
DETECTING TERMINATION OF DISTRIBUTED COMPUTATIONS USING MARKERS

Jayadev Misra
Department of Computer Sciences, University of Texas, Austin, 78712

Abstract
A problem of considerable importance in designing

computations by process networks, is detection of
termination. We propose a very simple algorithm for
termination detection in an arbitrary network using a
single marker We show an application of this scheme in
solving the problem of token loss detection and token
regeneration in a token ring.

I n t r o d u c t i o n

We study the problem of detecting termination of
computation in a network of processes. If every process
in a network is idle, i.e. waiting for messages in order to
carry out further computations, and there are no
messages in transit, i.e. all messages that have been sent
have been received, then no process will carry out any
further computation. It is often important to detect
such a situation. Multiphase algorithms [15] in which a
phase is to be initiated only upon completion of the
previous phase, requires termination detection of a
phase. Francez, Rodeh and Sintzoff [11[suggest that it
may be easier to devise a distributed algorithm in two
steps: (1} design an algorithm that maintains the desired
safety properties and eventually guarantees a
terminating global state; (2) superimpose a termination
detection algorithm on the basic algorithm. Deadlock
detection [8] which is related to termination detection is
of fundamental importance in distributed data bases.
Detection of token loss in a token ring can be shown to
be a termination detection problem.

We suggest an algorithm for termination detection in
an arbitrary network of processes. The algorithm uses a
single marker which repeatedly traverses the edges of
the network until it detects termination. We make no
assumption about the network structure, process

*This work was supported by a grant
from IBM.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to rel~ublish, requires a fee and/or specific permission.

© 1983 A C M 0-89791-110-5/83/008/0290 $00.75

290

behavior or message delays. Our only assumption is
that a process receives (only and all) messages from
another process in the order sent by the sender. Our
solution is symmetric among the processes, i.e. process
id's are not used in the solution. As an application of
the scheme in this paper, we give a simple and efficient
algorithm for detecting token loss and regenerating the
token in a token ring network. The marker algorithm
has also been applied [14] in avoiding deadlocks in
distributed simulations.

There has been a considerable amount of work in
termination detection. For a specific class of
computations, called diffusing computations, Dijkstra
and Scholten [2] proposed a very elegant algorithm.
Their approach has been extended and applied to a
variety of problems [4,5,6,7]. The major drawbacks of
their approach are: (1) termination detection algorithm
must be initiated whenever the diffusing computation
starts and (2) the number of messages used for
termination detection is equal to the number of
messages in the diffusing computation itself. Our
solution does not suffer from these drawbacks.

A series of papers has been published by Francez and
co-workers [9,11,12] leading to a marker type algorithm.
The algorithm proposed in this paper refines, simplifies
and removes some of the restrictions of their approach.
Independently Gouda [1] and Dijkstra [3] have proposed
similar schemes, again with certain restrictions. All of
these schemes use the marker to determine if a process
has remained mcontinuously idle m over an interval of
time; the idea of continuous idleness also appears in [8 I
for deadlock detection.

Recently Chandy and Lamport [10] have proposed a
very elegant and general scheme for detecting stable
propertieo of a network; a property (proposition I P is
stable if it remains true once it becomes true. Clearly
properties such as Unetwork computation has
terminated," and "a subset of processes are deadlocked"
are all stable properties. Even though we treat the
narrower problem of termination detection, our solution
is simpler and more efficient for this specific problem.

P r o b l e m Description
We consider computations in finite networks of

processes in which processes communicate only by
messages. A process is either idle or active at any time.
(For simplicity in exposition, we assume that processes
do not terminate. Extension of the algorithm for

terminated processes is straightforward.) Only active
processes can send messages. An idle process becomes
active only upon receiving a message; an active process
may become idle at any time. Every message sent in
the network is received by its intended recipient after
an arbitrary (possibly zero) delay. All messages sent by
a process x to another process y will be received by y in
the order sent by x .A network's computation
terminates when every component process is idle and
there is no message in transit, because in this case no
process will ever become active again.

It is required to develop an algorithm to be
superimposed on the basic computation in which, (1)
termination is reported only when network's
computation terminates and (2} termination is reported
within finite time of the termination of network
computation.

Initially, {i .e. when the termination detection
algorithm is initiated), processes are in arbitrary states
and there are arbitrary number of messages in transit.

The M a r k e r A l g o r i t h m

In the following algorithm, a marker visits all the
processes in the network and checks to see if they are
idle or active. Because of messages in transit, the
marker cannot assert that the computation has
terminated if it finds all processes to be idle after one
round of visits. However, for the special case of a
network in which processes are arranged in the form of
a ring (i.e. every process has a unique predecessor from
which it can receive messages and a unique successor to
which it can send messages), the marker can assert that
the computation has terminated if it finds after one
round of visits that every process has remained
continuously idle since the last visit of the marker to
that process. This algorithm can be implemented quite
easily. The marker is a special type of message, sent
only by an idle process. The marker paints a process
white when it leaves the process. A process turns black
if it becomes active. If the marker arrives at a white
process, it can claim that the process has remai'hed
continuously idle since the marker's last visit. The

m a r k e r detects termination if it visits- N whiteprocesses
in a row, where N is the number of processes in the
ring.

We generalize this scheme for arbitrary networks of
processes. Crucial to our technique is the assumption
that messages sent by one process to another are
received in the order sent; therefore if the marker is sent
from process x to process y (at which point process x is
white) and on a subsequent visit the marker finds
process x to be white then it can assert that (1) x has
remained continuously idle during this interval and (2)
there is no message in transit along edge (x,y) at this
point because all messages along (x,y) would have been
"flushed out" when the marker was received by y and
subsequently x could not have sent a message since it
has remained idle. Therefore it is necessary for our
marker to traverse every edge of the network to
guarantee that there are no messages in transit. For the
moment, we assume that the network is strongly
connected; extension of this scheme for arbitrary
networks is sketched in the next section.

In every strongly connected network there exists a

cycle c, not necessarily a simple cycle, which includes
every edge of the network at least once. Let c denote
the length of e. The marker will carry an integer m
with it with the meaning that all processes seen during
the last m edge traversals have been continuously idle,
i.e. each of them was white when the marker arrived at
the process. The entire algorithm is defined by the
following rules.

(RO) Initially, every process is black.
Marker departs from an arbitrary
process x along some outgoing edge,
according to rule (R1) below.

(R1) Marker departure from process x:
Marker departs along the next edge
(x,y) of c only when x is idle. Prior to
departure set,

0, if x is black
m :---

re+l, if x is white
{termination is
reported if m----c}

and paint x white.

{To guarantee that termination is
eventually detected, we require that
the marker cannot stay permanently
at an idle process.}

(R2) Message arrival at process x: process
x paints itself black.

P r o o f o f the A l g o r i t h m

We must show that (1) if the network's computation
terminates then the marker eventually declares
termination and (2) if the marker declares termination,
then n~twork" computationhas terminated: Property (I)
is easy to see: Rule (RI) will be repeatedly applied
upon termination and Rule {R2) will never be applied;
therefore every process will eventually become white
and after that m will increase to c. We next prove
Property (2). The following proof, due to Chandy,
considerably simplifies the original proof of the author.

If the marker reports termination (m~c), consider the
time instant t at which the marker last set m to zero
and departed from a process. We show that the
network computation must have terminated at t. Since
the marker eventually sets m to c, it traverses every
edge of the network and visits every process, after
t. Since it never sets m to zero after t, every process
must be white when the marker visits it (after t) and
therefore every process must be white at t. There can
be no message in transit along any edge at t; if there
were a message in transit along edge (x,y), then when
the marker traverses the edge (x,y} and arrives at y, it
must find y black since y must have received the
message before the marker.

Extension for Arbitrary Networks
(1) This algorithm can be applied to a network G

which may not be strongly connected. Let G1,G 2 ... be

291

the maximal strongly connected components of
G. Define G i to be a predeceasor of Gj if. processes-in G i
are reachable from processes in G i. The algorithm is
applied successively to each strongly connected
component starting with components which have no
predecessors and the marker moving to a new
component only after termination has been detected for
all its predecessors. Therefore the marker visits the
components in a topological sort sequence.

We claim that every component for which termination
has been detected will remain terminated. We prove it
using induction on the topological sort sequence of the
components.

(i) All components without predecessors
must remain terminated after
termination detection because they
cannot receive messages from
predecessors and become active.

(il) Assume that every predecessor of G i
for which termination has been
reported, will remain terminated.
When termination is reported for Gi,
G i will remain terminated because
from induction hypothesis, no process
in G i will ever receive a message from
any predecessor component and
thereby become active.

The network computation terminates when every
strongly connected component has been declared

terminated.

(2) One drawback of the algorithm is the requirement
that the network be preprocessed to determine its
maximal strongly connected components and a cycle for
each component containing all edges. We sketch a
distributed algorithm, i.e. an algorithm in which no
global information is available to any process. We
assume that the marker can traverse edges in both
directions. Then as far as the marker is concerned, the
network is connected and undirected (and hence
strongly connected).

We may use any standard search strategy for the
marker to traverse all edges of this network. We sketch
the algorithm with depth first search as the strategy. A
new depth first search {we call it a round) is started
when a black process is seen. The root of a round is the
(black} process where the depth first search started.
The marker carries with it the number of its current
round; each process retains the last round number of the
marker, when the marker visits the process. The
marker increments its round number (starts a new
round) upon arriving at a black process. Then it paints
the process white and departs along some edge when the
process is idle. The algorithm for a process that is white
(prior to marker departure) is given below.

i f the marker has a different {higher) round number:
{join the depth first search}

designate the sender of the marker as the
fa ther ;
update one round number;
propagate the marker (see below)

i f the marker has the same round number:

i f the marker has come from a son
t h e n propagate the number (see below)
else {marker has come from a process

other than a sony

re turn the marker to the l a s t sender.

Propagate the marker:

choose some edge along which the marker has
not been received or sent in the current round;

i f there i s such an edge
t h e n aend the marker along tha t edge
e l s e { there i s no such edgeY send marker

to the fa ther or i f there i s no
fa ther { th is i s the root processY
repor t termination.

Proof of the algorithm is identical to the previous
proof; note that the depth first search of an undirected
graph leads to the construction of a cycle which includes
all the edges (in both directions).

Resilient Token Ring

A token ring provides a useful mechanism for ensuring
that at ay time at most one process out of a group of
processes can enter a critical section. The =marker = in
the termination detection algorithm is a special case of a
token. The group of processes P0,Pl,'",PN-I are
arranged in a ring where Pi receives messages from Pi-1
and sends messages to Pi+l (additions, subtractions are
modulo N). A single token circulates among the
processes in the order P0,Pl,'",PN-I,Po,'- etc. A process
Pi which wishes to enter its critical section waits until it
receives the token from Pi-1, then it enters its critical
section and sends the token to Pi+l upon completion of
the critical section. A process which does not wish to
enter its critical section merely transmits the token,
perhaps after finite delay, upon receiving it. It follows
then that two processes cannot enter critical sections
simultaneously since at most one of them can hold the
token at any time. Also if the execution of critical
section always terminates, every process will send out
the token within finite time of receiving it. Hence a
process will execute its critical section within finite time
of wishing to do so.

A problem in connection with token rings is recovery
upon loss of the token. In this case, the token loss must
be detected and the token must be regenerated.

A solution for both token loss detection and token
regeneration has been suggested .by Le Lann [13]. In
this solution, every process waits a certain period of
time to receive the token. If the token is not received

292

within this time interval, the process assumes that the
token is lost and initiates the token regeneration
process. Since there is a possibility that the original
token may not have been lost or too many new tokens
may be generated, a scheme is proposed for destroying
additional tokens. This scheme makes use of process
id's which are assumed to be distinct positive integers.

A N e w S o l u t i o n t o t h e T o k e n R e g e n e r a t i o n
P r o b l e m

Our solution is based on the observation that loss of
the token amounts to termination of the network
computation (we ignore messages other than the token
in defining network computation), because all processes
are idle and there is no message in transit. We use the
marker algorithm to detect termination and regenerate
the token. However we exploit the structure {token
ring) to arrive at a solution which is somewhat simpler.
Since a marker resembles a token, we propose to
circulate P tokens, token A and token B, in the token
ring. One of these will be designated the primary token
to be used by processes for entering their critical
sections. However for token loss detection and token
regeneration the two tokens are treated symmetrically,
i.e. any token may be used to detect the loss of the
other token and regenerate it. Our solution does not
use time-outs nor does it make use of process id's.
Therefore, it may use fewer messages. Furthermore, it
is simple enough that it can even be implemented in
hardware; in particular it avoids high-low comparisons
and uses only equal-unequal comparisons between
integers. We will show that the loss of a token, say
token A, will be detected by token B within one round
of token B's travel. Therefore the algorithm with 2
tokens is guaranteed to work if no token fails within a
round (of travel) of the other token's loss. The
algorithm is easily extended to k tokens, for any k > l ;
in that case the algorithm will work if at least one token
is guaranteed to make a round after the loss of one or
more tokens.

Our solution makes use of the following observations:
a token at process Pi can guarantee that the other token
is lost if since this token's last visit to Pi, neither this
token nor Pi have seen the other token. We next show
how to incorporate this observation into a simple
algorithm.

We associate with each token a number: nA,nB
denote the numbers of tokens A and B. Each process Pi
also carries a number m i which is the associated number
of the token last seen by Pi" nA,nB are both updated
whenever the two tokens encounter each other.

Initially ::

nA:-~-l; nB:-~-l; all mi's are zero.

When process Pi receives token A {analogous

algorithm for token b}::

I f m I = nA

then (t o k e n B l s lost: token A has made
a co mp le t e round without chanElng
nA; token B has not vlslted thls
process Pl in the mean tlme)

r e g e n e r a t e token B

e l s e (token B Is not los t) m I := nA;

When tokens encounter each other::

nA := nA + I; nB := nB - 1

Process Pi regenerates token B {analogous

algorithm) for regenerating token A}::

nA := nA + I; nB := -nA;
(process Pl now holds both tokens)

The algorithm may cause n.A to become arbitrarily
large {or nB to become arbitrarily small}. This can be
avoided as follows: we observe that the algorithm only
requires nA,nB to take on values different from all mi's
when they are updated {this is a consequence of equal-
unequal comparison employed in the algorithm). This
can be achieved by incrementing nA by l, modulo
(N+I} (analogously for nB). We claim that nA will
never get the same value after incrementation as some
mi; if it does then nA must have been incremented at
least (N+I) times following its last visit to Pi" This is
not possible since there are N processes and one token
encounters the other token at most once at a process.

We leave the extension for k tokens to the reader. By
choosing a suitably large k, the probability of loss of all
tokens can be made arbitrarily small.

A c k n o w l e d g e m e n t

I am indebted to Professors M. Gouda, E. W. Dijkstra
and Nissim Francez who brought their works to my
attention. Professor Chandy's help in formulating the
proof of the marker algorithm is greatly appreciated.

R e f e r e n c e s

1. Gouda, M. "Personal Communication,"
Department of Computer Sciences,
University of Texas, Austin, Texas 78712.

2. Dijkstra, E . W . and Scholten, C.S.,
"Termination Detection for Diffusing
Computations," Information Processing
Letters, 11, 1 (Aug. 1980), pp. 1-4.

3. Dijkstra, E .W. , "Distributed Termination
Detection Revisited," EWD 828,
Plataanstraat 5, 5671 AL Nuenen, The
Netherlands.

293

4. Cohen, S. and Lehmann, D., "Dynamic
Systems and Their Distributed
Termination, • ACM SIGACT-SIGOPS
Symposium on Principles of Distributed
Computing, Ottawa, Canada, August 18-20,
1982, pp. 29-33.

5. Misra, J. and Chandy, K.M., 'A
Distributed Graph Algorithm: Knot
Detection, • ACM Transactions on
Programming Languages and Systems, Vol.
4, No. 4, October 1982, pp. 678-686.

6. Chandy, K. M. and Misra, J., "Distributed
Computation on Graphs: Shortest Path
Algorithms," Communications_ of the ACM,
Vol. 25, No. 11, November 1982, pp.
833-837.

7. Misra, J. and Chandy, K. M., •Termination
Detection of Diffusing Computations in
Communicating Sequential Processes," ACM
Transactions on Programming Languages
and Systems, Vol. 4, No. 1, January 1982,
pp. 37-43.

8. Chandy, K.M., Misra, J., and Haas, L.,
• Distributed Deadlock Detection, • ACM
Transactions on Computing Systems, Vol.
1, No. 2, May 1983, pp. 144-156.

9. Francez, N. "Distributed Termination, •
ACM Transactions on Programming
Languages and Systems, Vol. 2, No. 1,
January 1980, pp. 42-55.

10. Chandy, K.M. and Lamport, Leslie,
• Detecting Stability in Distributed
Systems," in preparation.

11. Francez, N., Rodeh, M. and Sintzoff, M.,
"Distributed Termination with Interval
Assertions," Proceedings of Formalization
of Programming Concepts, Peninsula,
Spain, April 1981, Lecture Notes in
Computer Science 107, (Springer-Verlag).

12. Francez, N. and Rodeh, M., 'Achieving
Distributed Termination Without Freezing,"
IEEE-TSE, Vol. SE-8, No. 3, May 1982,.pp.
287-292.

13. Le Lann, Gerard, "Distributed Systems
- Towards a Formal Approach, •
Information Processing 77, B. Gilchrist,
Editor, IFIP, North-Holland Publishing
Company (1977).

14. Kumar, Devendra, Ph.D. Thesis {in
preparation), Computer Sciences
Department, University of Texas, Austin,
78712.

15. Chandy, K.M. and Misra, J.,
• Asynchronous Distributed Simulation Via a
Sequence of Parallel Computations, •
Communications of the ACM, Vol. 24, No.

April 1-981, pp. 1-98-205.

294

