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pass messages in either or both directions, that these 
directions are distinguished, that processors can detect 
from which direction a received message originated, but 
that "left" may not mean the same to all processors. We 
propose an algorithm that requires O(n log n) messages 
in the worst case. The algorithm as given elects the 
processor with the highest value. 

In the algorithm given below, a processor can initiate 
messages in both directions by a sendboth directive. A 
processor can pass a (possibly modified) message in a 
circular manner by a sen@ass directive. A processor can 
send a responsive message back in the direction from 
which that processor received a message by a sendecho 
directive. 
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This note presents an efficient algorithm, requiring 
O(n log I1) message passes, for f'mding the largest (or 
smallest) of a set of n uniquely numbered processors 
arranged in a circle, in which no central controller exists 
and the number of processors is not known a priori. 
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Introduction 

We are given n processors that are loosely coupled in 
a circular arrangement and work asynchronously. Each 
of  the processors has an associated unique value (of 
which it alone is aware) and none of  the processors has 
a priori knowledge of  the number of  processors in the 
circle. The problem is to designate by consensus a unique 
processor from the circle. The total number of  data 
transmissions (messages passed) among the n processors 
is a measure of the complexity of  a solution algorithm. 

LeLann [2] presented an algorithm that requires 
O(n 2) messages. Chang and Roberts [1] proposed an 
improved algorithm that requires only O(n log n) mes- 
sages on the average but, in the worst case, still requires 
O(n 2) messages. Both of  the above algorithms assume the 
capability of  each processor to pass a message "to the 
left" in a global sense. 

We consider the case in which the processors can 
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The Algorithm 
To run for election: 

status ~-- "candidate" 
maxnum ~-- 1 
WHILE status = "candidate" DO 

sendboth ("from", myvalue, 0, maxnum) 
await both replies (but react to other messages) 

IF either reply is "no" THEN status ~-- "lost" 
maxnum ,,-- 2*maxnum 

OD 

On receiving message ("from", value, num, maxnum): 
IF value < myvalue THEN sendecho ("no", value) 
IF value > myvalue THEN DO 

status ~-- "lost" 
num ~-  Rum + 1 
IF n u m <  maxnum THEN sen@ass ("from", value, num, 
maxnum) 

ELSE sendeeho ("ok", value) 
OD 
IF value = myvalue THEN status ~- "won" 

On receiving message ("no", value) or ("ok", value) 
IF value ~ myvalue THEN sen@ass the message 

ELSE this is a reply the processor was awaiting 

The processors initiate messages that are passed in 
both directions along paths of  predetermined lengths 
(which are successive powers of 2). Processors on the 
path read the message. If  a processor determines, from 
reading the message, that it cannot win the election, then 
it will pass the message and it will not initiate any further 
messages of  its own. I f  a processor determines that the 
message originator cannot win the election, it echos back 
a message informing the originator of  this fact. The 
processor at the end of  the path echos back a message 
informing the originator that all processors along the 
path defer to the originator. 

A processor receiving its own message will have won 
the election since all other processors in the circle will 
have deferred to it. It is then a simple matter for the 
winner to send a message informing all other nodes that 
the election has been satisfactorily concluded. 

Not accounted for in the algorithm as written (but 
easily added) is the possibility of  a processor being 
unaware of  an election in progress. Such a processor, 
upon receiving a message, would then be aware of  the 
election and, if not beaten by the originator of  the 
message it just received, would become a candidate. 

I f  a communication link between two nodes should 
fail or if a node should fail, then unless the winner has 
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already been determined, all other nodes will eventually 
enter the state in which they await a reply. 

Complexity Analysis 

A processor, x, initiates messages along paths of  
length 2 i only if it is not defeated by a processor within 
distance 2 i-1 (in either direction) from x. Within any 
group of  2 i-1 + 1 consecutive processors, at most one can 
initiate messages along paths of  length 2 ~. Although 
possibly all n processors will initiate paths of  length 1, at 
most In/2] (read ceiling of  n/2) processors will initiate 
paths of  length 2, at most In/3] o f  length 4, at most [n/ 
5] of  length 8, etc. 

A processor initiating messages along paths of  length 
2 i causes messages to emanate in both directions, and 
return. At most 4 . 2  i messages will be passed as a result 
o f  that initiation. The sum total of  all messages passed is 
therefore at most 

4 . ( l * n  + 2 . [ n / 2 ]  + 4 . [ n / 3 ]  + 8 . [ n / 5 ]  + . . .  + 
2~*[n/(2 i-1 + 1)] + . . . ) .  

Each of  the terms within the parentheses is less than 2n. 
There are no more than 1 + [log n] terms. (No processor 
will pass messages along paths of  length 2n or greater 
since, once a processor initiates paths of  at least n length 
and the message is acceptable all the way around the 
circle, the processor wins and stops initiating messages.) 
Thus, the total number  of  messages passed is less than 
8n + 8[n log n] = O(n log n). 

I f  one detrmes the time complexity to be the min imum 
time required for the completion of  an election assuming 
as much message transmission overlap as possible, the 
worst case time complexity can easily be shown to be 
linear in the number  of  processors. The exact formula is 

Time = 2 .  (1 + 2 + 4 + . . .  + 2 i + . . .  + n ) .  

When n is an exact power of  2 (the best case), Time = 
4n - 2; when n is one more than an exact power of  2 
(the worst case), Time = 6n - 6. Thus, the savings in 
worst-case message passages is paid for by an increase in 
the wall time. 

We conjecture that models in which message passing 
is unidirectional must, in the worst case, have quadratic 
behavior and that bidirectional capability is necessary in 
order to achieve O(n log n) performance. Recently, Burns 
has shown [3] that n log n is asymptotically optimal. 
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Design of a 
LISP-Based 
Microprocessor 
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We present a design for a class of computers whose 
"instruction sets" are based on LISP. LISP, like 
traditional stored-program machine languages and 
unlike most high-level languages, conceptually stores 
programs and data in the same way and explicitly 
allows programs to be manipulated as data, and so is a 
suitable basis for a stored-program computer 
architecture. LISP differs from traditional machine 
languages in that the program/data storage is 
conceptually an unordered set of linked record 
structures of various sizes, rather than an ordered, 
indexable vector of integers or bit fields of fixed size. 
An instruction set can be designed for programs 
expressed as trees of record structures. A processor 
can interpret these program trees in a recursive fashion 
and provide automatic storage management for the 
record structures. 

We discuss a small-scale prototype VLSI 
microprocessor which has been designed and fabricated, 
containing a sufficiently complete instruction 
interpreter to execute small programs and a 
rudimentary storage allocator. 
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scale integration, integrated circuits, VLSI, list 
structure, linked lists, garbage collection, storage 
management, direct execution, high-level language 
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