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Many partitioning algorithms have been proposed for distributed Very-large-scale integration (VLSI)
simulation. Typically, they make use of a gate level netlist and attempt to achieve a minimal cutsize
subject to a load balance constraint. The algorithm executes on a hypergraph which represents
the netlist. We propose a design-driven iterative partitioning algorithm for Verilog based on module
instances instead of gates. We do this in order to take advantage of the design hierarchy information
contained in the modules and their instances. A Verilog instance represents one vertex in the circuit
hypergraph. The vertex can be flattened into multiple vertices in the event that a load balance is not
achieved by instance-based partitioning. In this case, the algorithm flattens the largest instance and
moves gates between the partitions in order to improve the load balance. Our experiments show
that this partitioning algorithm produces a smaller cutsize than is produced by hMetis on a gate-
level netlist. It produces better speedup for the simulation because it takes advantage of the design
hierarchy.

Keywords: Parallel simulation, VLSI, distributed gate level verilog simulation, partitioning algorithm,

load balance cutsize

1. Introduction

Modern Very-large-scale integration (VLSI) systems are
becoming increasingly complex, posing a never-ending
challenge to sequential simulation. In order to accommo-
date the growing need for increased memory as well as
the need for decreased simulation time, it is becoming in-
creasingly necessary to make use of distributed simula-
tion [1].

Time Warp [2] is an appealing technique for the distrib-
uted logic simulation of VLSI circuitry because it can po-
tentially uncover a high degree of parallelism in the VLSI
system being simulated.

However, obtaining satisfactory simulation perfor-
mance in a distributed environment is challenging since
we need to overcome the huge cost of inter-processor
communication which is exacerbated in a distributed en-
vironment by netlists comprising millions of gates. It is
widely known that partitioning is an Nondeterministic
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Polynomial-time hard-complete (NP-complete) problem.
The consequence of this is that partitioning algorithms
provide heuristic solutions and can be trapped in local
minima.

All of the partitioning algorithms to date [3-11] are
for distributed/parallel VLSI simulation partition gate
level netlists. These algorithms were originally devised
for floorplanning and placement, and are computationally
very expensive. When used for routing and placement this
is acceptable. When they are used as a precursor to a par-
allel simulation, the goal of which is to speed up a simu-
lation, their cost is not acceptable.

The Application-specific integrated circuit (ASIC) de-
sign community has a well-established hierarchical design
methodology. Every design is partitioned into blocks by
functionality. The design hierarchy is reflected in modules
and their instances in Verilog [12]. In this paper we take
advantage of the design hierarchy information present in
Verilog and combine it with a move-based partitioning al-
gorithm. In our algorithm, the module/instance is the basic
partitioning element instead of the gate.

The rest of this paper is organized as follows. Section 2
is devoted to related research. In Section 3, we introduce
hierarchy in Verilog. Our distributed simulation environ-
ment DVS [13] is briefly described in Section 4. In Sec-
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tion 6, we present the details of our design-driven parti-
tioning algorithm. A comparison of the cutsize and of the
execution time of our design-driven partitioning algorithm
and hMetis [14] partitioning based on netlists is presented
in Section 7. The last section contains our conclusions and
thoughts about future work.

2. Related Work

A great deal of effort has been devoted to the partitioning
of logic circuits [15]. The algorithms are graph based in
which the role of the graph is played by a netlist. Not all of
this work directly translates to our problem because they
were devised for problems in which a high computational
complexity can be tolerated e.g. minimizing the area of the
circuit layout or minimizing the routing between modules.
A number of these approaches have a very high computa-
tional complexity (e.g. geometric methods or mathemati-
cal programming) and are therefore not suitable because
of the emphasis on speed in parallel simulation.

To date, partitioning algorithms for parallel logic sim-
ulation also have also been graph based. As previously
mentioned, the algorithms are heuristic in nature be-
cause the graph partitioning problem is NP complete. The
heuristics attempt to minimize the amount of communica-
tion between partitions while balancing the computational
load on each processor involved in the simulation. We pro-
vide a summary of the work done in the domain of parallel
simulation.

Simpler heuristics for parallel logic simulation include
string partitioning, partitioning by input and output cones
and random partitioning. Both string and random parti-
tioning have an O(N) complexity, while cone partitioning
has a O(N?) complexity [3] contains a simple compari-
son of the concurrency and communication of these algo-
rithms. We therefore conclude that output cones produce
the best results.

An important category of algorithms for circuit parti-
tioning is iterative algorithms. Iterative algorithms start
from an initial partition and try to improve it. The initial
partition is produced by another algorithm, usually by one
of the simpler heuristics. Well-known iterative algorithms
are CLIP/CDIP [9], Metis/hMetis [14] and F-M [4]. It is
worthwhile noting that the CLIP [9] algorithm tries to de-
tect and restore the cluster destroyed by the iterative par-
titioning algorithm applied to the flattened netlist.

A coarsening phase in a multilevel hypergraph parti-
tioning algorithm is introduced in [14]. During the coars-
ening phase, a sequence of successively smaller hyper-
graphs is constructed. The purpose of coarsening is to cre-
ate a smaller hypergraph while preserving the partitioning
quality obtained from the original hypergraph. The au-
thors claim that hMetis [14] produces partitions that are
consistently better than other widely used algorithms and
is 1-2 orders of magnitude faster than other algorithms.
Multilevel partitioning is made use of in [16]. Speedups
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in the 2.5-3.0 range were obtained for medium size IS-
CASSS circuits using Time Warp.

Attempts to try to reduce the size of the hypergraph
from the bottom up have been made [9, 14]. They extract
clusters from the flattened netlist without reducing the
quality of the partitioning of the original netlist. We note
that our algorithm works from top-to-bottom; it flattens
the design hierarchy step by step and compromises be-
tween the load balancing constraint and the minimum cut-
size.

Iterative algorithms work on a hypergraph while our
algorithm specifically targets distributed Verilog simula-
tion. The main purpose of our algorithm is to try to keep
the Verilog instance (actually the design hierarchy) intact
from the beginning. It is much easier than restoring it from
the debris produced by first flattening the netlist. More-
over, the quality of the resulting partition should be better
than the cluster restoration and hypergraph coarsening.

The performance of a number of algorithms using Time
Warp in terms of their cutsize and speed up have been
compared [17]. Several of the algorithms fell into the sim-
ple category i.e. depth and breadth-first search, and an
algorithm presented by the authors which they CAKE*.
CAKE operates on netlists produced by the Verilog Icarus
compiler. These netlists have the property of keeping gates
associated with modules adjacent to one another. CAKE
slices the netlist into pieces corresponding to modules.
Also included in the study are the F-M and Clip algo-
rithms. The author observes that the simpler algorithms
produce much larger cutsizes then the iterative algorithms,
making them poor candidates for the simulation of large
circuits. The CAKE algorithm resulted in excellent perfor-
mance on smaller circuits as a consequence of preserving
the modular structure of the gates.

An algorithm which makes use of both input cone par-
titioning and iterative improvement is described [18], the
purpose of which is to balance the load on the partitions.
Speedups of 4.1 using 7 processors on the two largest IS-
CASS85 benchmark circuits [17] were reported. These cir-
cuits have approximately 30 000 gates.

Corolla partitioning [19] finds strongly connected re-
gions in a netlist (corollas), combines them into clusters
and then assigns clusters to computer nodes. Using the
ISCASS85 benchmark circuits and Time Warp, the authors
obtained speedups as high as 8 using 18 processors and 6
using 8 processors. Unfortunately, the authors assume that
all of the gates are equally active, an assumption which
contradicts the experimental evidence that about 15% of
the gates in a circuit are active at any instant in time [20].
The worst-case complexity of this algorithm is O(N?),
where N is the number of gates in the circuit. The authors
contend that an average fanout of two reduces this com-
plexity to O(N?). Either complexity is prohibitively high

* CAKE is a name of the partioning algorithm which is similar to
cake cutting.
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Module m1(p1, p2, p3);
m2 m2a(......);
m3 m3a(......);

endmodule m1

Module m2(p1, p2, p3);

endmodule

Module m3(p1, p2, p3);
m4 m4a(......); m2a

endmodule

module m4(p1, p2, p3)

m3a

'vv

- mda

mba

AAAA

4

endmodule

module m5(p1, p2, p3);

endmodule

Figure 1. Verilog module/instances and interconnection

for a partitioning algorithm which is intended for simulat-
ing multimillion gate circuits.

Concurrency preserving partitioning (CPP) [8] em-
phasizes the location of concurrency by placing gates
which can be concurrently evaluated in different par-
titions. There are three phases to the algorithm; inter-
processor communication and load balancing are taken
into account. Speedups in the ISCAS85 benchmarks were
computed: a maximum speedup of 30 using 64 processors
with pre-simulation on a shared memory machine were
observed. Without pre-simulation, speedup results were
comparable to those obtained by hMetis. No results were
presented about the overhead of the algorithm.

Several algorithms [21-23] operate on netlists and at-
tempt to use information about the circuit to guide the al-
gorithm. These algorithms all have as their principle goal
the reduction of cutsize.

Instead of partitioning a circuit prior to the simulation,
it is possible to employ dynamic load balancing [24, 25].
The principle idea behind dynamic load balancing is to
keep track of a metric which reflects the performance of
the simulation and to transfer load between processors
when the metric reveals a decrease in performance. [24]
uses the number of non-rolled back events as a metric,
while [25] uses virtual time progress. Good results were
obtained in both of these papers. A decrease in execu-
tion time of 25% relative to Time Warp without load bal-
ancing on the two largest ISCASS8S circuits was obtained
in [24]. While the results obtained by dynamic load bal-
ancing were promising for the ISCASS85 circuits, it is not
clear how well this approach will scale to large circuits.

In a departure from the approach of graph-based al-
gorithms, [26] describes a bi-partitioning algorithm for
Verilog which makes use of its hierarchical design struc-

ture. In this paper we extend the algorithms described
in [26] to a multiway partitioning algorithm and employ
pre-simulation to evaluate the tradeoff between communi-
cation and load balancing.

3. Hierarchy in Verilog

The module is the basic unit of code in the Verilog lan-
guage. Both behavioral and structural code can be con-
tained within a module. The encapsulation property of the
module gives designers the ability to reuse the module in
a VLSI design. Moreover, the module provides an inter-
face to the program while hiding the complexity inside
of it. The module and its instance are therefore natural
candidates for partitioning. We introduce the concept of
a super-gate in this paper in order to describe the module
instance in a circuit hypergraph.

Modules can reference lower level modules and de-
scribe the interconnections between them as part of the
hierarchy. Each module instance is an independent, con-
currently active copy of a module. It contains the name
of the original module, an instance name that is unique to
that instance (within the current module) and a port con-
nection list.

Usually Verilog module instances communicate with
other instances through ports. The encapsulation property
of Verilog modules allows a smaller cutsize to be achieved
when we partition the circuit. Although Verilog supports
cross-module reference, standard design practice discour-
ages such usage.

Figure 1 depicts a design hierarchy described by Ver-
ilog. The left side of the figure is the Verilog source code
while the right side displays the design hierarchy and its
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verilog Source File

| iverilog Compiler |

vvp Assembly Code

Figure 2. Architecture of DVS

interconnection. Coupling is usually loose between Ver-
ilog instances and is tight inside a Verilog instance (at least
for a good VLSI design). Therefore, if the circuit is cut at
instance boundaries, the cutsize will be smaller and inter-
processor communication will be reduced.

We should note that not only does register transfer level
(RTL) Verilog source code contain design hierarchy infor-
mation, but the synthesized gate level design also contains
exactly the same design information. The design informa-
tion is lost after elaboration, a process to flatten the design
hierarchy. However, if partitioning is carried out before
elaboration we are able to take advantage of the design
information.

4. DVS: A Framework for Distributed Verilog
Simulation

Before we present the implementation of our algorithm we
present a brief description of Distributed Verilog Simula-
tor (DVS), a framework for distributed Verilog simulation.
Several kinds of partitioning algorithms are implemented
in DVS.

Figure 2 portrays the architecture of DVS. The three
layers of DVS are shown on the right side of the figure.
The bottom layer is the communication layer, which pro-
vides a common message-passing interface to the upper
layer. Inside this layer, the software communication plat-
form can be Parallel Virtual Machine (PVM) or Message
Passing Interface (MPI). Users can chose one of them
without affecting the code of upper layers.

The middle layer is a parallel discrete event simula-
tion kernel, OOCTW, which is an object-oriented version
of clustered Time Warp (CTW) [27]. It provides services
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&
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such as rollback, state saving and restoration, GVT com-
putation and fossil collection to the top layer. The top layer
is the distributed simulation engine, which includes an
event handler and an interpreter which executes instruc-
tions in the code space of a virtual thread.

Several partitioning algorithms are included in DVS:
RANDOM [28], BFS (breath-first-search) [28], DFS
(depth-first-search) [28] and the design-driven partition-
ing algorithm.

5. Cutsize, Gain and Load-balancing Constraint

A circuit netlist is modeled by a hypergraph G = (V, E)
where V is the set of vertices while E is the set of nets or
wires in the circuit. The edge is not cut if all the vertices
of the edge reside in the same partitioning; otherwise the
edge is cut. The cost of the cut is defined to be r — 1 where
r is the number of the partitions in which the cut resides.
The cutset of the circuit consists of all of the edges which
are cut.

5.1 Cutsize and Gain

The cutsize of the circuit is defined to be sum of the cost
of all cuts in the cutset as shown in Equation (1). In the
formula, ¢; represents the ith cut in the circuit while n
represents the number of cuts in the circuit.

cutsize = Z cost(c;). (1)
i=1

The gain of the vertex movement is defined to be the
immediate reduction in cutsize as shown in Equation (2).
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In the formula, m is the number of cuts after the vertex
movement while » is the number of cuts before the vertex
movement. The negative gain means there is no reduction
in the cutsize.

gain = Z cost(c;) — Z cost(c;). 2)
i=1 i=1

The goal of the iterative movement in the partitioning
algorithm is to minimize cutsize through positive gain of
the vertex movement.

5.2 Load-balancing Constraint

A successful partitioning of a distributed Verilog simula-
tion depends on three factors: communication, load and
concurrency. Since it is not possible to optimize each of
these factors in isolation from one another, a compromise
must be sought. We attempt to minimize the communica-
tion between the processors while balancing their compu-
tational load.

We define the load on a processor as the number of
gates in the partition assigned to the processor. We make
use of a load balancing factor » which allows us to mea-
sure the percentage difference in the load on different
processors:

load x (1/k — b/100) <= loadi <= load
x (1/k + b/100). 3)

In Equation (3), load[i] is the number of gates in par-
tition i while load is the number of gates in the circuit. k
represents the number of processors involved in the simu-
lation. This load-balancing constraint guarantees that the
difference in the load assigned to two different processors
is less than 2 x b percent of the total load of the simulation.

We have experimented with different values of k£ and b,
and portray the effect of different choices of b in Section 7.

6. Algorithm and Implementation

In this section, we will explain the implementation of our
algorithm in detail.

6.1 Hypergraph and Data Structures

Partitioning algorithms operate on hypergraphs which
model a circuit. The gates and wires of the circuit are
mapped to the vertices and edges of the hypergraph. In
a hypergraph, edges may connect two or more vertices
therefore providing a more realistic model of a circuit.

In the circuit hypergraph, we make use of two kinds
of vertices. One is an ordinary gate, such as AND, OR,
NAND or XOR. The other kind of vertex is a Verilog in-
stance. We can actually treat it as a super-gate with more

2 u2
samhz ‘;A_‘ 1f(x|...)g1)
>y

ui

Figure 3. Hypergraph represented by Verilog

Table 1. Logic values and their purposes

Type Visibility Primitive Example
A Yes Yes Gate outside Vlog instance
B Yes No Top level Vlog instance
C No Yes Gate inside Vlog instance
D No No Sub-level Vlog instance

complex logic than ordinary gates. We associate the num-
ber of gates with each vertex in the hypergraph in order
to obtain an even load distribution. The introduction of
super-gates reduces the number of vertices, thereby mak-
ing the algorithm more efficient. This load metric does not
work for behavioral Verilog code since we cannot measure
the complexity of the behavioral code. This algorithm tar-
gets Verilog code at the gate level, i.e. after synthesizing
the RTL code.

Figure 3 contains a hypergraph which is composed of
two kinds of vertices: gates and super-gates (Verilog in-
stances). There are two Verilog instances in Figure 3: ul
and u2 which are represented by two vertices in the hy-
pergraph. However, in the zoom-out ellipse we see that
both ul and u2 have their own sub-graphs, each of which
include multiple gates or Verilog instances.

Before we introduce the data structure used in the al-
gorithm, we define two properties of a vertex. We say that
a vertex is not visible if it is inside a Verilog instance; oth-
erwise it is visible. We say that a vertex is primitive if it
cannot be decomposed into multiple vertices; otherwise it
is not primitive. Consequently there are four kinds of ver-
tices, as shown in Table 1.
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Figure 4. Data structure of the partitioning algorithm

For example, in Figure 3, the zoomout ellipse contains
3 nodes of type C and one node of type B, while the node
zoomed out is of type B. The properties of the vertex can
change during the partitioning process. For example, the
vertex inside a Verilog instance will become visible after
flattening. Any invisible vertex will have the same parti-
tion ID as its parent. Therefore, only visible vertices will
appear in the hypergraph.

The complexity of any partitioning algorithm is pro-
portional to the number of vertices, either O(n) or O(n?).
A reduction in the number of vertices in a hypergraph re-
sults in simpler hypergraph and a more efficient partition-
ing process.

Figure 4 depicts the data structure used in the partition-
ing algorithm. The hypergraph is represented as a vertex
vector and an edge vector. Each vertex contains the load,
a pointer to its parent, the partition ID, the neighboring
vertices list, the neighboring edges list and the input ports
list. The input ports list contains all of the input ports of
the vertex and the internal vertices connected to the input
ports while the output ports list contains all of the vertices
to which it connects. The ports can be used to flatten a ver-
tex. All of the invisible vertices are expanded into visible
vertices when a vertex is flattened. Details of flattening
are explained in Section 6.5.

The bucket is the data structure used to arrange ver-
tices in the order of their gain values. It was first used
in [4] in order to improve the runtime performance of the
Fiduccia—Mattheyses (FM) [4] algorithm. The bucket data
structure is inspired by the bucket sorting algorithm. It has
the following two advantages:

1. locating a vertex with the highest gain in the bucket
in constant time; and

2. after gain updating, the re-insertion of a vertex into
the bucket is accomplished in constant time.

As shown in Figure 5, the bucket is actually a two-
dimensional list. All of the vertices on the same row have
the same gain value while different rows are ordered by
the gain value. All vertices on the same row form a double
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Neighboring
vertices of vertex

+Max degree of
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0 same row of the bucket

AP TSI T »

-n

LT T [

-Max degree of
the graph

Figure 5. Bucket data structure for cell movement

linked list by pointing to the previous and the next vertex.
The advantage of double linked list over single linked list
is that the remove operation on the double linked list is
constant time while the remove operation on single linked
list is linear time. It could make a huge difference when
the circuit hypergraph has millions of vertices. Our exper-
iments [17] show that the runtime performance of FM [4]
based on single linked list could be 300 times slower than
the algorithm based on double linked list.

6.2 Verilog Parser and Hypergraph Builder

The Verilog parser reads in the Verilog source code and
builds the hypergraph. In the hypergraph, the Verilog in-
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Primary input

Figure 6. Initial partitioning with cone partitioning algorithm

stances are treated as super-gates and are therefore repre-
sented as one vertex.

Since we are using cone partitioning [29] for initial
partitioning, it is essential that we are able to recognize
the primary inputs to the circuit in the Verilog parser. We
define an Input port i as a bidirectional port which could
be used as input or output port. Currently we define the
primary input as an input port and inout port of the Ver-
ilog modules.

6.3 Initial Partitioning

We use a cone partitioning algorithm [29] as the initial
partitioning algorithm. The cones for each primary input
are shown in Figure 6. The algorithm traverses the hy-
pergraph from the primary inputs and adds vertices into a
partition. If the algorithm detects the vertices that were al-
ready added to a partition because of a loop in the circuit,
it will either traverse from its parent or choose another pri-
mary input with which to continue. The initial partitioning
terminates when all of the primary input ports are visited.

The cone partitioning algorithm preserves the concur-
rency present in the circuit because it distributes the pri-
mary inputs into different partitions.

6.4 lterative Moving

The iterative moving of hypergraph nodes is the same as
in the FM [4] algorithm. The algorithm modifies the ini-
tial partition by a sequence of moves which are organized
into passes. At the beginning of a pass, all of the vertices
are free to move (they are unlocked), and each possible
move is labeled with the immediate change in the total
cost which it would cause. This is called the gain of the

move (positive gains reduce solution cost, while negative
gains increase the cost). The move with the highest gain
is executed, and the moved vertex is then locked i.e. it is
not allowed to move again during that pass. Since moving
a vertex can change the gains of adjacent vertices, after a
move is executed all of the gains of adjacent vertices are
updated. The selection and execution of a best-gain move,
followed by a gain update, are repeated until every ver-
tex is locked. Then, the best solution seen during the pass
is adopted as the starting solution for the next pass. Iter-
ative moving terminates when a pass fails to improve the
quality of the solution. A detailed explanation of iterative
moving follows.

1. Calculate initial gains for all vertices.

2. Insert vertices into buckets of both partitions. After
the initial gain calculation of all vertices is finished,
all vertices will be inserted into the double linked
list at the appropriate bucket location.

3. Locate base vertex from either bucket.
4. Move the selected base vertex.

5. Update gains of the neighboring vertices of the base
vertex.

6. Calculate the maximum partial accumulated sum of
gains for the current pass.

7. Reverse selected vertices.

6.4.1 Tie-breaking

Tie-breaking strategies play an important role in circuit
partitioning because different tie-breaking schemes can
lead to different local minima of the cutsize. Our algo-
rithm uses the notion of affinity to break a tie between dif-
ferent cell candidates for a move. Affinity describes how
close a vertex is bound to its parent partition. At the begin-
ning of the algorithm, the affinity of a vertex is the number
of levels from the root of the hypergraph. This means that
the leaf vertices have the smallest affinity with their parent
partition.

The idea of affinity extends from the tie-breaking strat-
egy used by CLIP [9], which is to give high priority to
those neighbors of the moving cells in the next round of
moving based on the locality principle. The CLIP [9] al-
gorithm takes this approach in order to remove large clus-
ter(s) from the cutset. The authors of CLIP observed that
large clusters of vertices can still be trapped in the cut-
set when a small cluster of vertices is extracted out of the
cutset.

Sub-clusters which are part of the larger cluster are
able to move across the cutline. However, while one sub-
cluster moves in one direction, another may move in the
opposite direction later on. This movement will finally
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Figure 7. Flattening of the circuit hypergraph
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stop when the sub-clusters reside on both sides of the
cutline, resulting in the breaking of tightly coupled cir-
cuits and introducing a large cutsize. The rationale for
the approach is that if one vertex of a large cluster is
moved out of the cutset, all of the other vertices from
the same cluster should be moved in the same direction
in order to eventually move the whole cluster out of the
cutset.

6.5 Flattening

The result obtained using first level super-gates is how-
ever not always satisfying. For example, if the super-gate
is too large, it will destroy the load-balance constraint. At
this time we need to flatten the super-gate in order to break
it into more gates and smaller super-gates. The new hy-
pergraph will be generated after this flattening and the al-
gorithm will continue the iterative moving based on the
new hypergraph. The worst case of the algorithm is when
all of the super-gates are broken into gates and the hyper-
graph is exactly the same as the hypergraph of the gate-
level netlist.

Figure 7 shows the original hypergraph and the result
of the flattening. The gates inside the dashed rectangle are
flattened from Verilog instance u2. Currently we choose
the super-gate with the maximum gate number in the par-
titioning. After the flattening, we need to distribute some
of the visible nodes from the flattened modules in order to
achieve a load balance.

There are two approaches to redistribute the load after
the flattening. The first is to restart the algorithm from
the beginning. After the flattening, a new hypergraph is
generated. The algorithm will do the initial partitioning
on the new hypergraph, then begin the iterative movement
of the hypergraph nodes. It is obvious that this approach
can substantially increase the partitioning time. However,
it could hopefully generate an improved cutsize and load-
balanced partition.
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The second approach redistributes the load between
two partitionings based on the previous partitioning re-
sult. We make use of this approach and define it as the in-
cremental load distribution. After partitioning, the lightly
loaded partition will pull some nodes from the heavily
loaded partition. The pulled nodes are in the cones along
the hyperedge between the two partitions. All nodes in the
cone are pulled from the heavily loaded partition to the
lightly loaded partition. The hyperedge which defines the
cone is chosen randomly.

We observe that cutsize may well increase if we try to
achieve a more balanced partition. However, we need to
compromise between the cutsize and load balancing in or-
der to achieve a better simulation speedup. The minimum
cutsize with a load imbalance will actually slow down the
simulation, as shown in Section 7.

When the iterative moving terminates and the partition-
ing result satisfies the load balance constraint, the parti-
tioning algorithm terminates.

6.6 Pairwise Multiway Iterative Partitioning

The preceding sections have described an algorithm for
a two-way partition of the simulation. In this section, we
extend the algorithm to more than two machines.

There are two kinds of multiway partitioning algo-
rithms, a flat k-way partitioning [30] and a recursive mul-
tiway partitioning algorithm [31-33]. The recursive ap-
proach applies bi-partitioning recursively until the desired
number of partitions is obtained, while the direct approach
forsakes recursion.

The recursive algorithm is computationally simple and
fast. However, it suffers from several limitations. In the
first place, the number of partitions must be a power of
2. Furthermore, it becomes harder to reduce the cutsize as
the algorithm proceeds as the partitioning is performed on
successively finer hypergraphs. In effect, global informa-
tion is lost as we attempt to partition the finer graphs. For
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these reasons, we have elected to make use of the second
approach.

Note that [30] claims that their k-way partitioning al-
gorithm efficiently produces better results.

6.6.1 Pairing of Partitions

We make use of an algorithm which pairs partitions ac-
cording to the size of the cut-size between pairs of parti-
tions. This is done after obtaining an initial k-way parti-
tion via cone partitioning because the algorithm does iter-
ative improvement between these pairs of partitions.

There are a number of ways in which to choose the
pairs of partitions.

e Random pairing: It is simple and efficient, but the
pairing quality is not good.

e Exhaustive pairing: The algorithm tries all paring
combinations. It is computationally complex but
produces better results because it can climb out of
local minima.

e Cut-based pairing: It pairs the two most tightly or
loosely connected partitions. The measurement is
the cutsize.

e Gain-based pairing: It pairs two partitions based on
the gain in cutsize.

Our algorithm currently employs the cut-based pairing
approach. The gain-based pairing approach will be ex-
plored in the future.

6.7 Pre-simulation

Pre-simulation is an efficient approach for evaluating the
quality of a partition [34]. Evidence is provided that the
simulation statistics obtained during the first 10% of the
simulation run will not change a great deal during the re-
mainder of the simulation.

We use pre-simulation to evaluate the trade-off be-
tween load balance and the communication cost in order
to find the best compromise. The criterion used to evalu-
ate a circuit partitioning is simulation speedup during the
pre-simulation. The partition which produced the the best
speedup for a given number of processors was used as the
final partition.

6.8 Putting it all Together

Figure 8 contains a flowchart of the algorithm. After the
initial cone partitioning, the pairing process is executed
in order to pick candidates for iterative movement. The
algorithm then moves free vertices between the two parti-
tions picked by the pairing iteratively until there is no free

vertex left or no gain on cutsize could be obtained. The
algorithm then checks whether the load meets the load-
balancing constraint. If the load-balancing constraint is
not met, the algorithm will continue incremental flattening
as discussed in Section 6.5. The pairing, iterative move-
ment and flattening process are repeated until no pairing
configuration is available. At the end of the partitioning
algorithm, the minimum cutsize is achieved and the load-
balancing constraint is also met.

7. Experiments

All of our experiments were conducted on a network
of 4 computers, each of which has AMD Athlon (1G
CPU) processors and 512M RAM. They are connected
by a 1Gbyte Ethernet network. All of the machines run
the Linux operating system and MPICH [35] is used
for message passing between the processors. MPICH is
a freely available, portable implementation of message-
passing interface (MPI), a standard for message pass-
ing for distributed-memory applications used in paral-
lel/distributed computing.

In our experiments we used a synthesized netlist for a
Viterbi decoder, which has 388 modules and about 1.2M
gates. A million random vectors are fed into the circuit for
the full simulation while 10000 random vectors are used
for pre-simulation. We obtained the synthesized netlist
from Rensselaer Polytechnic Institute [36]. We restricted
ourselves to this circuit as a consequence of the difficulty
in obtaining large circuit designs.

We assume a unit gate delay and zero transmission de-
lay on the wires. Each data point collected in the exper-
iments is an average of five simulation runs. The sim-
ulation time for 1 machine is the running time of the
DVS with partitioning ready before the simulation. The
confidence interval is calculated according to Equation (4)
based on 95% confidence level. In Equation (4), o rep-
resents the standard deviation of the samples and n is
the number of samples. The distribution of the simulation
time samples is assumed to be a normal distribution.

Confidencelnterval = 1.96 x (¢ //n). 4)

In the experiments, we compare the cutsize produced
by the design-driven partitioning algorithm to the cutsize
produced by hMetis [14]. The reason for this is that hMetis
employs clustering and is therefore appropriate for large
circuit hypergraphs. It is also well known for producing
partitions with a small number of edges between partitions
and has a time complexity of O(Ng) where E is the num-
ber of edges in the circuit hypergraph.

7.1 Cutsize

We use different values of k and b to generate different
cutsizes. The hyperedge cutsize is defined as the num-
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Figure 8. Flowchart of the design-driven partitioning algorithm

ber of hyperedges that span multiple partitions. In Ta-
ble 2, Design Driven Partioning (DDP) is the hyperedge
cutsize produced by our design-driven iterative partition-
ing algorithm while hmetis is the cutsize produced by
the hMetis partitioning algorithm. The parameter b is the
load-balancing factor defined in Equation (3) while % is
the number of partitions.

Table 2 reveals that our algorithm resulted in a sig-
nificantly smaller cutsize than that produced by hMetis.
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Best partition
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7.2 Cutsize for ISCAS Benchmark Circuits

The ISCAS89 benchmark circuits have been used exten-
sively to measure the performance of parallel simulation
algorithms. We applied our design-driven algorithm to the
two largest circuits. Tables 3 and 4 show the cutsize gen-
erated by the design-driven partitioning algorithm and the
FM [4] partitioning algorithm on ISCAS85 benchmark
circuit, 35932 and s38584. The s35932 has 12204 gates,
3861 inverters and 1728 D-type flip-flops. The s38584 has
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Table 2. Cutsize comparison between design-driven partitioning
and hmetis algorithm

Table 4. Cutsize on ISCAS benchmark circuit s38584

Table 3. Cutsize on ISCAS benchmark circuit s39592

k b DDP FM
2 25 47 47
2 5 47 47
2 7.5 47 47
2 10 46 46
2 12.5 46 46
2 15 46 46
3 25 181 181
3 5 181 181
3 7.5 181 181
3 10 181 181
3 12.5 181 181
3 15 181 181
4 25 239 239
4 5 239 239
4 7.5 239 239
4 10 231 231
4 12.5 231 231
4 15 231 231

11448 gates, 7805 inverters and 1452 D-type flip-flops. In
Tables 3 and 4, DDP is the abbreviation for the design-
driven algorithm.

The cutsize produced by the design-driven partition-
ing algorithm is exactly same as the FM [4] partitioning
algorithm. This is expected: flattened netlists contain no

k b Cutsize by DDP Cutsize by FM

k b DDP hmetis 2 25 53 53
2 25 2428 2675 2 5 53 53
2 5 1827 2673 2 7.5 53 53
2 7.5 905 2673 2 10 53 53
2 10 633 2669 2 12.5 52 52
2 12.5 598 2668 2 15 52 52
2 15 513 2665 3 2.5 167 167
3 25 2930 2932 3 5 167 167
3 5 2227 2932 3 7.5 167 167
3 7.5 1230 2931 3 10 167 167
3 10 894 2935 3 12.5 167 167
3 12.5 863 2931 3 15 165 165
3 15 790 2927 4 25 211 211
4 25 3230 3195 4 5 211 211
4 5 2326 3195 4 7.5 211 211
4 7.5 1433 3191 4 10 211 211
4 10 979 3191 4 12.5 211 211
4 125 935 3191 4 15 211 211
4 15 887 3191

design hierarchy and the algorithm degenerates to the FM
algorithm.

7.3 Pre-simulation

We used 10000 random vectors in our pre-simulation in
order to pick the best partition for different combinations
of partition number k and load-balance factor b. The se-
quential simulation time of the circuit with 10 000 random
vectors is 38.93 sec.

Table 5 shows the simulation time and speedup with
these combinations. We list the best partitions as deter-
mined by the largest speedup in Table 6.

7.4 Simulation Time

In our preliminary experiments, the simulation took an
extremely long time to terminate since DVS consumes a
lot of memory and the operating system kept swapping.
Swapping made the performance of DVS even worse than
that of a sequential simulation. The reason for this is that
DVS treats each gate as an independent LP and each LP
needs to save its state, input events and output events. If
the GVT is not calculated promptly, the memory overhead
for state and event saving is overwhelming.

In order to attack the problem of memory consump-
tion, we update DVS and only treat the visible nodes in
the circuit hypergraph as LPs. For a Verilog module, the
states and input events are saved for each input port while
the output events are saved for each output port. An invis-
ible node without memory inside a Verilog module will
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Table 5. Pre-Simulation time with design-driven partitioning algo-
rithm

k b Cutsize Simtime Confidence Speedup
2 25 2428 61.79 2.31 0.62
2 5 1827 41.86 1.91 0.93
2 75 905 30.65 1.37 1.27
2 10 633 25.78 1.08 1.51
2 125 598 23.59 0.99 1.65
2 15 513 29.72 1.34 1.31
3 25 2930 56.42 3.05 0.69
3 5 2227 39.72 2.02 0.98
3 7.5 1230 28.87 1.76 1.35
3 10 894 21.50 1.33 1.81
3 125 863 22.37 1.56 1.74
3 15 790 25.44 1.09 1.53
4 2.5 3230 88.47 4.29 0.44
4 5 2326 42.78 2.76 0.91
4 75 1433 19.86 0.86 1.96
4 10 979 24.80 0.93 1.57
4 125 935 21.04 0.97 1.85
4 15 887 24.18 1.13 1.61

Table 6. Best partition produced by design-driven partitioning al-
gorithm

k b Cutsize Simtime Confidence Speedup
2 125 598 23.59 1.37 1.65
3 10 894 21.50 1.90 1.81
4 75 1463 19.86 1.28 1.96

not save its state and events. However, the invisible nodes
with memory (e.g. a register) will still save their states. If
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Table 7. Simulation time with design-driven partitioning algorithm

k b Cutsize Simtime Confidence Speedup
2 125 598 2201.98 53.74 1.65
3 10 894 2033.35 49.88 1.79
4 75 1463 1905.60 47.96 1.91

a rollback happens in a Verilog module, every child inside
of the Verilog module rolls back along with its parent.

Table 7 and Figure 9 show the simulation times and
speedups with different combinations of the load-balanc-
ing factor and cutsize. The sequential simulation time of
the circuit is 3639.70.

From Table 7, we know that the minimum cutsize does
not always result in the best performance since the perfor-
mance is also dependent on load balancing. We obtained
the best performance with the combination of a cutsize of
598 and a static load-balancing factor of 0.25 on two ma-
chines. From the data in Table 7, we also observed that
the load balancing becomes more and more important as
the number of machines increases from 2 to 4. Because
of increasing cutsize, we do not see much reduction of the
simulation time as the number of machines increases from
2 to 4. This is a consequence of the size of the design. As
the number of machines increases, the circuit is divided
more finely and more design hierarchy is destroyed. In
short, the communication cost offsets the gain from the
load distribution.

We also notice that the speedups of the full simulation
with 1 million random vectors are slightly less than the
speedups achieved from pre-simulation with 10000 ran-
dom vectors. We attribute this to the cost of Time Warp.
As the simulation runs longer, the overhead costs of Time
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Warp (fossil collection and GVT calculation) increase sig-
nificantly.

Without a good partitioning algorithm, the distributed
simulation is slower than the sequential simulation, as
shown in the first two rows in Table 7.

8. Conclusion

A partitioning algorithm plays an important role in distrib-
uted VLSI simulation. Unfortunately, most partitioning al-
gorithms are very costly and do not always yield a good
cutsize because they operate on a flattened netlist. Our
design-driven partitioning algorithm yields a significant
reduction in cutsize compared to such algorithms by tak-
ing advantage of hierarchical design information. More-
over, it preserves the locality expressed in Verilog mod-
ules and instances. The algorithm produces a 4.5-fold re-
duction in cutsize compared to the hMetis [14] partition-
ing algorithm when applied to the circuit used in our ex-
periments. The reduction in cutsize and the preservation of
locality lead to a speedup of 1.91 on four machines com-
pared to the sequential simulation.

An interesting extension of the algorithm would be to
make it responsive to changes in processor loads at run-
time. Currently our load metric is the number of gates,
which is not adequate for this task.

Due to the difficulty of obtaining a large synthesizable
industry Verilog design, we have only made use of the cir-
cuit described in this paper. We are exploring the possibil-
ity of conducting more experiments on large, industrial-
quality Verilog designs.
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