
Computing Global Virtual Time in Shared-
Memory Multiprocessors

RICHARD M. FUJIMOTO and MARIA HYBINETTE
Georgia Institute of Technology

Global virtual time (GVT) is used in the Time Warp synchronization mechanism to perform
irrevocable operations such as I/O and to reclaim storage. Most existing algorithms for
computing GVT assume a message-passing programming model. Here, GVT computation is
examined in the context of a shared-memory model. We observe that computation of GVT is
much simpler in shared-memory multiprocessors because these machines normally guarantee
that no two processors will observe a set of memory operations as occurring in different orders.
Exploiting this fact, we propose an efficient, asynchronous, shared-memory GVT algorithm
and prove its correctness. This algorithm does not require message acknowledgments, special
GVT messages, or FIFO delivery of messages, and requires only a minimal number of shared
variables and data structures. The algorithm only requires one round of interprocessor
communication to compute GVT, in contrast to many message-based algorithms that require
two. An efficient implementation is described that eliminates the need for a processor to
explicitly compute a local minimum for time warp systems using a lowest-timestamp-first
scheduling policy in each processor.

In addition, we propose a new mechanism called on-the-fly fossil collection that enables
efficient storage reclamation for simulations containing large numbers, e.g., hundreds of
thousand or even millions of simulator objects. On-the-fly fossil collection can be used in time
warp systems executing on either shared-memory or message-based machines. Performance
measurements of the GVT algorithm and the on-the-fly fossil collection mechanism on a
Kendall Square Research KSR-2 machine demonstrate that these techniques enable frequent
GVT and fossil collections, e.g., every millisecond, without incurring a significant performance
penalty.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Shared Memory; B.6.1
[Logic Design]: Design Styles—memory control and access, memory used as logic; C.1.2
[Process Architectures]: Multiprocessors (MIMD); D.4.1 [Operating Systems]: Process
Management—concurrency, mutual exclusion; D.4.4 [Operating Systems]: Communications
Management—message sending; I.6.1 [Simulation and Modeling]: Simulation Theory; I.6.7
[Simulation and Modeling]: Simulation Support Systems; I.6.8 [Simulation and Model-
ing]: Types of Simulation—discrete event, parallel

General Terms: Algorithms, Performance

This work was supported by Innovative Science and Technology contracts DASG60-93-C-0126
and DASG60-95-C-0103 provided by the Ballistic Missile Defense Organization and managed
through the Space and Strategic Defense Command.
Authors’ address: College of Computing, Georgia Institute of Technology, Atlanta, GA
30332-0280
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM /98/1000–0425 $03.50

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997, Pages 425–446.

Additional Key Words and Phrases: Asynchronous algorithms, fossil collection, global virtual
time, parallel discrete event simulation

1. INTRODUCTION

Parallel computation is often suggested as an approach to reduce the
execution time of discrete-event simulation programs. However, concurrent
execution of events containing different timestamps requires a synchroni-
zation mechanism to ensure that the simulator yields the same results as
would be obtained if events were processed in timestamp order. A large
body of literature has developed concerning this problem, e.g., see Fujimoto
[1990a] and Nicol and Fujimoto [1994].

Time warp is a well-known synchronization protocol that detects out-of-
order event executions and recovers using a rollback mechanism [Jefferson
1985]. Researchers have reported success in using Time Warp to speed up
simulations of combat models [Wieland et al. 1989], queuing networks
[Fujimoto 1989], and wireless communication networks [Carothers et al.
1994], among others.

In Time Warp, a mechanism called fossil collection is used to commit
operations such as I/O that cannot be easily rolled back, and to reclaim
memory used to hold history information that is no longer needed. Fossil
collection requires the computation of a value called global virtual time or
GVT that enables one to identify those computations and history informa-
tion that are not prone to future rollbacks.

Here, we are concerned with algorithms to efficiently compute GVT and
reclaim storage so that I/O operations and memory reclamation can be
performed as rapidly as possible, while incurring minimal performance
degradation to the rest of the system. This is important in interactive
simulations where I/O operations must be committed as soon as possible,
and in large-scale, small-granularity simulations that require much of the
memory available on the multiprocessor. In both cases, GVT must be
computed relatively frequently. By “large-scale, small-granularity” we
mean simulations containing hundreds of thousands or even millions of
simulator objects, but only a few hundreds of machine instructions in each
event computation, e.g., simulations of digital logic circuits, wireless com-
munication networks, or certain combat models.

Specifically, we are concerned with the implementation of Time Warp on
shared-memory multiprocessors. The growing popularity of multiprocessor
workstations such as the Sun SparcServer and SGI Challenge has height-
ened interest in this class of machines for parallel simulation. Other
commercial shared-memory machines include the Kendall Square Research
KSR-1 and KSR-2, Sequent Symmetry, and Convex SPP machines.

The algorithms presented here assume a sequentially consistent memory
model for multiprocessor behavior. Lamport defines sequential consistency
as “the result of any execution [on the multiprocessor] is the same as if the

426 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

operations of all processors were executed in some sequential order, and
the operations of each individual processor appear in this sequence in the
order specified by its program” [Lamport 1979]. For example, if processor 1
issues memory references M1, M2, M3, and M4 (in that order), and
processor 2 similarly issues references Ma, Mb, Mc, and Md, then M1, Ma,
Mb, M2, Mc, M3, M4, Md is a sequentially consistent total ordering, but
M1, Ma, Mb, M3, Mc, M2, M4, Md is not. A key observation is that all
processors perceive the same total ordering of the memory references. The
algorithms proposed here rely on and exploit this property to yield simpler,
more efficient algorithms than from simply implementing a message-based
algorithm. Not all shared memory machines provide sequentially consistent
memory (e.g., Gharachorloo et al. [1988]). However, machines using weaker
memory models may emulate sequential consistency by inserting synchro-
nization primitives at suitable locations in the program.

From an efficiency standpoint, the algorithms described here are most
effective on multiprocessors with coherent caches. Some mechanism is
provided to ensure that duplicate copies of a single memory location remain
consistent. Existing machines typically use a hardware mechanism that
invalidates or updates duplicate copies when one processor modifies a
memory location.

In the following, we first review the Time Warp mechanism and define
global virtual time. We discuss essential differences between message-
based machines and shared-memory multiprocessors and, in this context,
discuss prior GVT algorithms based on message-passing models. We then
define the message observable class of systems that delineates the range of
Time Warp systems to which the algorithms presented here apply. We
propose a simple GVT algorithm for message observable Time Warp sys-
tems, and prove it is correct. We then present an optimized version of this
algorithm and describe its implementation in an operational Time Warp
system. We describe on-the-fly fossil collection, a mechanism that enables
fast reclamation of memory, especially for large-scale simulation programs,
and present performance measurements of the GVT algorithm and fossil
collection mechanisms in an operational Time Warp system executing on a
KSR-2 multiprocessor.

2. TIME WARP AND GLOBAL VIRTUAL TIME

A Time Warp program consists of a collection of logical processes (LPs) that
communicate by exchanging timestamped events (also called messages). To
ensure correctness, each LP must achieve the same result as if incoming
messages were processed in timestamp order. If an LP receives a “strag-
gler” message with timestamp smaller than that of others already pro-
cessed by the LP, event computations with timestamp larger than the
straggler are rolled back, and reprocessed (after the straggler) in time-
stamp order. Each message sent by a rolled back computation is cancelled
by sending an anti-message that “annihilates” the original message. A

Computing Global Virtual Time • 427

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

received anti-message will also cause a rollback if the cancelled message
has already been processed.

GVT defines a lower bound on the timestamp of any future rollback.
Here, we use the following definition of GVT:

Definition 1. (Global Virtual Time). GVT(T) is defined as the minimum
timestamp of any unprocessed message or anti-message in the system at
real time T.

It is apparent from this definition that one need only identify all unproc-
essed messages in the system at time T to compute GVT(T). Messages that
are currently being processed are regarded as unprocessed, as are mes-
sages that have been rolled back and are waiting to be reprocessed.
Jefferson defines GVT(T) as the “minimum of (1) all virtual times in all
virtual clocks at time T, and (2) of the virtual send times of all messages
that have been sent but have not yet been processed” [Jefferson 1985].
Definition 1 is equivalent to Jefferson’s definition if one ignores message
sendback (which necessitates using the send timestamp rather than the
receive timestamp) because the virtual clock of an LP is equal to the
minimum timestamp of any unprocessed message in the LP, or positive
infinity if there are none. Here, we will use the receive timestamp of the
message for computing GVT. The algorithms presented here can be easily
adapted to use other definitions of GVT, e.g., see Jefferson [1990] and Lin
and Preiss [1991].

3. MESSAGE-PASSING AND SHARED-MEMORY ARCHITECTURES

It is reasonable to ask why GVT computation should be different on a
shared-memory machine compared to a message-based machine, given that
one can always implement shared-memory operations on message-passing
computers, and vice versa. To answer this question, consider the basic
problems that must be addressed by any GVT algorithm. GVT algorithms
attempt to capture a consistent snapshot of the state of the system
[Mattern 1993]. The two problems that make this nontrivial, particularly in
distributed computing environments, are the transient message problem
and the simultaneous reporting problem [Samadi 1985].

A transient message is a message that has been sent, but not yet
received. In effect, a transient message momentarily “disappears” into the
network. Transient messages are unprocessed messages, so they must be
considered by the GVT algorithm. The underlying message-passing soft-
ware may use message acknowledgments that in principle, could be used to
solve this problem. However, such acknowledgments are often implemented
in the communication protocol stack, and are not visible to the Time Warp
system.

In a shared-memory machine, however, transient messages can be elim-
inated because message passing is normally implemented by the sender
writing the message into a memory buffer that is readable by the receiving
processor. Thus, the message never “disappears.” Later, we characterize

428 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

this property more precisely when we define message observable Time Warp
systems.

The simultaneous reporting problem occurs because not all processors
receive the message asking them to compute their local minimum (based on
their local snapshot) at the same point in real time. This can result in
scenarios such as the following (see Figure 1):

(1) Processor 1 receives the GVT request and responds with a local mini-
mum of 100.

(2) Processor 2 sends a message with timestamp 90 to processor 1. An
acknowledgment may be delivered to processor 2, confirming delivery.

(3) Processor 2 advances to a later virtual time, and then receives the GVT
request, and responds with a local minimum of 200.

The above scenario computes an incorrect GVT value of 100 because the
message with timestamp 90 has not been considered by either processor.

The essence of the simultaneous reporting problem is that the processors
do not all perceive the same global ordering of actions (message sends). In
the above example, processor 1 believes the timestamp 90 message was
created after the GVT request and concludes it need not be considered in
the GVT computation. Meanwhile, processor 2 observes that the message
send occurred before the request, but concludes the receiver is responsible
for including the message in its local minimum, since delivery was con-
firmed via the acknowledgment message prior to the GVT request. Thus,
neither processor claims responsibility for the message, causing it to “fall
between the cracks.”

This problem has a trivial solution in sequentially consistent shared-
memory multiprocessors. The key observation is that sequentially consis-
tent memory guarantees that no two processors will perceive different

Fig. 1. The simultaneous reporting problem. An incorrect GVT is computed because different
processors receive the GVT request at different points in time.

Computing Global Virtual Time • 429

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

global orderings of memory references to a shared variable. Thus, the
problem described above is easily solved by implementing the broadcast
GVT request via a memory write to a global, shared variable. As will be
seen later, it is easy to ensure that both processors 1 and 2 observe the
message send as either occurring before, or after, the write to this global
variable. This precludes scenarios such as that described above.

Designers of message-based GVT algorithms have devised a number of
clever solutions to attacking the aforementioned problems. Solutions to the
transient message problem include use of message acknowledgments [Sa-
madi 1985; Bellenot 1990], data structures to reduce the frequency of
acknowledgment messages [Lin and Lazowska 1990], control messages to
“flush out” transient messages [Lin 1994], and counters to detect the
existence of relevant transient messages [Tomlinson and Gang 1993; Mat-
tern 1993].

Similarly, a variety of methods have been proposed to solve the simulta-
neous reporting problem. Barrier synchronizations are one solution, but
they require the parallel simulator to stop processing events while GVT is
being computed. Further, the barrier may be a time-consuming operation
in large machines. A better, asynchronous solution is to use two “rounds” of
control messages. In each round each processor must first receive a
message, then send one or more messages in response. For example, in the
token-passing algorithm described in Preiss [1989], the processors are
organized as a ring. A “Start-GVT” token is first sent around the ring.
When this message reaches the processor that initiated the token, the
token is passed around the ring a second time, with the token containing
the minimum among the local minima (including transient messages) of all
the processors that the token has visited thus far in this second round. The
token contains the GVT value at the end of the second trip around the ring.
Along the same lines, Bellenot also uses two rounds of control messages,
one to start the GVT computation and the second to report local minima
and compute the global minimum, but uses a special message routing
graph (essentially, two binary trees with their leaf nodes connected to-
gether) rather than a ring [Bellenot 1990]. Mattern [1993] also proposes
sending two broadcasts of control messages to define separate cuts, and
“colors” messages to identify those that cross the second (later) cut and
must be included in the GVT computation.

In essence, these algorithms use a first round of messages to initiate the
GVT computation, then a second round to account for messages that were
sent while the first round was in progress, in order to solve the simulta-
neous reporting problem. The algorithms proposed here combine these two
rounds into a single round of interprocessor communication. Here each
processor simply receives a request for its local minimum and then re-
sponds with an appropriate value. This is possible because unlike message-
passing machines, sequentially consistent memory provides a total order-
ing of memory operations that can be exploited to solve the simultaneous
reporting problem.

430 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

The algorithms proposed here do not require message acknowledgments,
barrier synchronizations, or the extra “round” of control messages dis-
cussed above. Messages need not be delivered in the order that they were
sent. The algorithms are asynchronous in the sense that the GVT compu-
tation can be interleaved with other Time Warp operations (event process-
ing, rollback, etc.), and no blocking is required unless a processor runs out
of memory before the new GVT value has been computed. Later, we
demonstrate that the algorithm can be efficiently implemented in existing
shared-memory machines.

Although we assume throughout that the hardware platform is a shared-
memory multiprocessor, in principle, one could implement the algorithms
described here on message-based machines. Indeed, implementation of
shared-memory constructs on message-based architectures has been an
active research area in recent years (e.g., Li and Hudak [1989]). However,
the performance of such an implementation relative to other approaches
designed specifically for message-passing architectures is unclear because
of the need to implement sequentially consistent memory (or at least a total
ordering of memory operations) in software. Many distributed shared-
memory systems implement weaker memory consistency models. We do not
address this question here, but leave it for future research.

4. MESSAGE-OBSERVABLE SYSTEMS

Before describing the GVT algorithms, we first define the class of systems
where they apply. We assume throughout that “message” refers to an
unprocessed message or anti-message, unless stated otherwise. An unproc-
essed anti-message is one that has been sent to a processor, but the
processor has not yet annihilated it.

As mentioned earlier, transient messages complicate the GVT computa-
tion. Below, we define the message-observable class of Time Warp systems
where transient messages are avoided. We assume that each data structure
that can hold messages is “owned” by some processor. The processor that
owns a data structure is responsible for the messages that it contains when
it computes its local minimum in the GVT computation. We say a message
is observable by a processor if the message is stored in a data structure
owned by that processor. All of the algorithms presented here assume the
following message-observability property.

Definition 2. (Message-Observable Time Warp Systems). A Time Warp
system is said to be message observable if at any instant in time, each
unprocessed message in the system can be observed by at least one
processor, and the observability of a message by a processor does not
change without some explicit action by some processor in the system.

Message observability is useful because it eliminates the transient message
problem.

A Time Warp system executing on a shared-memory multiprocessor will
usually be message observable because Time Warp operations involve

Computing Global Virtual Time • 431

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

modifying messages and moving them between data structures. For in-
stance, in the GTW Time Warp system described in Das et al. [1994], each
processor contains message queues to hold incoming messages sent from
other processors, and a data structure to hold the unprocessed messages for
that processor (see Figure 2). Message passing is implemented by directly
enqueuing the message in a message queue owned by the receiver. Mes-
sage-based systems using blocking message sends where the sending
processor blocks until the destination has received the message are also
message observable. Message-based Time Warp systems using nonblocking
message sends where the Time Warp executive cannot directly access
messages in transit to another processor are often not message observable.
In principle, message acknowledgments used to provide reliable delivery
could be used to make the system message observable, however, such
acknowledgment messages are often implemented in the underlying com-
munication protocol stack, and are not visible to the Time Warp program
executing in the application layer. Thus, systems such as these are beyond
the scope of the algorithms proposed here without additional mechanisms
to make the system message observable (e.g., application-level acknowledg-
ments).

We assume the observability of a message can only be changed by the
following observability operations.

Definition 3. (Observability Operations). Below, i indicates the proces-
sor performing the operation and Si denotes the set of unprocessed mes-
sages that are observable by processor i.

(1) Complete processing message M: Si 5 Si 2 M.
(2) Roll back an event M: Si 5 Si ø M.
(3) Annihilate a message/anti-message pair M1/M2: Si 5 (Si 2 M1) 2 M2.
(4) Send a message or anti-message M to processor j: Sj 5 Sj ø M where j

is the processor receiving the message.

Fig. 2. Queues in GTW System. MsgQ and CanQ hold incoming messages and anti-messages,
respectively, and EvQ holds unprocessed messages.

432 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

(5) Fossil-collect message M: Si 5 Si 2 M.

It is noteworthy that a processor can only affect the set of observable
messages in another processor through the send operation.

5. A SIMPLE GVT ALGORITHM

We first describe a very simple GVT algorithm to capture the central ideas
used in the optimized algorithm that is presented later. Because the
optimized algorithm yields better performance and affords a simpler imple-
mentation, the initial algorithm described next is only included to facilitate
the presentation.

Let TS(M) denote the timestamp of message M, and MinTS(S) denote
the minimum timestamp of any message in the set S. The following
algorithm computes GVT(TGVT) by taking an approximate snapshot of the
system at time TGVT:

ALGORITHM 1. (GVT Algorithm)

(1) When a processor wishes to compute GVT, it sets a global flag
variable called GVTFlag. Let TGVT be the instant in real time that
GVTFlag is set.

(2) Prior to performing any observability operation, the processor first
checks GVTFlag. If GVTFlag is set, the processor reports the minimum
timestamp of its observable messages (i.e., processor i reports MinT-
S(Si)) to a central controller before performing the observability
operation. We require that checking GVTFlag and performing the
observability operation are done as one atomic action, and that
GVTFlag may not be set during any such atomic operation. Any
number of processors may concurrently perform observability opera-
tions, but none may be performing an observability operation while
GVTFlag is being set. We call this requirement the mutual exclusion
assumption.

(3) When the central controller has received all of the local minima, it
computes the global minimum G, and reports this value to the other
processors as the new GVT.

The mutual exclusion assumption forces each GVTFlag check/observability
operation to occur in its entirety either before or after GVTFlag is set. This
is necessary to avoid a race condition, as will be discussed later. Later, we
also discuss how the algorithm can be optimized to eliminate this assump-
tion.

The intuition behind this algorithm is as follows. Sequential consistency
and the mutual exclusion assumption force each observability operation to
occur either before or after GVTFlag is set. The algorithm simply captures a
snapshot of the set of observable messages in the system when GVTFlag is
set, and GVT is computed based on this snapshot. Actually, this snapshot
may include some messages generated after GVTFlag is set, but as dis-
cussed in the proof that follows, such messages do not affect the GVT value

Computing Global Virtual Time • 433

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

that is computed. The following theorem shows that Algorithm 1 correctly
computes GVT.

THEOREM 1. Algorithm 1 computes G 5 GVT (TGVT) in a message
observable Time Warp system.

PROOF. Sequential consistency and the mutual exclusion assumption
ensure that every observability operation occurs in its entirety either
before or after GVTFlag is set. Let Ti (Ti $ TGVT) denote the (real) time
that processor i computes its local minimum. Because processor i computes
its local minimum prior to making any changes to Si, the only operations
occurring between TGVT and Ti that can affect Si are message sends by
other processors that add new messages to Si. Therefore, Si(TGVT) #
Si(Ti) for all i, or

ø
i

Si~TGVT! # ø
i

Si~Ti! .

However, the Time Warp mechanism guarantees the timestamp of any
message sent after TGVT must have a timestamp larger than GVT(TGVT),
so

GVT~TGVT! 5 MinTSF ø
i

Si~TGVT!G 5 MinTSF ø
i

Si~Ti!G 5 G . e

6. A FASTER ALGORITHM

Algorithm 1 suffers from several drawbacks. The most obvious is the
performance penalty associated with guaranteeing the mutual exclusion
assumption. A second problem is GVTFlag must be checked relatively often.
This may incur a significant overhead for small-granularity simulations.
Third, as will be seen later, it is advantageous to allow each processor to
compute its local minimum just prior to processing an event, rather than
prior to any observability operation. Algorithm 1 does not allow this.

The following observations offer remedies to the second and third prob-
lems.

—If a processor performs any observability operation except message
sends, the processor may perform that operation without checking GVT-
Flag or reporting its local minimum. This is because all observability
operations other than sends only affect the local state of the processor, so
no other processor can determine if that observability operation had been
performed prior to or after GVTFlag was set. The processor can, in effect,
“trick” the other processors by pretending the operation occurred before
GVTFlag was set without compromising the correctness of the GVT value
that is computed.

—If a processor performs a message send after GVTFlag has been set, the
processor need not immediately report its local minimum if it later

434 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

includes the timestamp of the message it just sent in its own local
minimum calculation.

The first observation enables one to eliminate GVTFlag checks prior to all
observability operations except message sends. Both observations together
enable modification of the GVT algorithm so that a processor can report its
local minimum at any time that is convenient to it, i.e., not just prior to
some observability operation.

Now consider the mutual exclusion assumption that prevents a processor
from setting GVTFlag while another processor reads the flag and performs
an observability operation, specifically, a message send. As depicted by the
scenario in Figure 3, without this assumption, some processor P1 may set
GVTFlag just after processor P2 checks the flag, but before P2 enqueues a
new message at the receiving processor. In this case, the message being
sent may not be accounted for by either the sending or receiving processor,
causing the message to “fall between the cracks,” possibly leading to an
erroneous GVT value.

The mutual exclusion assumption can be eliminated if GVTFlag is
checked after each send operation. To see this, consider a message send by
processor P2 occurring simultaneously with some other processor P1 set-
ting GVTFlag (see Figure 4). Assuming sequentially consistent memory,
there are two possible situations:

(1) P1 sets GVTFlag before P2 reads GVTFlag (case 1 in Figure 4), or
(2) P1 sets GVTFlag after P2 reads GVTFlag (case 2 in Figure 4).

In the first situation, P2 will observe that GVTFlag is set, and can therefore
include the timestamp of the message it just sent in its local minimum

Fig. 3. Scenario where violating the mutual exclusion assumption results in an incorrect
GVT. Just after processor P2 sees GVTFlag is not set, processor P1 sets the flag. P3, the
receiver of P2’s message, sees GVTFlag is set, and reports its local minimum without
considering the new, incoming message. Processor P2 completes the send and then reports its
local minimum, not considering the message it just sent, resulting in an incorrect GVT.
Scenarios such as this are avoided if (1) reading GVTFlag and sending the message is an
atomic action, and (2) this atomic action is not allowed to occur concurrently with another
processor setting GVTFlag.

Computing Global Virtual Time • 435

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

computation. In the second situation, it must be the case that the message
was enqueued at the receiver prior to GVTFlag being set, since the GVTFlag
check occurs after the message send. Therefore, the receiver will account
for the message. In either case, the message is accounted for.

The above observations suggest the following, optimized version of the
original GVT algorithm.

ALGORITHM 2. (Optimized GVT Algorithm)

(1) A processor wishing to compute GVT sets GVTFlag.
(2) Each processor maintains a local variable called SendMin that holds the

minimum timestamp of any message or anti-message sent after GVTFlag
was set. This variable is updated if GVTFlag is found to be set after each
message or anti-message send.

(3) Each processor periodically checks GVTFlag. If processor i observes that
GVTFlag is set, the processor reports min (SendMin, MinTS(Si)) to a
central controller.

(4) The controller computes the global minimum and reports this value to
each processor as the new GVT, and resets GVTFlag.

The following theorem shows that algorithm 2 computes a correct GVT
value.

THEOREM 2. Algorithm 2 computes a value G such that GVT(TGVT) #
G # GVT(Tlast) for any message observable Time Warp system where TGVT
is the instant in real time that the GVT computation is initiated, i.e.,
GVTFlag is set, and Tlast is the real time that the last processor to compute
its local minimum returns this value to the central controller.

The proof of this theorem is based largely on the following lemma:

LEMMA 1. Let G be the value computed by algorithm 2, and Ti be the real
time that processor i computes its local minimum. Then any message or
anti-message sent by processor i after Ti must have a timestamp greater
than or equal to G.

Fig. 4. No messages are missed if the mutual exclusion assumption is relaxed, provided
GVTFlag is checked after each message send.

436 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

The proof of this lemma and the preceding theorem are straightforward,
but somewhat tedious, so they are described as an appendix.

7. IMPLEMENTATION

It is instructive to examine an implementation of the proposed GVT
algorithm. The optimized algorithm was implemented in version 2.0 of the
Georgia Tech Time Warp (GTW) executive [Das et al. 1994]. As shown in
Figure 2, there are three central data structures associated with each
processor: the MsgQ queue to hold incoming positive messages, the CanQ to
hold incoming anti-messages, and the EvQ containing the unprocessed
events for LPs mapped to this processor. The central event processing loop
repeatedly:

(1) removes received messages from MsgQ and files them into the data
structure associated with each LP (this may cause rollbacks, and
generation of anti-messages);

(2) removes received anti-messages from CanQ and performs annihilations
(which may also cause rollbacks);

(3) removes the smallest timestamped unprocessed event from the EvQ and
processes it.

The order of the first two steps could be reversed without affecting the
correctness of the implementation of the GVT algorithm.

All interprocessor communications for the GVT algorithm is realized
through the GVTFlag variable, an array (PEMin) to hold the local minima
computed by the individual processors, and a variable (GVT) to hold the
new GVT value. The implementation is shown in Figure 5. GVTFlag is set
by writing the number of processors participating in the computation into
this variable, and is decremented by each processor after it has written its
local minimum into the global array. A non-zero value of GVTFlag indicates
that the flag is set. The last processor to compute its local minimum (the
processor that decrements GVTFlag to zero) computes the global minimum,
and writes it into the global GVT variable. Decrementing GVTFlag to zero
has the effect of resetting the flag. As required by Algorithm 2, GVTFlag is
checked after each message or anti-message send to a different processor
(this check is not required for local messages that remain within the same
processor) and SendMin is updated if it is set (greater than zero). Each
processor reports its local minimum exactly once per GVT computation, i.e.,
once the processor has reported its local minimum, it ignores the fact that
GVTFlag is set until it receives the final GVT value.

In this implementation, no explicit computation is required to determine
the smallest timestamp of any unprocessed message or anti-message in the
processor, i.e., MinTS(Si). This is because the processor first checks
GVTFlag at the beginning of the event processing loop, and then empties the
MsgQ and CanQ data structures as part of the “normal” event processing
procedure. Any anti-messages that were in CanQ when GVTFlag was
checked have now been processed, so they can be ignored. Any messages

Computing Global Virtual Time • 437

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

that were in MsgQ when the flag was checked are now stored in EvQ, so at
this point the processor need only locate the smallest timestamped message
stored in EvQ to determine MinTS(Si). However, if the scheduling policy is
to process the smallest timestamped event next (this is common in Time
Warp systems), then the normal event processing procedure will now
remove the smallest timestamped event from EvQ so that it can process
this event next. Thus, MinTS(Si) can be obtained by simply reading the
timestamp of the next event that is selected for processing, and report the
smaller of this timestamp and SendMin as its local minimum.

Distribution of the new GVT value is not shown in Figure 5. Each
processor recognizes the new GVT value by noticing that this value has
changed. Some additional code is also required to ensure that successive
GVT computations do not interfere with each other. Specifically, the
updates of the SendMin variable should be disabled after the processor has
reported its local minimum and enabled again once a new GVT computa-
tion is initiated.

Global Variables:
int GVTFlag;
int PEMin[NPE]; /* local minimum of each processors */
int GVT; /* computed GVT */

Local Variables:
int SendMin;
int LocalGVTFlag; /* local copy of GVTFlag */

Procedure to initiate a GVT computation (critical section):
/* prevent multiple PEs from setting flag */
if (GVTFlag 5 0) then GVTFlag :5 NPE;

Procedure to Send a Message or Anti-message M:
Enqueue message M in MsgQ or CanQ of receiver
if (GVTFlag . 0) and (haven’t already computed local min) then

SendMin :5 min (SendMin, TS(M));
end-if

Main Event Processing Loop:
while (EvQ is not empty) do

LocalGVTFlag :5 GVTFlag;
move messages from MsgQ to EvQ and process any rollbacks
remove anti-messages from CanQ, process annihilations and rollbacks
remove smallest timestamped message M from EvQ
if ((LocalGVTFlag . 0) and (haven’t already computed local min)) then

/* the following is a critical section */
PEMin[PE] :5 min (SendMin, TS(M));
GVTFlag :5 GVTFlag 2 1;
if (GVTFlag 5 0) GVT 5 min (PEMin[1] . . . PEMin[NPE])

end-if
process message M

end-while
Fig. 5. Implementation of GVT algorithm in GWT. PE indicates the processor executing the
GVT code and NPE is the number of processors in the system. Code to read the final GVT
value, and other code to prevent successive GVT computations from interfering with each
other are not shown to simplify the presentation.

438 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

One drawback of the GVT algorithm proposed here is each processor
must respond with its local minimum before the GVT is computed. This is
also true of most other existing GVT algorithms that have been proposed. If
event computations are long, this may delay the GVT computation, and
may postpone commitment of I/O operations longer than is desirable. This
problem can be solved by using an interrupt mechanism to compute the
local minimum in each processor. Independently, Xiao et al. [1995] report a
shared-memory algorithm for computing GVT where a processor interro-
gates shared variables maintained by each processor, enabling any proces-
sor to compute GVT without waiting for another processor to respond. This
entails somewhat higher overheads than the algorithm described here,
however [Xiao et al. 1995].

8. ON-THE-FLY FOSSIL COLLECTION

We now turn our attention from the computation of GVT to a related
question, the fossil collection procedure for reclaiming memory. Most
existing Time Warp systems perform fossil collection in a distributed
fashion by having each processor scan through the list of LPs mapped to
that processor, and then fossil collecting memory (e.g., message buffers)
with timestamp less than GVT. This approach to fossil collection is prob-
lematic for large-scale simulations containing hundreds of thousands or
millions of simulator objects because an excessive amount of time is
required to examine all of the objects (LPs) mapped to the processor. This is
particularly wasteful if most objects do not have any state that can be fossil
collected. For such large-scale simulations, the time to perform fossil
collection could easily dominate the time required to compute GVT.

To address this problem, we propose a technique called on-the-fly fossil
collection that eliminates the need to scan through the list of objects
mapped to the processor. Rather than fossil collecting all of the memory on
each processor after each GVT computation, fossil collection is performed
incrementally, throughout the simulation, on an “as needed” basis. Specif-
ically:

(1) When a process completes processing an event, the buffer for that event
(as well as the associated state vector and anti-messages) are immedi-
ately placed into the free memory pool. The event is also threaded into
a processed event list for the LP to enable rollback.

(2) When memory is allocated from the free list, the timestamp of the
memory to be allocated is checked to ensure that it is less than GVT.
The memory is not allocated if its timestamp is larger than GVT.

A simple approach to implementing this scheme is to implement the free
list in each processor as a linear list. Processed events are added to the end
of the free list, and allocations are performed by removing elements from
the front of the list. If events are, for the most part, processed in timestamp
order, this approach will tend to cause events in the free list to be sorted by
timestamp. Memory that is guaranteed to be available for other use (e.g.,

Computing Global Virtual Time • 439

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

storage reclaimed after message cancellation) should be assigned very
small timestamps and added to the front of the free list.

If the memory allocated from the free list cannot be used because it has a
timestamp larger than GVT, the processor may either abort the memory
request (and retry the request later, e.g., after GVT has advanced), or it
may search through the free list to locate another buffer with a sufficiently
small timestamp. A data structure to facilitate this search is depicted in
Figure 6. As shown in this figure, the sequence of timestamps for succes-
sive events in the free list form a saw-toothed curve. The event at each
valley of this curve contains a pointer to the next valley event. The search
procedure need only examine the valley events because events between
successive valleys will contain timestamps larger than that of either the
preceding or following valley event. If no valley event contains a suffi-
ciently small timestamp, then no storage is available. A similar data
structure was proposed by Lin for the purposes of computing GVT [Lin and
Lazowska 1990].

9. PERFORMANCE

Performance of the GVT computation can be characterized by two metrics:
(1) the GVT latency, i.e., the amount of time that elapses from the initial
GVT request until the GVT is computed, and (2) the amount of computation
(overhead) required to compute GVT. The worst-case GVT latency for the
implementation of the algorithm described in Figure 5 is obtained by
observing that the latency is maximized if the GVTFlag is set just after
some processor checks the flag. In this case, the latency will be the sum of
(1) the time to process one event; (2) two iterations through the scheduling
loop (to process incoming messages, select the next event to be processed,
etc.); and (3) the time to compute a global minimum. The second component

Fig. 6. Data structure to locate free events. The “next free event” pointers link together
events in the free list. The “next valley event” pointers are used to speed up the search for
events with timestamp less than GVT.

440 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

of this overhead could be reduced further by more frequent checks of the
GVTFlag. The remainder of this section addresses the second question, the
amount of overhead consumed by the GVT algorithm.

As can be seen from Figure 5, the overhead for computing GVT is small.
When GVT is not being computed, GVTFlag must be checked once at the
beginning of the event processing loop, and after each message or anti-
message is sent. On shared-memory multiprocessors containing caches and
hardware cache coherence (e.g., by invalidating copies in other caches when
one processor modifies data stored in the cache), this overhead is negligible
because the flag is not being modified, and will normally reside in each
processor’s local cache, assuming the cache is sufficiently large. When
compared to the amount of time required to perform the other operations in
the event processing loop, the time for checking GVTFlag is negligible.

Once GVTFlag has been set, each processor must update GVTFlag (which
requires a lock) and update SendMin after each message/anti-message
send, compute the local minimum (minimum of SendMin and the time-
stamp of the next event to be processed), write the local minimum into the
global array, and read the new GVT value. One processor must also
perform the global minimum computation, although this could be parallel-
ized. Again, these overheads are very small relative to the other operations
performed in the event processing cycle.

Measurements of the GTW kernel were performed to quantitatively
assess the overhead for computing GVT in an operational system. The
benchmark program used for this study is the PHOLD synthetic workload
model described in Fujimoto [1990b]. Upon processing a message, the LP
generates a new message with timestamp increment selected from an
exponential distribution. The message’s destination is selected from a
uniform distribution.

Program execution time as the time between successive invocations of the
GVT computation is varied is depicted in Figure 7 for 4 and 16 processors.
In each case, the execution time using synchronous GVT computations (i.e.,
barriers), the optimized asynchronous algorithm using a conventional fossil
collection procedure, and the optimized asynchronous algorithm using
on-the-fly fossil collection are reported. It can be seen that the asynchro-
nous algorithm yields much better performance when the frequency of GVT
computation becomes high, but performance begins to decline when GVT is
computed very often. This degradation is due to fossil collection. We
observe that the asynchronous algorithm with on-the-fly fossil collection
yields negligible performance degradation even if GVT is computed as
frequently as every millisecond. These results are conservative in that
large-scale simulations containing many more LPs would yield larger
performance improvements for simulators using on-the-fly fossil collection.
This data suggests that the overhead of performing GVT computation and
fossil collection is negligible for this implementation executing on the KSR
machine. Although quantitative results will vary from one machine to
another, we believe these results are representative of commercial multi-

Computing Global Virtual Time • 441

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

processor machines because of the simple nature of the algorithms that are
proposed.

10. CONCLUSIONS

The central conclusion of this work is that GVT computation is much more
straight-forward on shared-memory multiprocessors than message based

Fig. 7. The upper graph shows execution time of Phold using 4 processors, a message
population of 256, and 64 logical processes. The lower graph shows execution time using 16
processors, message population of 1024, and 256 logical processes.

442 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

machines. A key observation is that shared-memory machines typically
provide sequentially consistent memory that guarantees different proces-
sors will not observe different orderings of memory references. This prop-
erty can be exploited to yield very simple solutions to the “simultaneous
reporting problem” that require one round of interprocessor communica-
tion, in contrast to many existing message-based algorithms that require
two. These observations suggest that a simpler, more efficient, GVT compu-
tation can be realized by exploiting properties of the shared-memory
machine rather than simply implementing algorithms designed for mes-
sage-passing architectures.

Exploiting sequentially consistent shared memory, a very efficient GVT
algorithm is proposed. The algorithm entails little computational overhead.
It is asynchronous, with execution interleaved with other Time Warp
activities, and does not require message acknowledgments or special GVT
messages. The applications that would benefit most from this algorithm are
small granularity interactive simulations where GVT must be performed
relatively frequently in order to rapidly commit I/O operations, and simu-
lations that must reclaim memory often to limit overall consumption. We
believe the optimized GVT algorithm presented here helps to satisfy the
needs of these applications when shared-memory multiprocessors are used.

On-the-fly fossil collection provides a means to efficiently reclaim mem-
ory in Time Warp systems for both shared-memory and message-based
platforms. The central advantage of this mechanism is that it avoids
excessive overheads that arise in conventional fossil collection methods for
large-scale simulations containing hundreds of thousands (or more) of
simulator objects.

APPENDIX

This appendix presents a proof that Algorithm 2 correctly computes the
GVT.

LEMMA 1. Let G be the value computed by Algorithm 2, and Ti be the
real time that processor i computes its local minimum. Then any message or
anti-message sent by processor i after Ti must have a timestamp greater
than or equal to G.

PROOF. Proof by contradiction. Assume there is one or more messages or
anti-messages with timestamp less than G that were sent by some proces-
sor after it computed its local minimum. Among all such messages, let M be
the one containing the smallest timestamp. There are two cases to consider:
M could be a positive message, or it could be an anti-message.

If M is a positive message, then it must have been sent while processing
another (unprocessed) message M9, with TS(M9) , TS(M) , G. There are
three possibilities:

(1) M9 may have been an unprocessed message in processor i at Ti. If this
were the case, M9 would have been included in i ’s local minimum

Computing Global Virtual Time • 443

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

computation, implying TS(M9) $ G, a direct contradiction of our
earlier statement that TS(M9) , TS(M) , G.

(2) M9 may have been sent from processor j to i after Ti. If processor j sent
M9 before Tj, then the timestamp of M9 would have been included in
the computation of G via j ’s SendMin variable, but we know this is not
the case because TS(M9) , G. Therefore, processor j must have sent
M9 after Tj. This implies that j sent a message (M9) after computing its
local minimum with timestamp less than TS(M). But this contradicts
our assumption that M is the smallest timestamped message sent after
a processor computed its local minimum.

(3) M9 may have become an unprocessed message via a rollback in processor
i. Because rollbacks only occur when a message is received in an LP’s
past, some message or anti-message M0 must have previously been
received with TS(M0) , TS(M9). M0 must have either resided in
processor i (as an unprocessed message) at time Ti, or it must have
been sent to i after Ti. The first is not possible because M0 would have
been included in the global minimum computation, but we know
TS(M0) , TS(M9) # TS(M) , G. The second is not possible because
it would contradict our assumption that M is the smallest timestamped
message or anti-message sent after a processor computed its local
minimum.

If M is an anti-message, it must have been sent as a result of processing a
rollback caused by another message or anti-message M9, with TS(M9) ,
TS(M) , G. Again, if M9 resided in processor i prior at Ti, it would have
been included in computing G, which we know is not the case because
TS(M9) , G. If M9 was received by processor i after Ti, this would
contradict our assumption that M is the smallest timestamped message or
anti-message sent by a processor after it computed its local minimum.

The above arguments show that no such message M exists, proving the
lemma. e

The following theorem shows that Algorithm 2 computes a correct GVT
value.

THEOREM 2. Algorithm 2 computes a value G such that GVT(TGVT) #
G # GVT(TLast) for any message-observable Time Warp system, where
TGVT is the instant in real time, that the GVT computation is initiated, i.e.,
GVTFlag is set, and TLast is the real time that the last processor to compute
its local minimum returns this value to the central controller.

PROOF. We first show that GVT(TGVT) # G. It must be the case the
minimum timestamp of any message in the system at time TGVT is
GVT(TGVT), and Time Warp guarantees that no new messages can be
generated with timestamp lower than GVT. Since the entire GVT
computation takes place after TGVT, it cannot report a value smaller than
GVT(TGVT).

We prove G # GVT(TLast) by contradiction. Suppose this inequality is
not true. This implies there is at least one unprocessed message or

444 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

anti-message M in the system at time TLast such that TS(M) , G.
According to Lemma 1, no such message or anti-message can be produced
by any processor after it reports its local minimum. If such a message were
produced by a processor prior to reporting its local minimum, the time-
stamp of the message would have been included in the processor’s local
minimum computation, contradicting the fact that TS(M) , G. e

ACKNOWLEDGMENTS

Technical comments by John Cleary, Fabian Gomes, Larry Mellon, Brian
Unger, Darrin West, Zhonge Xiao, and the anomymous referees concerning
the GVT algorithm and presentation of this work are gratefully acknowl-
edged.

REFERENCES

BELLENOT, S. 1990. Global virtual time algorithms. In Proceedings of the SCS Multiconfer-
ence on Distributed Simulation, Vol. 22 (Jan. 1990), 122–127.

CAROTHERS, C. D., FUJIMOTO, R. M., LIN, Y.-B., AND ENGLAND, P. 1994. Distributed simula-
tion of large-scale pcs networks. In Proceedings of the 1994 MASCOTS Conference (Jan.
1994), ACM, New York, 124.

DAS, S., FUJIMOTO, R., PANESAR, K., ALLISON, D., AND HYBINETTE, M. 1994. GTW: A Time
Warp system for shared memory multiprocessors. In 1994 Winter Simulation Conference
Proceedings (Dec. 1994), 1332–1339.

FUJIMOTO, R. M. 1989. Time Warp on a shared memory multiprocessor. Trans. Soc. Comput.
Simul. 6, 3 (July), 211–239.

FUJIMOTO, R. M. 1990a. Parallel discrete event simulation. Commun. ACM 33, 10 (Oct.),
30–53.

FUJIMOTO, R. M. 1990b. Performance of Time Warp under synthetic workloads. In Proceed-
ings of the SCS Multiconference on Distributed Simulation, Vol. 22 (Jan. 1990), 23–28.

GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIBBONS, P., GUPTA, A., AND HENNESSY, J. 1988.
Memory consistency and event ordering in scalable shared-memory multiprocessors. In
Proceedings of the 17th Annual Symposium on Computer Architecture, 15–26.

JEFFERSON, D. R. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (July) 404–425.
JEFFERSON, D. R. 1990. Virtual time II: Storage management in distributed simulation. In

Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing
(Aug. 1990), ACM, New York, NY, 75–89.

LAMPORT, L. 1979. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Comput. C-28, 9 (Sept.), 690–691.

LI, K. AND HUDAK, P. 1989. Memory coherence in shared virtual memory systems. ACM
Trans. Comput. Syst. 7, 4 (Nov.), 321–359.

LIN, Y.-B. 1994. Determining the global progress of parallel simulation with fifo communi-
cation property. Inf. Process. Lett. 50, 13–17.

LIN, Y.-B. AND LAZOWSKA, E. D. 1990. Determining the global virtual time in a distributed
simulation. In Proceedings of the 1990 International Conference on Parallel Processing, Vol.
3 (Aug. 1990), 201–209.

LIN, Y.-B. AND PREISS, B. 1991. Optimal memory management for time warp parallel
simulation. ACM Trans. Model. Comput. Simul. 1, 4 (Oct.).

MATTERN, F. 1993. Efficient distributed snapshots and global virtual time algorithms for
non-fifo systems. J. Parallel Distrib. Comput. 18, 4 (Aug.), 423–434.

NICOL, D. M. AND FUJIMOTO, R. M. 1994. Parallel simulation today. Ann. Oper. Res. 53,
249–286.

PREISS, B. R. 1989. The Yaddes distributed discrete event simulation specification language
and execution environments. In Proceedings of the SCS Multiconference on Distributed
Simulation, Vol. 21 (March 1989), 139–144.

Computing Global Virtual Time • 445

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

SAMADI, B. 1985. Distributed simulation, algorithms and performance analysis. Ph.D. dis-
sertation, Univ. California, Los Angeles.

TOMLINSON, A. I. AND GANG, V. K. 1993. An algorithm for minimally latent global virtual
time. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation, Vol. 23
(May 1993), 35–42.

WIELAND, F., HAWLEY, L., FEINBERG, A., DILORENTO, M., BLUME, L., REIHER, P., BECKMAN, B.,
HONTALAS, P., BELLENOT, S. AND JEFFERSON, D. R. 1989. Distributed combat simulation
and Time Warp: The model and its performance. In Proceedings of the SCS Multiconference
on Distributed Simulation, Vol. 21 (March 1989), 14–20.

XIAO, Z., CLEARY, J., GOMES, F. AND UNGER, B. 1995. A fast asynchronous continuous gvt
algorithm for shared memory multiprocessor architectures. In Proceedings of the 9th
Workshop on Parallel and Distributed Simulation (June 1995).

Received April 1995; revised March 1997; accepted March 1997

446 • R. M. Fujimoto and M. Hybinette

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, October 1997.

