examples of actions performed 
when committing the event include, but are not limited 
to, the following: 

! State vector release: Release of state vectors, 
if any, used for state saving during optimistic 
processing of the event. 

! Input/Output: Operations such as 
conservatively printing output to the terminal, 
or reading from a file. 

! Memory allocation/release: Finalizing the 
effect of dynamic memory operations initiated 
by the application while processing the event. 

3.3. Determining Event-Category Times 
For classical services, assume that the events in a 

process are logically stored in two data structures: FEL 
and PEL.  The Future Event List (FEL) consists of 
events in the process’ processable event set.  
Processed Event List (PEL) consists of events in the 
process’ committable event set.  For a simulation 
process i, let FELi

top be the minimum timestamp in 
FELi (infinity if FELi is empty) and PELi

top be the 
minimum timestamp in PELi (infinity if PELi is 
empty).  Note that PELi

top is always infinity for 
conservative simulation processes. 

The earliest time stamp for each event category is 
determined as follows: 

1. ECTSi = Min( FELi
top, PELi

top ) 
2. EPTSi = infinity if conservative 

FELi
top if optimistic 

3. EETSi = Min( FELi
top + Lookaheadi, 

PELi
top ) 

In the preceding equations, EETSi is defined rather 
simplistically, but could include additional complexity 
if so desired.  For example, if lookahead is highly 
variable across events, EETSi could be defined on a 
per-event basis: EETSi=min(Ej+LAj) for each event Ej 
in FELi, and LAj is the lookahead for event Ej.  Similar 
refinements can be made based on limiting it by the set 
of destination processes of process i.  Additional 
refinements can be made for optimistic processes as 
well.  The main idea is that the event categories 
provide simple yet powerful abstractions that enable 
several types of synchronization. 

3.4. Process Scheduling 
On each processor, the scheduling algorithm 

proceeds by executing the code in Figure 3 within a 
loop (a formal proof of correctness is relegated to a 
separate document, due to space limitations): 

1. if( ECTSmin < LBTS ) 
2.     PECTS-min.advance( LBTS ) 
3. else 
4.     PEPTS-min.advance_opt( EPTSmin2 )  

Figure 3: Micro-kernel's scheduler loop (simplified). 
ECTSmin is the minimum ECTS among all 

processes on that processor.  ProcessECTS-min is the 
process with the minimum ECTS value.  ProcessEPTS-

min is the process with the minimum EPTS value.  
EPTSmin2 is the second least EPTS value among all 
processes on that processor.  The method 
P.advance(T) conservatively processes all events of 
process P with timestamps less than or equal to time 
T.  The method P.advance_opt(T) optimistically 
processes all events of process P with timestamps less 
than or equal to time T.  Either method is a no-op if P 
is null.  The operation of this loop will become clearer 
in the following two subsections. 

The LBTS itself is computed as the minimum 
EETS among all processes across all processors.  Any 
transient event (in transit across processors) is 
accounted for by the sender process’ queues until the 
event reaches its receiver process.  The LBTS 
computation can either be performed concurrently 
with the scheduler, or, periodically inside the 
scheduler loop just prior to each optimistic processing 
step (line 4). 
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3.5. Conservative Processing 
During normal processing, the micro-kernel only 

schedules conservatively executable actions in 
increasing order of their committable timestamps.  
Only those processes whose ECTS values are less than 
or equal to the LBTS value are considered for 
conservative scheduling.  The process with the least 
ECTS value is scheduled, and it is permitted to 
advance up to and including the current LBTS value.  
When that process is finished with its processing, the 
micro-kernel schedules the process with the next 
minimum ECTS value, and so on.  Note that new 
events, if any, generated by the scheduled process will 
necessarily have timestamps greater than or equal to 
the current LBTS value. 

If no process exists whose ECTS value is less than 
or equal to the current LBTS, then the micro-kernel 
initiates a new LBTS computation (if one is not 
already in progress).  A new LBTS value typically 
takes time to be computed, due to communication 
latency across processors.  It is this delay that induces 
blocking of conservative computation.  This blocking 
period can be utilized as an opportunity to perform 
optimistic event processing.  Hence, while a new 
LBTS value is being computed, the micro-kernel 
schedules those processes that are capable and willing 
to perform optimistic event processing, as described 
next. 

3.6. Optimistic Processing 
In optimistic mode, the micro-kernel schedules the 

process that has the least EPTS value.  Recall that the 
EPTS value for conservative processes is infinity, and 
for optimistic processes it is equal to the minimum 
timestamp among unprocessed events (or, infinity if 
FEL is empty).  Thus, if there are any optimistic 
processes, their EPTS values can make them 
schedulable for optimistic processing. 

When at least one optimistic process exists for 
scheduling, optimistic execution is scheduled as 
follows: two processes with the minimum and the next 
minimum EPTS values (say, EPTSm1 and EPTSm2) are 
selected.  If only one optimistic process exists, EPTSm2 
is set to infinity (in this case, this limit needs to be 
customized, if necessary, to throttle unbounded 
optimism).  Then, the process with EPTSm1 is allowed 
to optimistically process its events with timestamps 
less than or equal to EPTSm2. 

Initiating optimistic execution only when all 
conservative processing is blocked ensures that time 
spent in correct execution is maximized, and the 
potential for incorrect execution (in optimistic mode) 
is minimized. 

4. Micro-Kernel Implementation 
We now describe our implementation of the micro-

kernel approach in a new software system named µsik 
(micro simulation kernel, pronounced “mew-seek”).  
sik is written in C++, linkable to an application as a 
library, and provides class hierarchies rooted at base 
classes corresponding to micro-kernel concepts. 

A naïve implementation of the micro-kernel 
approach could entail significant overheads, as 
compared to the traditional monolithic simulator 
implementations.  In a monolithic simulator, it is 
possible to optimize the implementation by employing 
centralized data structures such as event buffers, event 
lists and state vectors.  On the other hand, in a micro-
kernel, the key data structures are, by design, 
encapsulated inside simulation processes.  The 
challenge is to find efficient ways of implementing the 
micro-kernel framework so as to minimize or 
eliminate overheads. 

A key issue is the problem of always keeping 
accurate ordering among processes with respect to 
their ECTS, EPTS and EETS values.  For example, 
when a new event is sent from one simulation process 
to another, the receiver’s ECTS, EPTS and EETS 
values can change.  Similarly, a simulation process 
will have its values changed at the end of processing 
an event.  Event retractions need to be dealt with 
appropriately, as they too alter timestamp ordering. 

It is clear that the right choice of data structures 
determines the efficiency of micro-kernel operation.  
As its main components, the micro-kernel maintains a 
list of local user processes, a hash table for mapping 
process identifiers to processes, and a list of kernel 
processes.  For scheduler operations, three important 
priority queues are maintained.  Each of these 
components is described next. 

4.1. Naming Services 
To provide naming services, the micro-kernel 

maintains a mapping of process identifiers to process 
instances.  Process identifiers are specified as a pair of 
integers: (processor number, local process number).  
Simulation processes can be kernel processes or user 
processes.  Kernel processes are used for internal 
implementation of services on top of the micro-kernel 
(see Section 4.3).  User processes are part of 
application model. 
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Figure 4: Every simulation process is assigned a locally 
unique identifier as soon as it is added to the simulation.   
User processes are assigned positive identifiers starting 

with 0, while kernel processes are assigned negative 
identifiers starting with -1.  Identifiers are assigned from 

an incrementing counter, and are not recycled when 
processes are deleted. 

User processes are assigned local identifiers as 
positive integers, starting at 0, while kernel processes 
are assigned negative integers, as shown in Figure 4.  
The rationale behind this scheme is that it allows 
applications to rely on their processes being identified 
from 0 to n-1 (this is a common way in which models 
are written).  Using negative identifiers for kernel 
processes makes them transparent to the application, 
and will not interfere with the traditional modeling 
methods.  Special identifiers are also defined for 
specifying an invalid identifier, and to specify 
multicast destinations. 

4.2. Scheduling Services 
The scheduler is implemented as a loop inside a 

micro-kernel method. 
Process Ordering 

Three in-place min-heaps are used, one each for 
tracking the ECTS, EPTS and EETS values of 
simulation processes.  Each heap maintains the 
minimum time-stamped process at the top.  For 
example, the process with the least ECTS value is 
always available as the top of ECTS heap.  The heaps 
are designed to rapidly update and readjust the 
elements when the key of an element is increased or 
decreased.  This rapid update is essential to quickly 
keep the heaps consistent before and after every 
scheduling action by the scheduler (see also Section 
4.4). 
Readjusting Timestamp Orders within Scheduler 

When events are sent or received by simulation 
processes, their relative ordering can change with 
respect to their ECTS, EPTS, and EETS values.  The 
heaps of the micro-kernel scheduler need to be 
readjusted to restore correct timestamp order.  This 
readjustment is accomplished via a pair of 
before_dirtied() and after_dirtied() methods within 
the base simulation process.  These methods keep 
track of whether any changes occurred to the key 
timestamps.  If (and only if) any of the ECTS, EPTS 
or EETS values of an affected process changes, the 
corresponding scheduler heap is readjusted.  The 
affected process that needs to be updated could be the 
active (sending) process that is currently scheduled, or, 

it could also be the set of processes to which the 
currently scheduled process generates new events. 
Distributed Time Synchronization 

To compute LBTS values, we employ the 
distributed snapshot algorithm described in [11].  We 
use the publicly available implementation [12] of this 
algorithm.  Its current implementation includes two 
different modules: one is based on efficient global 
hierarchical reductions[11, 13], while the other is 
based on an optimized variant[14] of the Chandy-
Misra-Bryant null message algorithm[15].  These are 
reported to have been tested by their authors on large-
scale platforms, and demonstrated to scale very well, 
even up to supercomputing configurations of more 
than 1500 processors[13, 14, 16]. 

4.3. Routing Services 
Local event exchange is trivially handled by 

enqueueing the event in the local destination process.  
Remote communication is implemented via a special 
delegation mechanism using kernel processes (see 
next).  As indicated earlier, the micro-kernel itself 
never stores or buffers any events at any time.  Every 
event routed through the micro-kernel is immediately 
delegated either to the destination process (if it is a 
local user process), or delegated to a local kernel 
process (if the destination is a remote process or a 
multicast group).  We omit discussion of multicast 
communication due to space limitations. 
Kernel Processes 

Kernel processes are used to implement remote 
federate communication and multicast event 
exchanges.  The reason they are implemented this way 
is that the functionality can be quite seamlessly 
implemented using the scheduling services provided 
by the micro-kernel core.  This is fairly analogous to 
operating system micro-kernels.  Services such as 
networking, file I/O, etc. are implemented as processes 
outside the micro-kernel core, which themselves 
utilize many of the services that user processes utilize. 

A notion of kernel processes for PDES is 
introduced (for improving rollback efficiency) in 
ROSS[7].  Our concept of kernel processes and its 
usage is quite different and unrelated, serving a 
different notion and purpose. 
Remote Event Communication 

On each processor, one kernel process is 
instantiated for every other (remote) processor.  These 
kernel processes for remote communication act as 
local representative proxies for the corresponding 
remote processors.   This scheme operates as follows. 

Let us denote by KPi
j the j’th kernel process on 

0    1    2    3    … …    -3    -2    -1 

User processes Kernel processes 
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processor i.  When a user process on processor i 
attempts to send an event to a user process on a remote 
processor j, the micro-kernel on processor i forwards 
that event to its local kernel process KPi

j. KPi
j is then 

responsible for forwarding the event to KPj
i, which is 

its peer kernel process on processor j.  When KPj
i 

receives that event, it forwards to the destination user 
process (guaranteed to be local) via the micro-kernel. 

This scheme, despite its simplicity, affords elegant 
implementation of a wide range of features and 
optimizations studied in PDES literature.  
Sophisticated variants can be incorporated with few 
changes to the rest of the system.  Here we briefly 
discuss a few possibilities: 

Optimistic Sends: In this most common method, 
an event scheduled to a remote process is immediately 
sent over the wire to its corresponding remote 
processor.  A downside with this scheme is that the 
network communication cost becomes a wasted 
overhead if the event is later retracted.  The event 
retraction could be initiated either by the user (in 
conservative or optimistic processing) to take back a 
previously scheduled event, or by the kernel for event 
cancellation (anti-messages for secondary rollbacks in 
optimistic processing). 

Lazy Sends: Instead of forwarding the event 
immediately over the wire to the remote processor, the 
event could be withheld within the kernel process for 
dt simulation time units, where 0<dt"(Tevent-Tnow).  
Delaying the event longer will postpone the network 
communication cost, which is beneficial in case the 
event is retracted later.  On the flip side, it might 
increase the event communication latency, and stall 
the receiving processor waiting to receive the event for 
its own progress.  Adaptive schemes could be devised 
and implemented in the kernel process to exploit this 
“lazy send” optimization. 

Non-aggressive Sends:  The kernel process can 
also be used to easily implement non-aggressive sends 
– i.e., to send remote messages if and only if they 
cannot be retracted in the future.  This is a well-known 
PDES variant in optimistic simulation to separate risk 
and aggressiveness [17], in which events are processed 
optimistically locally, but only “correct” events are 
propagated across processors.  The kernel process 
adds the event in its FEL, and “processes” the events 
in a conservative fashion.  The event is actually sent 
over the wire to the remote processor only when it is 
committed.  Since events are committed only when 
they are guaranteed to be not retracted, non-
aggressiveness is assured. 

Message Bundling:  To amortize the cost of 
network communication, it is possible to bundle 
multiple events into one message.  The cost savings 

can be good especially when events are small in size, 
as compared to network message headers (e.g., TCP 
header size).  Again, such bundling techniques can be 
incorporated into the kernel process responsible for 
remote communication. 

All KPi
j are responsible for maintaining a mapping 

from event identifiers to event buffers.  Such a 
mapping is necessary in order to implement event 
retractions (during conservative and/or optimistic 
execution) and anti-events (to realize secondary 
rollback/cancellation in optimistic execution).  The 
kernel process is also responsible for periodically 
flushing the hash table when events are committed and 
can no longer be retracted or canceled. 

The beauty of this kernel process scheme lies in the 
fact that the kernel processes themselves are time-
synchronized automatically (since they are simulation 
processes themselves).  This fact can be exploited to 
easily and modularly implement the aforementioned 
variants. 

4.4. Optimized Queues and Lists 
The micro-kernel uses priority queue and list data 

structures in its implementation.  The efficiency of 
these data structures is critical for keeping runtime 
overheads low.  We define our own heap and list data 
types, to avoid overheads of dynamic memory 
allocation of conventional libraries.  Our definitions 
are different from other standard library templates in 
that our definitions permit the same object to be linked 
into multiple instances of the same container type, 
without the need to allocate container headers to hold 
the elements.  Standard template libraries are difficult 
to use or inefficient when the same element needs to 
belong to multiple instances of the same type of 
container. 

For example, in our micro-kernel, we need to link 
each simulation process into three different priority 
queues simultaneously.  This is to order the processes 
along their three basic timestamps: ECTS, EPTS and 
EETS.  The key used for ordering in each queue is 
different, yet, the container data type is exactly the 
same (a min-heap priority queue). 

5. Performance Study 
We now turn to a study of runtime performance. 

Platform: Our implementation currently runs on a 
network of shared-memory multiprocessors, and is 
portable across homogeneous configurations of 
Windows, Mac and Unix/Linux platforms.  All 
performance data reported here are collected on a 
cluster of 8-way Intel SMP systems, each system with 
8 Intel Xeon 550MHz processors and 4GB memory. 
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Applications: sik is currently being used in multiple 
projects, exercising its conservative and optimistic 
execution modes, as well as experimenting with a few 
newer mechanisms.  It has successfully been used as 
the engine for a scalable conservative parallel 
execution (on up to 128 processors) of discrete event 
models of 1-dimensional particle-in-cell physics[18].  
Another application of sik is in parallel simulation of 
the nervous system, presented in [19].  Yet another 
application of sik is in optimistic parallel execution 
of a plasma simulation model of spacecraft charging in 
outer space.  Reverse computation is used for rollback 
in this application, and a performance study is reported 
in [20].  Here, we focus on performance study using  a 
synthetic benchmark, namely, the classical PDES 
benchmark known as Phold[21]. 

In our Phold implementation, NLP simulation 
processes are evenly mapped to all available 
processors.  A fixed population of events, NLP*R, is 
generated at initialization, with random destinations.  
R, an integer, is the ratio of number of events to 
number of processes.  When a process receives an 
event, it schedules a new event into the future to 
another random destination (possibly to itself) with a 
minimum time increment called lookahead.  With 
probability L, the destination is on the same processor 
as the source.  We use a uniform random number 
generator (URNG) to randomly determine event 
destinations, and another URNG stream to determine 
time increment.  Since Phold is fine-grained, with very 
little computation performed per event, it represents a 
worst-case scenario that can expose runtime overheads 
of the simulation engine. 

In the following, we evaluate sik for its sequential 
execution performance, its parallel time-
synchronization costs, its optimistic execution 
performance and mixed conservative-optimistic 
performance. 

5.1. Sequential Performance 
Analysis of sequential execution can help reveal 

overheads of process scheduling and event exchanges.  
Figure 5 shows the average time taken to process an 
event in Phold, for increasing number of simulation 
processes and events.  The time per event includes 
send/receive costs, process scheduling costs, as well as 
random number generation costs. 
Context Switching Cost: The process scheduling 
costs are accentuated when the event population is 
low.  For example, when R=1, each simulation process 
has a single event to process on average, and holds a 
high probability that its next send is not to self.  This 
forces a “context switch” from one process to another 
for each and every event.  In a context switch, the 

micro-kernel is required to update the time queues for 
the scheduled process as well as the destination 
process for the newly scheduled event.  When R=10, 
each process has ten events to process on average, 
which implies processing an average of ten events 
between two context switches. 

It is seen that our micro-kernel implementation 
scales excellently with the number of simulation 
processes, without drastic overheads for the 
maintenance of ECTS, EPTS and EETS values.  In the 
largest sequential configuration on one processor, we 
are able to simulate an event population of 10 million 
events and 100,000 simulation processes, with less 
than 10 microseconds per event. 
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Figure 5: Performance of µsik on Phold, demonstrating 
scalability up to 10 million events and hundred thousand 

simulation processes on one processor. 

5.2. Parallel Time-Synchronization Cost 
Figure 6 shows the average processing time per 

event while the number of processors is varied.  This 
experiment is intended to measure the cost of 
synchronizing simulation time across processors in 
isolation from remote event exchange costs.  This is 
achieved (L=100%) by choosing random destinations 
only from among local processes (i.e., no event goes 
across processors).  The entire distributed execution, 
however, is still time synchronized – LBTS 
computations are performed, and time advances of 
simulation processes are permitted only upon LBTS 
advances.  For comparison, performance with a slight 
amount of inter-processor event communication is also 
plotted (L=99%). 
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Figure 6: Conservative parallel performance of µsik on 

Phold with 1 million LPs and 1 million event population. 
While Figure 6 shows performance for relatively 

large simulation configurations (million LPs and 
events), Figure 7 is intended to show that significantly 
lower runtime costs can be observed when the number 
of context switches is low.  This is done by using one 
million event population as in Figure 6, but using only 
1000 LPs, resulting in a event/process ratio of 
R=1000, which in turn results in 1000-fold reduction 
in the average number of context switches. 

0
20
40
60
80

100
120
140

64 80 96 112 128
Number of Processors

M
ic

ro
-s

ec
 p

er
 e

ve
nt

L=100% L=90%

 
Figure 7: Conservative parallel performance of µsik on 

Phold with 1000 LPs and 1 million event population. 

5.3. Optimistic Simulation Performance 
In the optimistic configuration, each of the Phold 

processes executes its events optimistically ahead in 
time.  Rest of the application is unmodified.  In fact, 
the only source-code change between the conservative 
and optimistic executions is setting an optimistic 
execution flag in the simulation process. 
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Figure 8: Optimistic parallel performance of µsik on 

Phold with 1 million LPs and 1 million event population. 
Figure 8 shows the performance of optimistic 

parallel execution on a 1-million LPs & 1-million 
event configuration of Phold.  This execution is 
intended to demonstrate the capability as a working 
proof-of-concept of our prototype.  Further work is 
needed to reduce overheads in larger parallel 
executions, especially by incorporating flow-control 
mechanisms that can adaptively throttle over-
optimistic execution.  In particular, we are 
incorporating non-blocking TCP communication to 
send events across processors, to overcome potential 
deadlocks due to blocking sends. 
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Figure 9: Optimistic parallel performance of µsik on 
Phold with 1000 LPs and 100,000 event population. 
On smaller number of processors, the application is 

relatively well balanced, and optimistic mode delivers 
excellent performance.  Figure 9 shows costs under 15 
microseconds per event when operating entirely with 
shared memory communication (up to 8 processors), 
and under 20 microseconds per event even involving 
TCP communication across the 8-CPU SMPs nodes. 

It is worth noting that these experiments were 
executed on 550MHz CPUs, and can be expected to be 
significantly better on more recent platforms (e.g., 
3GHz CPUs). 

5.4. Mixed Simulation Performance 
A simple change of the configuration yields an 
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example in which every alternate process in Phold is 
conservative, and every other process is optimistic.  
This configuration is once again intended to serve as 
proof-of-concept demonstration of the micro-kernel 
approach that can accommodate both types of 
processes.  Figure 10 shows the performance of such a 
mixed configuration executing in parallel on up to 128 
processors. 
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Figure 10: Mixture of optimistic and conservative 

processes parallel performance of µsik on Phold, with 
one million event population, and localized 

communication. 

5.5. Memory Usage 
Figure 11 demonstrates that memory is recycled 

efficiently on large configurations.  With active time-
synchronized committing of events, events are 
committed (and hence freed) as early & aggressively 
as possible, in a scalable fashion. 
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Figure 11: Memory usage of µsik in sequential execution 
of Phold. 

Memory usage in bytes on the y-axis is computed 
as: (MRP-M1)/(R*P+P).  Here, MRP is the memory 
usage for a Phold execution of P simulation processes 
and R*P event population.  M1 is the memory usage of 
1 process and 1 event (fixed cost of the simulator).  
When R=1, processes and events are equally weighted 
in the average.  When R=100, event memory usage 
dominates, showing that each event on the average 

consumes 110 bytes. 
The data shows that sik’s usage of memory per 

event is bounded in proportion to the actual number of 
events, and scales with the both number of events as 
well as the number of simulation processes. 

6. Status and Future Work 
µsik is a general-purpose parallel/distributed 

simulation kernel built upon a micro-kernel 
architecture consisting of autonomous simulation 
processes. Simulation processes are autonomous in the 
sense that they hold and manage their own events, and 
can be optimistic or conservative in their event 
processing, or adopt other techniques such as 
aggregate event processing. The micro-kernel 
overhead is kept very low by design, and runtime and 
memory are scalable with both the number of events 
as well as the number of logical simulation processes. 
µsik also uses the concept of kernel processes, which 
serve to push kernel-functionality to outside the micro-
kernel, as simulation processes themselves. 

The current implementation is portable across 
UNIX/Linux and Windows platforms. The micro-
kernel source-code is compact, comprising less than 
4000 lines of C++ code.  The sik software release 
includes the micro-kernel source code, example 
applications, and a user’s manual.  The most recent 
version is available for download from 
www.cc.gatech.edu/fac/kalyan/musik.htm. 

µsik currently supports: lookahead-based 
conservative execution; rollback-based optimistic 
execution with both state-saving and reverse 
computation; resilient computation (zero rollbacks) 
and any combination of them; flow control; per-
process limits to optimism; user-level retractions; 
dynamic process addition/deletion; automated 
network-throttled flow control; shared-
memory/distributed execution; and (conservative) 
process-oriented views based on POSIX threads.  It is 
being successfully used in non-trivial applications with 
both conservative as well as optimistic modes. 

Analogous to the performance of micro-kernel 
based operating systems, observed performance is tied 
to the number of process context switches.  We are 
currently working on profiling the run-time 
performance to identify the most time-critical paths in 
execution.  We envision being able to further reduce 
runtime overheads for process scheduling, and 
distributed synchronization on larger number of 
processors.  We are also planning to port our system to 
supercomputing platforms for testing scalability to 
hundreds of processors.  To further exercise generality 
and extensibility, we are investigating ways of 
accommodating Critical Channel Traversal algorithms 
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and Approximate Time notions over the micro-kernel. 
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Appendix – Classical Simulation 
Process Base Implementation 

While conforming to the API required by the 
micro-kernel, the simulation processes have the 
flexibility to be implemented in a variety of ways.  
Here, we describe one such implementation, whose 
methods are used for classical interfaces of both 
conservative as well as optimistic application 
processes. 

The base (classical) simulation process interface 
has three tiers.  Tier I consists of methods invoked by 
the micro-kernel on simulation processes on various 
occasions, as described in preceding sections.  Tier II 
consists of implementation-specific methods provided 
by the simulation process to its subclasses, for a 
variety of synchronization modes, including 
conservative and optimistic execution.  Tier III 
consists of some convenience methods, such as for 
initialization and termination. 

All events belonging to a simulation process are 
maintained in two data structures encapsulated within 
that process: FEL and PEL, as shown in Figure 13.  
Unprocessed events (previously processed events that 
are later rolled back, or new incoming events that are 
not processed yet) are stored in the FEL, which is a 
min-heap ordered by events’ receive timestamps.  
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Processed events are stored in PEL, which is a doubly-
linked list stored in increasing timestamp. 

Ti
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Figure 12: A subset of methods of µsik simulation 
processes.  Tier I defines the interface that the micro-
kernel expects from all simulation processes.  Tier II 

defines services provided by the classical implementation 
to its subclasses.  Tier III are convenience services. 

Lookahead 
Lookahead can be specified on a per-destination 

basis: add_dest() method can be used to specify a 
destination process ID and associated lookahead.  A 
generic lookahead can be given by specifying a 
wildcard process ID. 
State Saving 

State saving is supported in the base process 
implementation via calls to two abstract methods: 
save_state() and free_state().  The base 
implementation for an optimistic process can utilize 
these two hooks, in addition to commit_event(), to 
implement most variants of state saving – e.g., copy, 
incremental and periodic. 

 
Figure 13: Internal state of the base simulation process.  
FEL is a min-heap priority queue, and PEL is a linear 

linked list of events ordered by their timestamp. 
Reverse Computation 

Similar to state saving, the base process 
implementation provides hooks to add reverse event 
handlers that are automatically invoked if/as needed 
for rollback.  The application provides reverse event 
handlers by overloading the undo_event() method. 

FEL LVT

FEL: Future Event List 
PEL: Processed Event List 
LVT: Local Virtual Time 
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