
IEEE TRANSACTIONS ON COMPUTERS 1

A Genetic Algorithm for Optimistic Digital Logic
Simulation

Sina Meraji, Student Member, IEEE, and Carl Tropper, Member, IEEE

Abstract—In this paper, we describe a distributed dynamic load
balancing algorithm for parallel optimistic gate level simulation.
Our optimistic simulator is based on Time Warp. The load
balancing algorithm makes decisions based on the processing
and communication loads at each processor. At the core of the
algorithm is a genetic algorithm which is used to determine the
values of the tuning parameters associated with the algorithm.
It also determines the size of the time window of the simulator.
The time window is a mechanism used to control the level of
optimism of an optimistic simulator in order to avoid excessive
rollbacks. An important feature of the genetic algorithm is that it
is on-line, i.e. it is executed during the course of the simulation.
The genetic algorithm is executed in one processor while the
other processors execute the simulation and the load balancing
algorithm. Experimental results have indicated a significant
decrease in the execution time of the simulation- up to a 70%
decrease in the simulation time of an optimistic simulator.

Index Terms—Parallel Simulation, Dynamic Load Balancing,
Genetic Algorithm, Logic Verification, Performance Evaluation.

I. INTRODUCTION
An important part of the design process of digital circuits

is gate level simulation, in which the correctness of the circuit
is verified by simulation. Timing analysis is also performed
to make sure that the circuit meets its timing constraints. In
addition, the functionality of the circuit at the target frequency
is also checked.
Moreover, discrete event simulation is a fundamental tech-

nique used for gate level simulation [12]. In a discrete event
simulation the circuit is modeled as a graph, gates and flip-
flops are represented by nodes and the wires connecting the
gates and flip-flops are represented by edges of the graph. In a
discrete event simulation, a change in the simulation (virtual)
time occurs at discrete points in simulation time as a result
of the execution of events. Changes on the wires between the
gates are modeled by events. Associated with each event is
the simulation time at which the event occurs. Each gate has
a delay, which is the latency from changes in the gate’s inputs
to the corresponding changes in its outputs. In a sequential gate
level simulation, events are processed in increasing time stamp
order. The processing of an input event at gate g may result
in a change in g’s output, resulting in a new (output) event.
The new event advances the simulation time from NOW to
NOW +Dg where Dg is g’s delay.
Current integrated circuits have many millions of gates. As

a result, it may take hours, days or even a week to execute

S. Meraji and Carl Tropper are with the School of Computer Sci-
ence, McGill University, Montreal, QC., Canada, Their e-mails are:
smeraj@cs.mcgill.ca and carl@cs.mcgill.ca

the simulation [8]. On the other hand, parallel (or distributed)
discrete event simulation [5], [25] runs on a collection of
computers, making it possible to speed up the simulation. In
a parallel gate level simulation, gates are modeled by logical
processes (LPs) (Groups of gates may also be modeled by
an LP). The LPs are allocated to different processors by
utilizing a partitioning algorithm. Communication between
LPs on different processors is accomplished by placing the
events in messages which are sent between the processors. A
number of simulators for parallel digital gate level simulation
have been developed [3], [18], [22], [40], [19], [20].
Given that messages are processed concurrently at different

LPs, it is possible to process events out of order, resulting in
causality errors. In order to avoid these errors it is necessary
to synchronize the LPs. There are two main approaches to
accomplish this-conservative synchronization [5] and opti-
mistic synchronization [14]. In the conservative approach, LPs
are blocked until it is certain that no event in the system
will be processed out of order [12]. The main drawback of
conservative approaches is that they do not benefit from all
of the parallelism which exists in the system. At the other
extreme, optimistic approaches allow causality violations to
occur but provide mechanisms to roll back the system to a
safe state. In this paper, we utilize the Time Warp optimistic
algorithm [14], [12].
In any parallel program it is advantageous to balance the

computational load among the processors and to minimize
the communication delay between them. Various static load
balancing algorithms have been developed to accomplish this,
including [1], [2], [37], [42]. In static load balancing the
information with which load balancing decisions are made is
known in advance while in dynamic approaches load balancing
decisions are made according to the current state of the system.
Large load imbalances were observed throughout the course of
our experiments-hence the need for a load balancing algorithm
[22].
Centralized algorithms for dynamic load balancing of paral-

lel gate level simulations were employed in [4], [33], [23]. In
these algorithms, the processors forward load information to a
central processor which executes the algorithm and informs
other processors how much load is to be transferred. As
current circuits have many millions of gates, forwarding this
load information to a central processor is very costly; it can
easily create a bottleneck in the algorithm. In this paper, we
propose a distributed load balancing algorithm in which each
processor runs its own load balancing algorithm. We make use
of an online genetic algorithm [13] to dynamically tune the
parameters of the load balancing algorithm during the course

IEEE TRANSACTIONS ON COMPUTERS 2

of the simulation.
The LPs in Time Warp can advance in simulation time at

widely different rates. As a result the simulation can suffer
from rollback explosions [10] and can use an excessive amount
of memory. In order to avoid these problems a time window
(an interval in simulation time) can be utilized to control the
optimism of Time Warp [35]. Only events which have a time
stamp within this interval can be processed by the LPs. When
all of the LPs have executed the events within the time window,
a new time window is created and events with a time-stamp
within the new window can be executed. While it is possible
to utilize a fixed window size [14], it is better to compute
the window size dynamically, depending upon the state of the
simulation [36]. Our genetic algorithm tunes the parameters of
the load balancing algorithm dynamically and determines the
size of the time window. Genetic algorithms are widely used
to generate solutions for optimization and search problems.
They use techniques inspired by natural evaluation such as
inheritance, mutation, selection, and crossover. A genetic
algorithm starts with a random population of candidates and
tries to find an optimal solution by combining past and recent
results. We design an online version of the algorithm.
The rest of this paper is organized as follows. Section

2 briefly summarizes previous work on parallel gate level
simulation, dynamic load balancing algorithms for parallel
gate level simulation and determining the window size. In
section 3, we describe a distributed dynamic load balancing
algorithm. Sections 4 and 5 discuss our genetic algorithm.
Section 6 contains our experimental results and section 7
contains our conclusions and thoughts for future work.

II. PREVIOUS WORK

A. Parallel Gate Level Simulation
The Verilog and VHDL languages are the two main Hard-

ware Description Languages which have been used in com-
puter aided design systems [9], [29]. One of the first attempts
at parallel VHDL simulation is [17]. In this article, the au-
thors describe the implementation of an object-oriented Time
Warp simulator for VHDL in an actor-based environment.
Other parallel VHDL simulators for gate level simulation
are introduced in [39]. In [3] authors introduced Clustered
Time Warp(CTW) in which LPs are grouped into a cluster
and Time Warp is employed between the clusters. Based on
CTW, the Distributed Verilog Simulation (DVS) [18] was the
first parallel Time Warp Verilog simulator. In XTW [40], two
optimization techniques were employed (RB-messages and
XEQ) for parallel Time Warp gate level simulation. XTW was
shown to outperform both Time Warp and CTW. The problem
with XTW is that it can not parse Verilog files. In [22], a new
parallel Time Warp simulator based on XTW which can parse
all synthesizable Verilog files was introduced. In this paper,
we make use of VXTW as our simulation environment.

B. Dynamic Load Balancing
Load balancing algorithms can be categorized as being

either centralized or distributed, and being either dynamic or
static [6]. A statistical approach to dynamically partition a

circuit and map it to a set of processors is developed in [27].
In this work, a work graph is created to show the precedence
relation between processors. The edges of the graph represent
the communication information between processors. If two
nodes are active at the same time they are assigned to different
processors. While they achieved positive results, their test
bench only had 64 gates. Moreover, the authors assumed
that the network did not have direct cycles, something which
is not true in general. The complexity of their algorithm is
O(E.(N − K) × log2(N − K)) where N is the number of
nodes in the graph, E is the number of edges and K is the
number of partitions.
In Burdorf and Marti [7] objects are moved from processors

which are far ahead in simulation time to processors which are
far behind in simulation time.The objective of this algorithm
was to decrease the number of rollbacks. Their results showed
a five to ten times speed up over a simulation without load
balancing. We note that their experiments were not oriented
towards gate level simulation.
Schalgenhaft [33] introduces a dynamic load balancing

algorithm which incorporates LPs into clusters. In order to
balance the load, clusters are transferred between processors.
A new metric, Virtual Time Progress(VTP), is defined which
shows how fast an LP advances in virtual time. The goal
of the algorithm described in this paper is to dynamically
move clusters until all of the VTPs of the processors are
approximately the same. The performance of this algorithm
was evaluated for small circuits on just two processors. On a
circuit with 20k gates a reduction in simulation time of 20%
was achieved.
In some algorithms (e.g. [33], [7]), the decision to transfer

load is based on the progress of an LP in virtual time. As
the computational granularity is fine in gate level simulation,
[4] emphasized the role of the processor load in dynamic
load balancing. In [4] all of the processors send information
about their load to a central processor, which makes the load
balancing decisions. The performance of the algorithms was
evaluated on small circuits (up to 25k gates). The results
showed that the throughput improved by 40% to 100% relative
to Time Warp with no load balancing. The throughput was
defined as the number of non-rolled back messages per unit
time. The simulation time was also reduced by up to 15%.
However, Avril’s approach is not applicable to current circuits
with millions of gates because the (communication) cost of
sending load information to a central processor is too great.
[23] describes two centralized dynamic load balancing

algorithms which are used to balance the computation and
the communication loads. In both of these algorithms, all of
the processors in the simulation forward their computation
and communication load to a central processor which, upon
receipt of this information, categorizes the processors as being
either over-loaded or under-loaded. The algorithm matches
processors in these sets and informs the over-loaded processors
about their matches, which then forward some of their LPs to
their corresponding under-loaded processor. A reinforcement
learning algorithm is used to tune several parameters in the
load balancing algorithm. A load balancing algorithm which
balances the computation and communication loads simulta-

IEEE TRANSACTIONS ON COMPUTERS 3

neously is introduced in [21]. In this algorithm, all of the
processors are arranged in a virtual ring and a token algorithm
is utilized to distribute the load information to all of the
processors. Each processor in the over-loaded set is matched
with a single processor in the under-loaded set. A drawback
of this algorithm lies in the one to one matching; it is more
advantageous for a processor in the over-loaded set to be able
to forward LPs to several processors in the under-loaded set.

C. Time Window
As the simulation progresses under Time Warp, more

memory is consumed by the creation of new messages and
also saving the states of the LPs in the state queues. As a
result, we need a mechanism to reclaim the memory storage.
This mechanism is referred as fossil collection [41]. By
finding a lower bound on the time stamp of future rollbacks,
we can delete the memory dedicated to events which have a
smaller timestamp than this lower bound. This lower bound
is called Global Virtual Time (GVT):
Global Virtual Time (GVT): GVT(T) is defined as the
minimum time-stamp of any unprocessed message or anti-
message in the system at real time T [12].

As is well known, a large difference between the virtual
times of the LPs in the simulation can lead to an excessive
number of rollbacks. In order to control the optimism of the
simulation it is possible to make use of a time window, an
interval [T, T + W] in virtual time. We use the size of the
time window, W , and the GVT to define a bound on event
execution at each LP; an event with time-stamp larger then
GV T +W is blocked until all of the events with time-stamp
less then GV T +W have been processed. A blocked LP can
still receive events from other LPs but cannot process them
or send messages to other LPs. The LP stays blocked until
the GVT is updated. At this point, the time window is moved
and the LP can execute the events within the new window.
This algorithm is called Moving Time Window [34]. In this
approach, the size of the window is determined in advance and
remains fixed throughout the simulation. The main drawback
is that the size of time window must be determined before the
simulation starts.
In order to solve this problem, adaptive protocols were

developed [30]. As its name indicates, an adaptive protocol
changes parameters dynamically during the simulation based
on ”knowledge of selected aspects of the state of the simula-
tion” . In [28] a moving bounded time window is defined
such that just the events within the time window can be
optimistically executed. in [38] an offline genetic algorithm
is described which tunes the size of time window during
the simulation. Using this algorithm the simulation time was
reduced from 9.9% to 35.6% for the tested circuits. The cost
of the algorithm was not considered in this paper.

D. Contributions
In this paper, we utilize a distributed load balancing al-

gorithm and show that it has a better performance than the
other dynamic load balancing algorithms for parallel gate

level simulation. The new algorithm combines the computation
and communication load balancing algorithms in [23]. In this
algorithm, each processor in the overloaded set forwards mes-
sages to every processor in the under-loaded set. Experimental
results indicated that the performance of this algorithm was
highly dependent on tuning parameters-different circuits and
platforms require different values for these parameters in order
to get the best result. Hence, in this paper we present an online
genetic algorithm which tunes the parameters of the dynamic
load balancing algorithm. The genetic algorithm is also used
to tune the size of the time window used in our Time Warp
simulations.

III. A DISTRIBUTED DYNAMIC LOAD BALANCING
ALGORITHM

This section contains a description of the dynamic load
balancing algorithm. The algorithm we describe in this paper
differs from the one described in [23] in that it uses a genetic
algorithm to tune a different choice of parameters, and that it
uses a combination of the communication and computational
load balancing algorithm. The use of the current algorithm
resulted in up to a 50% improvement in the simulation time
when compared to the algorithm(s) described in [23]. A com-
parison of these approaches is described in the experimental
results section.

A. Initialization

All of the gates in the circuit are mapped to Logical
Processes(LPs) which are distributed among the processors
in the system. We first distribute these LPs by means of a
Depth First Search (DFS) partitioning algorithm. In the DFS
algorithm, we impose the constraint that each processor should
have the same number of LPs. The dynamic load balancing
algorithm is initialized every C cycles, where C is a user
input parameter. We make use of following quantities for the
algorithm.
LP Computation Load (LpComp): The computation load

of each LP is defined as the number of events processed since
the last execution of the load balancing algorithm.
Processor Computation Load (PComp): The sum of the

computation loads of the LPs within a processor is defined as
the computation load of that processor.
LP Communications Load (LpComm[]): The communi-

cation load of an LP is defined to be the number of messages
that the LP has sent to other processors since the last execution
of the dynamic load balancing algorithm. If we have N
processors, an array of size N-1 exhibits the communications
load for each LP.
Processor to Processor Communication Load (PP-

Comm[]): The number of messages that each processor has
sent to the other processors since the last execution of the load
balancing algorithm. For N processors, an array of size N-1
contains PPComm[] for each processor.
Processor Communication Load (PComm): This is the

number of messages that each processor sent to the other
processors.

IEEE TRANSACTIONS ON COMPUTERS 4

The Computation-Communication weight (λ):. This rep-
resents the weight of the computation and communication
loads for calculating the final load of the processor. The
computation-communicationweight has a value between 0 and
1.
Processor load (PLoad): This represents the load on the

processor. PLoad is defined as the weighted sum of the
computation and communication loads as follows:

PLoad = λ ∗ PComp+ (1 − λ)PComm (1)

The dynamic load balancing algorithm is initiated every C
cycles. Every C cycles, PComm is calculated as the sum of the
all of the values in PPComm[] and PComp is calculated as the
sum of all of the LpComps of the LPs within that processor.
Finally, the processor load is calculated using formula 1 and
each processor broadcasts its PLoad information to all of the
other processors in the system. Each processor updates its
local copy of the other processors load when it gets the new
information. After receiving all of the updated information,
each processor starts the dynamic load balancing algorithm.
Algorithm 1 summarizes the initialization step.

Algorithm 1 Initializng the Dynamic Load Balancing algo-
rithm
For each processor Pi:
{Every C cycles}
for each LP j which Pi hosts do
PCompi = PCompi + LpLoadj
PCommi = PCommi + LpCommj[]

end for
PLoadi = λ ∗ PCompi + (1− λ)PCommi

All-to-ALL-Broadcast(PLoadi, PPCommi[])
{Upon receiving of PLoadj from processor Pj}
Update the load information of Pj

B. The Dynamic Load Balancing Algorithm

Each processor utilizes the Pload and PPComm information
of the other processors and its local PPComm and Pload for
the load balancing algorithm. In the first step, the top P% (
a user input parameter) of the over-loaded and under-loaded
processors are selected and are placed in the over-loaded and
under-loaded sets. The processors of these two sets constitute
a bipartite graph in which the edges of the graph are the
values of PPComm[]. In the next step, each processor in the
over-loaded set forwards LPs to each processor in the under-
loaded set. Each processor can forward up to L LPs to other
processors, where L is a user input parameter. The number of
LPs that a processor Pi in the over-loaded set sends to each
processor Pj in the under-loaded set, LPTransferi,j , is:

LPTransferi,j = L ∗ (PPCommi[j])/(
N∑

i=1

PPCommi[j])

(2)

Assume that there are 4 processors in the under-loaded
set and the PPComm[] values for a processor in the over-
loaded set are 15, 25, 35 and 50. Then the number of LPs
that Pi forwards to each of these processors is 0.12L, 0.2L,
0.28L and 0.4L, respectively. The LPs which have the most
communication with the destination processor are chosen for
this transfer. LpComm[] is consulted for this information.
It is possible for a sending processor to receive messages

intended for LPs which were already transferred. In this
case the sending processor forwards these messages to the
LP’s destination processor. Algorithm 2 summarizes the load
balancing algorithm.

Algorithm 2 The load balancing algorithm
For Each Processor Pi:
{Every C cycles}
while number of elements in O < P% do
maxLoad = j, where Pj has theMax {PLoad} and Pj

is not in O
O = O ∪ PmaxLoad

end while
while number of elements in U < P% do
minLoad = j, where Pj has the Min {PLoad} and Pj

is not in U
U = U ∪ PminLoad

end while
for For each processor Pi in O do
LPTransferi,j = L ∗
(PPCommi[j])/(

∑N
i=1 PPCommi[j])

Find the top LPTransferi,j LPs which have the maxi-
mum value of LpComm[j]
Send the LPs to the Destination processor

end for

IV. THE GENETIC ALGORITHM
It is clear that the tuning parameters of the dynamic load

balancing algorithm have a significant effect on their per-
formance. Determining values for these parameters may be
viewed as an optimization problem. Because genetic algo-
rithms have had great deal of success in solving a number
of optimization problems [15], [16], [24], we develop one in
order to determine values for these parameters.
A genetic algorithm is an evolutionary search algorithm

in which generations of candidate solutions are iteratively
computed [13]. Each generation is evaluated for its quality and
a subset of solutions with the best quality is chosen as input
for the next round of the algorithm. This is done until a search
criterion is reached. The motivation for these algorithms can be
found by observing a population of individuals competing for
limited resources - only the fittest survive. A generic outline
for a genetic algorithm is as follows:
1) Initialize the population with a random set of candidates.
2) Evaluate each candidate in the set to find its fitness.
3) Select parents and put them in a mating pool.
4) Recombine parents to produce new children.
5) Mutate the children.

IEEE TRANSACTIONS ON COMPUTERS 5

6) Evaluate the children and find their fitness.
7) Select individuals from the set of parents and generate
children to form the new generation.

8) If the termination condition has not satisfied, all steps
from step 3 are executed again.

A. Fitness Function

In a genetic algorithm, the fitness of candidate solutions is
determined by the objective function. In this section, we define
our fitness function in terms of the load imbalance between
processors and the event commit rate.
1) Event Commit Rate: Since the main reason of a the

parallel simulation is decreasing the simulation time, the
elapsed wall clock time of the simulation plays a central role
in defining our function. If ti is the elapsed wall clock time
for the ith cycle, Ci, we define the event commit rate (ECR)
of the ith interval ,from ti−1 to ti, to be:

ECRi = NCi/(ti − ti−1), (3)

where NCi denotes the number of committed (i.e. non
rolled-back) events in the i-th interval. With this definition,
if ECRi < ECRj represents the event commit rates for the
ith and jth cycles, the simulation was faster in jth cycle than
in the ith cycle.
2) Average Load Imbalance: As already mentioned, the

distribution of load between different processors of the system
has a significant effect on the performance of the simulation.
If we have a load-imbalance we cannot benefit from the
parallelism which exists within the system (some processors
are over-loaded while some are idle). Communication load
imbalance may result in a communication link becoming a
bottleneck in the simulation too. Hence, both computation and
communication loads are considered by our algorithm. The
average computational load imbalance , AvgComp, is defined
by

AveComp = (
N∑

j=1

j∑

i=1

(i %= j)(PCompi−PCompj)/C(2, n)

(4)
Similarly, the average communication load imbalance,

AveComm, is defined as:

AveComm = (
N∑

i=1

i∑

j=1

(i %= j)PPCommi[j])/C(2, n) (5)

Finally, we define the average total load-imbalance, ATL,
as the weighted sum of these two parameters.

ATL = λ ∗AveComp+ (1− λ) ∗AveComm (6)

where λ is a user defined parameter between 0 and 1.

3) Fitness Function: In our genetic algorithm, the fitness
value of each gene, Fi, is defined by both the event commit
rate and the load imbalance as follows:

Fi = ECR ∗ 1/ATL (7)

A larger event commit rate means that the percentage of
rolled back events is decreased, leading to a better simulation
time. Decreasing the average load imbalance of the system
also improves the simulation time.

B. Tuning Parameters
Our Time Warp simulator makes use of a bounded window

in order to decrease the number of rollbacks. The window
size plays a critical role in the performance of our simulator.
In addition to tuning the parameters which affect the perfor-
mance of the dynamic load balancing algorithm, our algorithm
determines the window size. In this section we discuss these
parameters and the time window.
1) Load Balancing Parameters: The two parameters which

determine the total amount of load transferred by the algorithm
are P and L. 2P is the percentage of processors which
participate in the load balancing algorithm (P% in over-loaded
set and P% in under-loaded set). Our experiments indicated
that for our experimental platform (32 dual core, 64 bit Intel
processors on a fast Ethernet), we could not set P to values
more than 40% because of the load-transferring overhead.
Values less than 30% reduced the impact of dynamic load
balancing algorithm. Hence, we set P=40% i.e. 24 processors
participate in the load balancing algorithm.
The value of L represents the number of LPs that each

processor forwards to other processors. If we set L to a large
value it is probable that the communication cost of transferring
these LPs may significantly decrease the speed-up obtained as
a consequence of transferring the LPs. On the other hand, if
L has a small value, the load balancing may not be effective.
The other parameter which has a significant effect on the

performance of dynamic load balancing algorithm is C, the
frequency of executing the algorithm. If we run the algorithm
too frequently, the speed-up may be adversely affected. Our
experiments indicate that for different circuits and different
numbers of processors, we need to modify the values of both
C and L. As a result, we embed both of these parameters in
our candidates for the GA.
2) Window: Our experiments indicate that the value of W

plays an important role. IncreasingW worsens the simulation
time because of increased rollback activity resulting from less
restrained optimism. On the other hand, setting W to a small
value (e.g. 1) prevents the simulation from benefitting from the
parallelism in the simulation. As a result, we use the genetic
algorithm to tune the size of the time window as well.

V. IMPLEMENTATION
A. Encoding Mechanism
Each candidate solution in a genetic algorithm is represented

by a chromosome which is made up of genes. Various can-
didate representations have been introduced in the literature

IEEE TRANSACTIONS ON COMPUTERS 6

[32], including binary, integer, floating-point phenotypic and
tree representations. In this paper, we utilize a binary repre-
sentation. Each candidate is represented by a string which is
composed of three parameters: L, C and W . The maximum
values of these parameters are 512, 16 and 16. The primary
reason for this choice of values is that larger values resulted in
poor performance. As a result, the string length is seventeen
bits. For example, if L, C and W have the values of 123,
12 and 14 respectively, the encoded representation for the
candidate is 111101111001110.

B. Candidate Initialization and Evaluation
We start the simulation with 8 candidates. While it is

possible to select these candidates randomly, we chose the
initial values of the parameters according to our experience-for
various benchmark circuits, we utilize different initialization
sets.
The genetic algorithm is run in a central processor which

is used to compute the GVT as well. There is a master
processor which determines the GVT value and which also
runs the genetic algorithm. Each processor broadcasts its
communication and computation load values to all of the other
processors. The central processor uses these values to calculate
the fitness value of each candidate. In order to evaluate the
effect of the current value of C, the algorithm is run five times.
Since the dynamic load balancing algorithm is run every C
cycles, we need 5C cycles to determine the fitness value of
the first candidates.

C. Parent Selection, Crossover and Mutation
After choosing an initial set of candidates, a subset of these

candidates is chosen and utilized as the parents of the next
generation of solutions. They are put into a ”mating pool”.
Various parent selection algorithms have been introduced

[11]. We make use of the Stochastic Universal Sampling
(SUS) [11] algorithm. In SUS, the fitness of each candidate is
evaluated using formula 7. With this value, the probability of
selecting a candidate as a parent can be calculated by:

Pi = fi/
U∑

j=1

fj (8)

where U is the population size. With these values of Pi,
an array a with Ucandidates can be constructed such that
a[j] =

∑j
i=1 Pi, 1 ≤ j ≤ U . Each cell (slot) of the array

is constructed by adding the value of current element to the
previous elements, i.e. it is the cumulative probability. Table
1 shows the slot values for 8 random initial candidates.
Starting with i = 0, a random number, rand, between 0 and

1/U is generated. U is the number of parents. If rand <= a[i]
and rand > a[i − 1] then candidate i is selected. After each
candidate selection the values of rand and i are updated to
rand+1/U and i+1 respectively. This process is continued
until U candidates are selected. Algorithm 4 contains the
details of the SUS.
After selecting the parents, we recombine them in order

to produce new children by means of an operation known

TABLE I
FITNESS VALUES, PROBABILITIES AND SLOT VALUES OF CANDIDATES

Candidate Fitness Value Probability Slot Value
1 0.3321 0.1670 0.1670
2 0.2213 0.1113 0.2783
3 0.1156 0.0581 0.3364
4 0.4987 0.2508 0.5872
5 0.1137 0.0571 0.6443
6 0.2087 0.1049 0.7492
7 0.067 0.0337 0.7829
8 0.431 0.2167 1

as a crossover. As we have three parameters within each
chromosome, we utilize the so-called three section cross-over.
In this approach, one cross over point is selected within each
section (L, C and W) and the cross over is performed at each
section. Figure 2 illustrates our crossover approach. The three
cross over points are selected by choosing random numbers
between zero and the length of each section.

101110101 1111 0001

111001001 1001 1111

 After CrossOver

101001001 1001 0011

111110101 1111 1101

L C W

Fig. 1. The crossover operation

The last step in producing children is mutating the genes.
In order to do so, we select a mutation rate, Rt, and produce
a random number for each gene in the chromosome. If the
random number is smaller than Rt, we do not do the mutation,
otherwise we mutate the corresponding gene. The main goal of
the mutation process is to increase the diversity of population.
The purpose of mutation is to prevent the algorithm from being
trapped in a local minimum.

D. Genetic Algorithm and Dynamic Load Balancing
In the first step of the genetic algorithm, the population is

initialized with a random set of candidates. Afterwards, for
each candidate, the parameters (W, L, C) of the candidate
are broadcast to all the processors. Each processor runs the
distributed load balancing algorithm in parallel with the other
processors and forwards LPs to other processors to balance
the computational and communication loads for 5C cycles.
The frequency of running the load balancing algorithm, C,
is one of the parameters that we tune on the fly. In order
to see the effect of the current value of C, we run the load
balancing algorithm with frequency C for a total of 5 times.
At this point, each processor sends its load information to

IEEE TRANSACTIONS ON COMPUTERS 7

Algorithm 3 Stochastic Universal Sampling
for each candidate j in the solution set do
a[j] =

∑
pi, 1 ≤ j ≤ U

end for
Generate a random number rand in the range [0, 1/U]
n = 0
i = 1
while n < U do
while rand ≤ a[i] and n < U do
Add candidate i to the mating pool
rand=rand+1/U
n=n+1

end while
i=i+1

end while

the central processor, which computes the fitness value of the
candidate. This process is continued until all of the fitness
values of the initial set are calculated. At this point, the genetic
algorithm proceeds to generate children by parent selection,
parent recombination and mutation. The fitness values of the
new children are calculated as described above. Finally a set of
surviving candidates are chosen. If the termination condition
is not satisfied, the computation continues.

E. Survivor Selection
After the mutation step, we find the fitness of all of the

new candidates. In order to do so, we run the load balancing
algorithm with the corresponding values of each candidate.
The size of the time window is also set to the window size of
the current candidate.
After finding the fitness value of all the candidates in the

new solution set, we have a pool of parents and children from
which to choose the survivors. Hence we need a survivor
selection algorithm. Various algorithms have been introduced,
among which are age-based algorithms and fitness-based al-
gorithms. In an age-based algorithm, a candidate exists in the
solution set for a fixed number of iterations. This means that
if we set the age to one, the entire population is replaced
by children. On the other hand, in a fitness-base algorithm
candidates with better fitness values are chosen. In this paper,
we make use of a combined version in which we choose the
top m candidates, according to their fitness values and then
take into account the age of the these candidates. If their age
is greater than a pre-determined value, we remove them from
the set.
Eventually the GA algorithm must terminate. Some ap-

proaches for deciding on when it terminates are:
• The number of generations reaches a pre-determined
limit.

• The number of fitness evaluations reaches a pre-set limit.
• The population converges to a single candidate.
• The best fitness value stays unchanged for a pre-
determined number of generations.

We stop the genetic algorithm whenever one of these
conditions is satisfied.

VI. PERFORMANCE OF THE GENETIC ALGORITHM

In order to evaluate the performance of the load balancing
and genetic algorithms, we make use of VXTW [22] as our
simulation environment. Our simulation platform has 32 dual
core 64 bit Intel processors. Each processor has 8 GBytes
of internal memory. We utilized Message Passing Interface
(MPI) [26] for communication between the processors. Each
simulation point in the graphs is the average of 10 simulation
runs. We assume that the gate delay is one unit for all of the
gates and that the wire transmission time is zero. Initially, we
distribute the gates between the processors using a depth first
search (DFS) algorithm with load balancing constraints.
The Verilog source files which we use in this simulation are

the OpenSPARC T2, the LEON processor and the RPI circuit.
The openSPARC T2 is an open source processor which was
designed and released by Sun in 2007. We use part of the
OpenSPARC T2 and synthesized it using Synopsis DC. It has
200k gates. The LEON processor is a 32-bit microprocessor
which is based on the SPARC-V8 RISC architecture and in-
struction set. It was designed by the European Space Research
and Technology Centre, and by Gaisler Research [31]. One of
the specifications of the LEON processor is its configurable
core, making it suitable for System-on-Chip (SOC) designs.
The Leon processor has around 200k gates. The RPI circuit is
a Viterbi decoder with 800k gates from Rensselaer Polytechnic
Institute (RPI).
Recall that L represents the number of LPs which we

transfer in each cycle of the load balancing algorithm, C is the
frequency of running it, and λ represents the weight parameter
used in computing the total load of a processor. We set λ to 0.6.
The initial population size was set to 8. In order to determine
the fitness of each candidate, we ran the simulation 5 times
with values of that candidate. Each candidate is composed of
three parameters itself, C, L and W . The values of C and L
are numbers between 1 and 16 and the value of L is a number
between 1 and 256. The reason that all of the max values are
powers of 2 is that we use a bitwise crossover.
Two load balancing algorithms for parallel circuit simulation

were described in [23], [21]. The first algorithm utilized a
centralized dynamic load balancing approach while the second
arranged processors in a virtual ring and used a token based al-
gorithm to balance the load. In the centralized DLB algorithm,
we employed both a computational and a communication load
balancing algorithm. Tables II and III compare the distributed
load balancing algorithm with the other two algorithms for the
large and small RPI circuits; they display the improvement
of the simulation time compared to a static Time Warp
simulation. The simulation time for the centralized DLB is
the best time of the computational and communication based
algorithms. The distributed load balancing algorithm resulted
in the greatest improvement for all parameter values. The
results utilize the following parameter values- C=10, L=200
and W=5.
There are two main reasons for the better performance of

the distributed load balancing algorithm. 1- it combines the
computational and communication load balancing algorithms
in the centralized DLB, so it can balance both the computation

IEEE TRANSACTIONS ON COMPUTERS 8

and communication loads at the same time. 2- each processor
in the over-loaded set is matched with all of the processors in
the under-loaded set and forwards parts of its load to each of
them.

TABLE II
PERCENT IMPROVEMENT IN SIMULATION TIME OVER TIME WARP (LARGE

RPI CIRCUIT)

Number of Processors Centralized DLB Token DLB Distributed DLB
8 13.2 21.5 30.6
12 14.1 22.7 31.2
20 17.9 24.9 29.3
31 15.2 21.5 28.4

TABLE III
PERCENT IMPROVEMENT IN SIMULATION TIME OVER TIME WARP (SMALL

RPI CIRCUIT)

Number of Processors Centralized DLB Token DLB Distributed DLB
8 11.1 21.2 29.2
12 12.1 20.3 30.1
20 9.2 18.7 28.2
31 10.5 19.1 31.2

Our experiments underlined the importance of tuning the
parameters. Figures 2-a and 2-b show our results for different
values of C for the large RPI circuit. L = 150 in figure 2-a
and L = 200 in figure 2-b. As can be seen, the intermediate
value of C = 5 yielded the best results for both values of L.
The simulation time was improved by 25% and 30% for L=
150 and 200 respectively. The same results are achieved by
changing the values of L and W.
Figures 3 and 4 show the speed up for (1)the static Time

Warp algorithm (2) the dynamic load balancing algorithm with
different parameter values (3) the genetic algorithm on the
large RPI circuit, the small RPI circuit, the OpenSparc T2 and
the LEON processors respectively. The algorithm improves
simulation times in comparision with static simulation up to
55%, 70%, 55%, and 68% for the OpenSparc T2, large RPI,
small RPI, and LEON circuits respectively. Compared to a
sequential simulation, total simulation times are decreased by
93%, 94%, 91.5%, and 92% for OpenSparc T2, large RPI,
small RPI, and LEON circuits respectively.
The GVT computation in VXTW is done by a central

processor. The genetic algorithm was implemented within the
same central processor. This way, the genetic algorithm is run
while the other processors are running the gate level simulation
or the load balancing algorithm. In order to compute the
fitness value of each candidate, the genetic algorithm needs to
gather load information from all of the processors. This load
information is piggy-backed to the central processor on GVT
messages. We noted that implementing the load balancing
algorithms in each processor can use up to 40% of total
computation time of each processor. This happens when we
have large values for C and L. Applying the genetic algorithm
the running time of the load balancing algorithm can be
reduced up to 10% for some circuits
The reasons that the genetic algorithm was implemented on-

line and not off-line are (1)it would be necessary to somehow
categorize similar circuits in order to make use of the same

700

1200

1700

2200

2700

4 9 14 19 24 29

A
ve

ra
ge

 S
im

ul
at

io
n

Ti
m

e

Number of Processors

Time Warp

C=1

C=5

C=12

(a)

650

1150

1650

2150

2650

3 8 13 18 23 28

A
ve

ra
ge

 S
im

ul
at

io
n

Ti
m

e

Number of Processors

Time Warp

C=1

C=5

C=12

(b)

Fig. 2. Simulation time using load balancing for the large RPI circuit for
L: a)L =150, b)L =200

parameters for different circuits. It is also not at all clear how
to define these categories (2) The on-line version is not costly
to run.
We also measured the standard deviation for the genetic

algorithm and static Time Warp algorithms. In all of the cases,
the standard deviation of genetic algorithm is better than that
of the Time Warp algorithm-we get a more stable result with
the genetic algorithm. The reason for this is that the result
of Time Warp algorithm depends on the quality of initial
candidate solutions; the genetic algorithm can find a good
solution by searching a large choice of possibilities. Figure
5 depicts the results of the standard deviation.

VII. CONCLUSION

One of the main approaches utilized for logic verification
is discrete event simulation. Current circuits have millions
of gates and simulation on a single processor has become a
bottleneck for the design of these circuits.
In order to improve the performance of the simulator,

a dynamic load balancing algorithm was introduced. This
algorithm is a distributed algorithm in which each processor
gathers the load information of the other processors. The
processors which participate in the load balancing algorithm

IEEE TRANSACTIONS ON COMPUTERS 9

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

Sp
ee

d
U

p

Number of Processors

Time Warp

DLB, L=200, C=14, W=5

DLB, L=100,C=8, W=7

Genetic Algorithm

(a)

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Sp
ee

d
U

p

Number of Processors

Time Warp

DLB, L=200, C=8, W=5

DLB, L=150, C=10, W=10

Genetic Algorithm

(b)

Fig. 3. Speed-up utilizing the genetic algorithm a)OpenSparc T2 processor
b)Small RPI

are separated into two sets of over-loaded and under-loaded
processors. The over loaded processors select some LPs (gates)
and forward them to the under-loaded processors. The param-
eters of the load balancing algorithm are L and C, which
represent the number of LPs which are transferred in each run
of the dynamic load balancing algorithm and the frequency of
running the load balancing algorithm respectively.
We also make use of a time window in Time Warp to control

the optimism so that we can avoid excessive rollbacks. The
size of the window, W plays an important role in its success.
In order to find optimal values for L, C and W , we

made use of an online genetic algorithm. Each candidate
solution in the genetic algorithm consists of L, C and W .
Using this algorithm, we improved the simulation time in
comparision to static simulation up to 55%, 70%, 55%, and
68% for OpenSparc T2, large RPI, small RPI, and LEON
circuits respectively. Compared with sequential simulation, the
simulation time was decreased up to 93%, 94%, 91.5%, and
92% for OpenSparc T2, large RPI, small RPI, and LEON
circuits respectively.

REFERENCES
[1] Elie El Ajaltouni, Azzedine Boukerche, and Ming Zhang. An efficient

dynamic load balancing scheme for distributed simulations on a grid
infrastructure. In DS-RT ’08: Proceedings of the 2008 12th IEEE/ACM
International Symposium on Distributed Simulation and Real-Time Ap-
plications, pages 61–68, Washington, DC, USA, 2008. IEEE Computer
Society.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

Sp
ee

d
U

p

Number of Processors

Time Warp

DLB, L=200, C=12, W=8

DLB, L=100, C=8, W=5

Genetic Algorithm

(a)

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Sp
ee

d
U

p

Number of Processors

Time Warp

DLB, L=100, C=8, W=5

DLB, L=200, C=10, W=8

Genetic Algorithm

(b)

Fig. 4. Speed-up utilizing the genetic algorithm a)Large RPI b)LEON

[2] Shailendra S. Aote and M. U. Kharat. A game-theoretic model
for dynamic load balancing in distributed systems. In ICAC3 ’09:
Proceedings of the International Conference on Advances in Computing,
Communication and Control, pages 235–238, New York, NY, USA,
2009. ACM.

[3] Hervé Avril and Carl Tropper. Clustered time warp and logic simulation.
SIGSIM Simul. Dig., 25(1):112–119, 1995.

[4] Hervé Avril and Carl Tropper. The dynamic load balancing of clustered
time warp for logic simulation. SIGSIM Simul. Dig., 26(1):20–27, 1996.

[5] Yi bing Lin and Paul A. Fishwick. Asynchronous parallel discrete event
simulation. IEEE Transactions on Systems, Man and Cybernetics, 26,
1996.

[6] F. Bonomi and A. Kumar. Adaptive optimal load balancing in a
nonhomogeneous multiserver system with a central job scheduler. IEEE
Trans. Comput., 39:1232–1250, October 1990.

[7] C. Burdorf and J. Marti. Load balancing strategies for time warp on
multi-user workstations. The Computer Journal, 36:108–176, July 1993.

[8] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. Event-
driven gate-level simulation with gp-gpus. In Proceedings of the 46th
Annual Design Automation Conference, DAC ’09, pages 557–562, New
York, NY, USA, 2009. ACM.

[9] Ben Cohen. VHDL Coding Styles and Methodologies. Kluwer Academic
Publishers, Norwell, MA, USA, 1995.

[10] Samir R. Das and Richard M. Fujimoto. An adaptive memory manage-
ment protocol for time warp parallel simulation. In SIGMETRICS ’94:
Proceedings of the 1994 ACM SIGMETRICS conference on Measure-
ment and modeling of computer systems, pages 201–210, New York,
NY, USA, 1994. ACM.

[11] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. SpringerVerlag, 2003.

[12] Richard M. Fujimoto. Parallel and Distribution Simulation Systems.
John Wiley & Sons, Inc., New York, NY, USA, 1999.

[13] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1989.

IEEE TRANSACTIONS ON COMPUTERS 10

[14] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,
7(3):404–425, 1985.

[15] Yosuke Kimura and Kenichi Ida. Improved genetic algorithm for vlsi
floorplan design with non-slicing structure. Comput. Ind. Eng., 50:528–
540, August 2006.

[16] Shigenobu Kobayashi, Isao Ono, and Masayuki Yamamura. An efficient
genetic algorithm for job shop scheduling problems. In Proceedings of
the 6th International Conference on Genetic Algorithms, pages 506–511,
San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[17] Venkatram Krishnaswamy and Prithviraj Banerjee. Actor based parallel
vhdl simulation using time warp. SIGSIM Simul. Dig., 26:135–142, July
1996.

[18] Lijun Li, Hai Huang, and Carl Tropper. Dvs: An object-oriented
framework for distributed verilog simulation. In PADS ’03: Proceedings
of the seventeenth workshop on Parallel and distributed simulation, page
173, Washington, DC, USA, 2003. IEEE Computer Society.

[19] Dragos Lungeanu and C.-J. Richard Shi. Parallel and distributed vhdl
simulation. In Proceedings of the conference on Design, automation and
test in Europe, DATE ’00, pages 658–662, New York, NY, USA, 2000.
ACM.

[20] Dale E. Martin, Radharamanan Radhakrishnan, Dhananjai M. Rao,
Malolan Chetlur, Krishnan Subramani, and Philip A. Wilsey. Analysis
and simulation of mixed-technology vlsi systems. J. Parallel Distrib.
Comput., 62:468–493, March 2002.

[21] Sina Meraji and Carl Tropper. Towards optimizing parallel digital
logic simulation. Technical Report School of Computer Science, McGill
University, 2010.

[22] Sina Meraji, Wei Zhang, and Carl Tropper. On the scalability of parallel
verilog simulation. In THE 38th INTERNATIONAL CONFERENCE ON
PARALLEL PROCESSING (ICPP-2009), 2009.

[23] Sina Meraji, Wei Zhang, and Carl Tropper. On the scalability and
dynamic load-balancing of optimistic gate level simulation. Trans.
Comp.-Aided Des. Integ. Cir. Sys., 29:1368–1380, September 2010.

[24] Zbigniew Michalewicz. Genetic algorithms + data structures = evolu-
tion programs (3rd ed.). Springer-Verlag, London, UK, 1996.

[25] Jayadev Misra. Distributed discrete-event simulation. ACM Comput.
Surv., 18(1):39–65, 1986.

[26] mpi. Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/,
Accessed on January 2009.

[27] David M. Nicol and Paul F. Reynolds. A statistical approach to dynamic
partitioning. In Proceedings of Parallel and Discrete Event Simulation,
PADS85, pages 53–56, New York, NY, USA, 1985. ACM.

[28] A. Palaniswamy and P.A. Wilsey. Adaptive bounded time windows in an
optimistically synchronized simulator. In Proc. 3rd Great Lakes Symp.
on VLSI, pages 114–118, 1993.

[29] Samir Palnitkar. Verilog R©hdl: a guide to digital design and synthesis,
second edition. Prentice Hall Press, Upper Saddle River, NJ, USA, 2003.

[30] Kiran S. Panesar and Richard M. Fujimoto. Adaptive flow control
in time warp. In Proceedings of the eleventh workshop on Parallel
and distributed simulation, PADS ’97, pages 108–115, Washington, DC,
USA, 1997. IEEE Computer Society.

[31] LEON Processor. Open Source Processor. http://www.gaisler.com/cms/.
[32] Franz Rothlauf and David E. Goldberg. Representations for Genetic and

Evolutionary Algorithms. Physica-Verlag, 2002.
[33] Rolf Schlagenhaft, Martin Ruhwandl, Christian Sporrer, and Herbert

Bauer. Dynamic load balancing of a multi-cluster simulator on a network
of workstations. SIGSIM Simul. Dig., 25(1):175–180, 1995.

[34] D. Briscoe Sokol, L. and A. Wieland. Reinforcement learning: A survey.
MTW: a strategy fo scheduling discrete simulation events for concurrent
execution, 19:34–42, 1996.

[35] Lisa M. Sokol, Jon B. Weissman, and Paula A. Mutchler. Mtw: an
empirical performance study. In Proceedings of the 23rd conference on
Winter simulation, WSC ’91, pages 557–563, Washington, DC, USA,
1991. IEEE Computer Society.

[36] Sudhir Srinivasan, Sudhir Srinivasan, Jr., Paul F. Reynolds, and Paul F.
Reynolds. Npsi adaptive synchronization algorithms for pdes. In In
1995 Winter Simulation Proceedings, pages 658–665, 1995.

[37] Xiaonian Tong and Wanneng Shu. An efficient dynamic load balancing
scheme for heterogenous processing system. Computational Intelligence
and Natural Computing, International Conference on, 2:319–322, 2009.

[38] Jun Wang and Carl Tropper. Optimizing time warp simulation with
reinforcement learning techniques. In WSC ’07: Proceedings of the
39th conference on Winter simulation, pages 577–584, Piscataway, NJ,
USA, 2007. IEEE Press.

[39] Subramani Wilsey, Martin. Savant/tyvis/warped components for the
analysis of vhdl. In Proc. INt. Verilog HDL Cof. and Proc. VHDL
User’s Forum, 1998.

[40] Qing XU and Carl Tropper. Xtw, a parallel and distributed logic
simulator. In ASP-DAC ’05: Proceedings of the 2005 conference on
Asia South Pacific design automation, pages 1064–1069, New York,
NY, USA, 2005. ACM.

[41] Christopher H. Young and Philip A. Wilsey. Optimistic fossil collection
for time warp simulation. In Proceedings of the 29th Hawaii Interna-
tional Conference on System Sciences, page 364, Washington, DC, USA,
1996. IEEE Computer Society.

[42] BaoYin Zhang, ZeYao Mo, GuangWen Yang, and WeiMin Zheng.
Dynamic load balancing efficiently in a large scale cluster. Int. J. High
Perform. Comput. Netw., 6(2):100–105, 2009.

IEEE TRANSACTIONS ON COMPUTERS 11

0

1

2

3

4

5

6

4 12 20 28 31

St
an

da
rd

 D
ev

ia
tio

n
(%

)

Number of Processors

Static Time
Warp
Genetic
Algorithm

(a)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

4 12 20 28 31

St
an

da
rd

 D
ev

ia
tio

n
(%

)

Number of Processors

Static Time
Warp
Genetic
Algorithm

(b)

Fig. 5. The standard deviation of the dynamic load balancing and genetic algorithm a)Small RPI b)OpenSparc

