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Abstract 

We describe a novel approach to scalability and effi- 
ciency of parallel network simulation that partitions the 
networks into domains and simulation time into intervals. 
Each domain is simulated independently of and concur- 
rently with the others over the same simulation time inter- 
val At the end of each interval, packet delays and drop rates 
for each inter-domain flow are exchanged between domain 
simulators. The simulators iterate over the same time inter- 
val until the exchanged information converges to a constant 
value within the prescribed precision. After convergence, 
all the domain simulators progress to the next time inter- 
val. This approach allows the parallelization with infre- 
quent synchronization. 

The biggest challenge for this method is to ensure iter- 
ation convergence for protocols, such as TCP, that adjust 
source rate to the current network conditions. The main 
contribution of this paper is to demonstrate that by judi- 
cious design of the domain processing and information ex- 
change, the proposed approach efficiently parallelizes net- 
work simulation with TCP flows. 

1. Introduction 

The major difficulty in simulating large networks at the 
packet level is the enormous computational power needed to 
execute all events that packets undergo in the network [5]. 
Packets crossing the boundaries of the parallel partitions 
impose tight synchronization between parallel processors, 
thereby lowering parallel efficiency of the execution [4]. 

This paper reports the progress of our long-term research 
on developing an architecture that can efficiently simulate 
very large heterogeneous networks in near real time [10, 8]. 
Our approach combines simulation and modeling in a sin- 
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gle execution. The network parts, called domains, are simu- 
lated at the packet level concurrently with each other. Each 
domain maintains however the model of the network exter- 
nal to itself which is built by using periodical output from 
other domain simulations. If  this model is faithfully rep- 
resenting the network, the domain simulation will exactly 
represent the behavior of its domain, so its model will be 
correct and can be used by other simulations. Each do- 
main simulation repeats its execution each time adjusting 
its model of the rest of the network and feeding the other 
simulations with increasingly precise model of  its own do- 
main. As a result, all domain simulations collectively reach 
a convergence to the consistent state of  all domains and all 
models. 

Our method can also be seen as a variant of a general 
scheme for optimistic simulation referred to as Time-Space 
Mappings proposed by Chandy and Sherman in [2]. Al- 
though all optimistic simulations can be viewed as variants 
of this scheme, very few apply, as we do, iterations over 
the same time interval to find a solution. In fact, we are 
aware of only one other network simulator [3] that uses such 
an iterative scheme. It, however, simulates a single switch 
with many sources, whereas our design targets simulations 
of thousands of routers interconnected into a network. Con- 
sequently, the parallelization techniques used by these two 
simulators are different. 

2. Genesis Approach 

Although our approach has been described earlier [10, 
8], we provide a brief summary here, to make the paper 
self-contained. The system is able to use different simu- 
lators in a single coherent network simulation, hence we 
called it General Network Simulation Integration System, 
or Genesis in short. 

In Genesis, each network domain consists of a subset of 
network sources, destinations, routers and links that con- 
nect them. It is simulated concurrently with other domains 
and repeatedly iterates over the same simulation time inter- 
val, exchanging information with other domains after each 
iteration. In the initial iteration, each domain assumes ei- 
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ther zero traffic flowing into it (when the entire simulation 
or a particular flow starts in this time interval) or the traffic 
characterization from the previous time interval. External 
traffic into the domain for all other iteration steps is defined 
by the activities of the external traffic sources and flow de- 
lays and packet drop rates defined by the data received from 
the other domains in the previous iteration step. The whole 
process is shown in Figure 1 . .  
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Figure 1. Progress of the Simulation Execu- 
tion 

Each domain is simulated on a separate processor which 
has a full description of  the flows whose sources are within 
domain but needs to approximate flows with sources exter- 
nal to the domain that are routed to or through the domain. 
This is achieved as follows. In addition to the nodes that 
belong to the domain by the user designation, we also cre- 
ate d o m a i n  c l o s u r e  that includes all the sources of flows that 
reach or pass through this domain. Since these are copies 
of nodes active in other domains, we call them s o u r c e  p r o x -  

i e s .  Each source proxy uses the flow definition from the 
simulation configuration file. 

The flow delay and the packet drop rate experienced by 
the flows outside the domain are simulated by the random 
delay and probabilistic loss applied to each packet travers- 
ing in-link proxy. These values are generated according to 
the average packet delay and its variance as well as observed 
packet loss frequency communicated to the simulator by its 
peers at the end of simulation of  each time interval. Each 
simulator collects this data for all of its own out-link proxies 
when packets reach the destination proxy. 

Consider a flow from an external source S to the in- 
ternal destination T, passing through a sequence of  exter- 
nal routers r l ,  • • .  r n  and internal routers r n + l ,  • • • r k .  The 
source of the flow is represented by the sequence of pairs 
( t l , p l ) , . . .  ( t i n , p r o ) ,  where ti denotes the time of  depar- 

ture of packet i and ioi denotes its size. At router j ,  a packet 
i is either dropped, or passes with the delay d~, i .  For uni- 
formity, dropping can be represented as as delay T greater 
than the total simulation time. Hence, to replicate a flow 
with the source proxy S t sending packets to router rn+l ,  
packet j produced by S '  at time t i needs to be delayed by 

= ~ = 1  d , , i .  A delay at each router is the sum time D j  n 

of constant processing, transmission and propagation de- 
lays and a variable queuing.delay. If  the total delay over 
all external routers is relatively constant in the selected time 
interval, a random delay with proper average and variance 
approximates Dj  well. Thanks to the aggregated effect of 
many flows on queue sizes, this delay changes slower than 
the traffic itself, making such model precise enough for our 
applications. 

For sources that do not use feedback flow control, this 
approach faithfully recreates the dynamics of  the flow [8]. 
However, to control congestion in network or internet, some 
protocols use congestion feedback. The most important 
among them is TCP protocol used in TCP/IP-based inter- 
net congestion control [7]. TCP uses sliding-window flow 
and error control mechanism for this purpose. The sliding- 
window flow control provides means for the destination to 
pace the source. The rate at which the source can send 
data is determined by the rate of incoming acknowledgment 
packets from them previous window. Any congestion on 
the path from the source to destination will slow down the 
data packets on their way to destination and the acknowl- 
edgment packets on their way back to source. As a result, 
the source will decrease it flow rate to decrease or eliminate 
this congestion. This mechanism is by no means reliable 
because TCP does not measure the congestion directly but 
deduces its presence from the round trip time for data and 
acknowledgment packets. In addition, there are no means 
in TCP to establish collaboration between different sources 
contributing to the congestion at the particular router. As 
a result, TCP flows demonstrate complex dynamics by ad- 
justing their rate to the changing conditions on their paths 
to destination. 

For our method, the important property of TCP traffic is 
that the rate of  the source is dependent on the conditions not 
only in the source domain but also in all intermediate and 
destination domains of  the traffic. Additionally, each data 
flow has a corresponding acknowledgment flow that paces 
the source. As a result, for the TCP traffic, the precision of 
our flow simulation depends on the quality of the replication 
of the round trip traffic by the packets and their acknowl- 
edgments. Moreover, the feedback loop for iterations is ex- 
tended. For example, in two domain TCP traffic, a change 
in congestion in the source domain will impact delays of  
data packets in the destination domain in the following iter- 
ation and the delays of  the acknowledgment packets in yet 
subsequent iteration. As a result, convergence is slower in 
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simulation of networks with TCP flows. 
Our experience indicates that communication networks 

simulated by Genesis will converge thanks to monotonicity 
of  the path delay and packet drop probabilities as a function 
of the traffic intensity (congestion). The speed of conver- 
gence depends on the underlying protocol. For protocols 
with no flow feedback control like UDP, simulations typ- 
ically requires 2-3 iterations [8]. As presented in this pa- 
per, protocols with feedback based flow-control, like TCP, 
require number of iterations up to an order of  magnitude 
larger then UDP-like protocols. However, our results were 
obtained with the fixed size of  the time interval. We plan 
to investigate using the variance of the path delay of each 
flow to adaptively define the time interval to speed up con- 
vergence without severely affecting the parallel efficiency. 
When the delays change slowly, the time interval could be 
large before the convergence is affected. On the other hand, 
if the flow delays change rapidly, it should be small to de- 
crease the absolute change of the traffic delay during a sin- 
gle iteration to speed up the convergence. 

The efficiency of our approach is greatly helped by the 
non-linearity of the sequential network simulation. It is easy 
to notice that the sequential simulation time grows faster 
than linearly with the size of the network. Theoretical anal- 
ysis supports this observation because for the network size 
of order O(rt), the sequential simulation time include terms 
which are of  order: 

• O(n * log(n)),  that correspond to sorting event queue, 

• O(n(lo.q(n)) 2) to O(n2), depending on the model of  
the network growth, that result from number and com- 
plexity of  events that packets undergo flowing from 
source to destination. The average length of a path 
traversed by each packet, the number of  active flow 
sources, the number of  flows generated by each source 
and even the number of  packets in each flow may grow 
at the rate of O(loy(n)) to O(rta) ,  where 0.5 < cz < 1, 
as the function of  n, the number of nodes in the net- 
work. They together create the superlinear growth in 
the number of the events processed by the simulation. 

Some of our measurements [9] indicate that the dominant 
term is of  order O(n  2) even for small networks. 

We conclude that it is possible to speed up the sequen- 
tial network simulation more than linearly by splitting it 
into smaller networks and parallelizing the execution of the 
smaller networks. As we demonstrate later, with modest 
number of iterations the total execution time can be de- 
creased by the order of  magnitude or more. Our primary 
application is the use of  the on-line simulation for network 
management [9] to which the presented method fits very 
well, especially when combined with on-line network mon- 
itoring. 

3. Des ign  Overv iew 

Genesis, though independent of  the underlying simulator 
used, nevertheless requires extensions in the description of  
the simulation provided by the user as well as in the simu- 
lation system. The extensions presented in this paper were 
made specifically for the ns [6] system, probably the most 
widely used network simulator, thanks to its large number  
of  implemented protocols. They also specifically support 
both UDP-like and TCP-like protocols. 

The user is responsible only for annotating domains in 
the simulation configuration file. This is achieved simply by 
labeling each node in the configuration by the correspond- 
ing domain number. Based on these annotations, the ex- 
tensions to the ns system process domain definition and its 
closure, collect the data for information exchange and im- 
plement the information exchange, as well as monitor con- 
vergence. A sample domain and its closure is presented in 
Figure 2 and discussed below. 
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Figure 2. Active Domain with Connections to 
Other Domains 

Support for domain definition in Genesis, i.e., identify- 
ing which nodes belong to a particular domain, is the first 
step towards creating the domain closure. By definition, in 
the domain closure each external source proxy is directly 
connected to the destination domain of its flow. We refer to 
such replicated source as an source proxy and we call the 
link that connects it to the domain border router an in-link 
proxy. 

The design supports the selective activation and deacti- 
vation of domains. The purpose is to process entire sim- 
ulation configuration on each participating processor, but 
then, during simulation, to keep active only one domain clo- 
sure while maintaining the routing information for the entire 
simulation. This information is needed in identifying the 
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destination domains for all packets that leave the domain. 
Consider the sample network in Figure 2. The network 

is split into three individual domains, numbered 1, 2 and 
3. Packets that flow into the domain from outside (with 
sources in skeletons of domains 2 and 3 in Figure 2) are 
produced by their source proxies in the domain closure and 
delayed or dropped during transition through in-link proxies 
(marked by boxes in Figure 2). 

Exchange of data uses a Farmer-Worker collaboration 
model in which one processor collects the data from all the 
others and redirects them to all the simulators. This simpli- 
fies design of the data exchange but is not the most efficient 
solution, especially because the simulator rarely finishes 
each time interval simulation at the same time. Scalability 
of the solution, and the large communication latency when 
the distributed rather than parallel environment is used, fa- 
vors the tree-like data exchange design in which constant 
size group of processors report to a next level representative. 
This is the organization that we are currently implementing. 

Recording the information needed for data exchange in- 
volves calculating, for each packet leaving the domain, the 
time expired from the instance a packet leaves its source to 
the time it reaches the destination proxy. Also recorded is 
information about each packet source and its intended ex- 
ternal node destination as well as whether the packet was 
dropped by a router inside the domain. 

This approach is intuitive and works well for protocols 
that generate packets without feedback flow control, such as 
Constant Bit Rate (CBR), UDP and others. However, mod- 
eling the inter-domain traffic which uses feedback based 
flow control, such as one of many variants of TCP, requires 
more processing capabilities. The process of modeling such 
traffic is shown in Figure 3 and involves the following steps. 

1. In the first iteration, the packets with a source within 
the domain and destination outside that domain flow 
along the path defined by the network routing through 
internal links to the destination proxy. We refer to such 
packets as DATA packets. The same internal links 
also serve as the path for the flow feedback, that is 
acknowledgment, abbreviated as ACK, packets. The 
timing and routing information of both kinds of pack- 
ets (DATA and ACK) within the domain are collected 
at the flow source and the destination proxy. 

2. In the second iteration, the timing and routing infor- 
mation collected at the source domain is used to cre- 
ate a source proxy and in-link proxy in the destina- 
tion domain. The source proxy in the destination do- 
main is activated and the traffic external to the domain 
and entering the domain is simulated using informa- 
tion collected in the first iteration in the source domain. 
In addition, the timing and routing information within 
the destination domain for packets flowing to external 

nodes is collected at the destination proxy. This infor- 
mation will be used in the source domain to define the 
source domain in-link proxy that will reproduce ACK 
packets and send them to the original flow source. 
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Figure 3. Increased number of iterations to 
support feedback-based protocols 

. In the third iteration, in-link proxy and source proxy 
are created in the source domain similar to iteration 
2, but this time for the ACK packets returned by the 
flow destination. The timing and routing information is 
obtained from the previous iteration of  the destination 
node and is used to initiate the flow of ACK packets 
within the source domain. This completes the defini- 
tion of the full feedback traffic. 

Note, that unlike the traffic without feedback control that 
uses one iteration delayed data to model traffic in the des- 
tination domain, delay here is two iterations. That is, the 
ACK packet traffic in the source domain in iteration n is 
modeled based on information from n - i iteration about 
the ACK packets produced by the DATA packet flow that 
was modeled using information from n - 2 iteration about 
the DATA packets in the source domain. Hence, there is 
delayed feedback involved in the convergence in this case, 
since an extra iteration is required to recreate the in-link 
proxy and source proxies in both the source and the desti- 
nation domains. 

In the following section, we described in some detail the 
implemented Genesis extensions in the context of ns simu- 
lator [6]. 
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3.1. NS Simulator Specific Support in Genesis 4. Performance 

Several changes were introduced to NS simulator to en- 
able Genesis integration of  domains. The initial implemen- 
tation of  these changes for UDP traffic has been described 
in [8], here we list them with the remarks what changes 
were necessary for TCP traffic. 

1. Domain definition was introduced as a Tcl-level script- 
ing command that is used to define the nodes which 
are part of the domain for the current simulation. The 
domain closure for TCP traffic is extended by adding 
proxies for all external TCP destinations that will pro- 
duce ACK packets sent to the sources within the do- 
main. Border is the most important new class added to 
the ns. A border object represents the active domain in 
the current simulation. 

. Connector is responsible for receiving, processing and 
then either delivering the packets to the neighboring 
node or dropping them. To support protocols with 
flow-control, modifications have been made to sup- 
port sending feedback information in the form of ACK 
packets and collecting information about those pack- 
ets sent from the external TCP destination. Connectors 
with target proxies abbreviate the path from the bound- 
ary of the domain to the destination by providing direct 
connector from there to the target proxy. 

3. Traffic generator is used to generate traffic flows ac- 
cording to a timer. ACK traffic generators are modi- 
fied to activate/deactivate sending packets, depending 
on the position of the source and domain and the itera- 
tion number (see Figure 3). 

4. Link proxies are used to connect the source proxies to 
a particular cross-link on the border of  the destination 
domain both for DATA and ACK packets. 

5. Synchronization of individual domain simulations is 
based on messages sent to the server and preceded with 
Message Identification Parameters which identify the 
state of the simulation. A decision whether to check- 
point the current state or to restore the saved state is 
made by each domain simulation based on the com- 
parison of flow delays and packet drop rates in two 
subsequent iterations. Diskless checkpointing enables 
the simulation to easily iterate over the same simula- 
tion time interval. 

The steps of collaboration of  simulators and the server 
are shown in Figure 1. 

Our tests for the Genesis involved three sample network 
configurations, one with 64 nodes and 576 TCP flows, the 
other with 27 nodes and rich interconnection structure with 
162 TCP flows and the third one with 256 nodes and 3072 
TCP flows. These networks are symmetrical in their inter- 
nal topology. We simulated them on multiple processors by 
partitioning them into different numbers of domains with 
varying number of nodes in each domain. The rate at which 
packets are generated and the convergence criterion are var- 
ied to give a wide-range of values for the speedup and accu- 
racy of the simulation for both non-feedback and feedback- 
based protocols. To test the Genesis performance at the bor- 
ders of  the domain, temporal congestion is introduced by 
varying the packet generation rate along links leaving the 
domain. Other performance measurement parameter intro- 
duced is the ability to average out delay information over 
the previous iterations. This helps to achieve faster conver- 
gence to the solution and decrease the number of the itera- 
tions over the same time interval. 

For 64 and the 256-node networks, the smallest domain 
size is four nodes; there is full connectivity between these 
nodes. Four such domains together constitute a larger do- 
main in which there is full connectivity between the four 
sub-domains. Finally, four large domains are fully con- 
nected and form the entire network configuration for the 64- 
node network. On the other hand, 16 of such large domains 
are grouped together to form the entire network configura- 
tion for the 256-node network (cf. Figure 4). 

The 27-node network is an example of Private Network- 
Network Interface (PNNI) network [1] with a hierarchi- 
cal structure. The Private Network-Network Interface pro- 
tocol suite is an international draft standard proposed by 
the ATM Forum. The protocol defines a single interface 
for use between the switches in a private network of ATM 
(asynchronous transfer mode) switches, as well as between 
groups of private ATM networks. The main feature of PNNI 
protocols is scalability, because the complexity of routing 
does not increase drastically as the size of the network in- 
creases. Thus, this is an interesting test case for Genesis 
approach. PNNI network smallest domain is composed of 
three nodes. Three such domains form a large domain and 
three large domains form the entire network (cf. Figure 5). 

All test were run on up to 16 processors (always the num- 
ber of processors used is equal to the number of domains) 
on Sun 10 Ultrasparc and 800 MHz IBM Netfinity worksta- 
tions. For both architectures, the machines were intercon- 
nected by the 100Mbit Ethernet. 

93 



Figure 4. A fragment of 256-node configura- 
tion showing flows from a sample node to all 
other nodes in a network 

4.1 256-node network 

a.(b + 1)%3.c 
(a + 1)%3.b.c 

Each node in the network is identified by four digits 
a.b.c.d, where a,b,c,d is greater than 0 and less than or equal 
to 3. Each digit identifies domain, sub-domain and sub-sub- 
domain and node rank, respectively, within the the higher 
level structure. 

Each node has twelve flows originating from it. Sym- 
metrically, each node also acts as a sink to twelve flows. 
The flows from a node x.y.z go to nodes: 
a.b.c.(d + 1)%4 a.b.c.(d + 2)%4 a.b.c.(d + 3)%4 
a.b.(c + 1)%4.d a.b.(c + 2)%4.d a.b.(c + 3)%4.d 
a.(b + 1)%4.c.d a.(b + 2)%4.c.d a.(b + 3)%4.c.d 
(a + 1)%4.b.c.d (a + 2)%4.b.c.d (a + 3)%4.b.c.d 
Thus, this configuration forms a hierarchical and symmetri-  
cal structure on which the simulation is tested for scalability 
and speedup. 

4.2. 27-node configuration 

The network configuration shown in Figure 5, the PNNI 
network adopted from [1], consists of  27 nodes arranged 
into 3 different levels of  domains containing three, nine and 
27 nodes, respectively. Each node has six flows to other 
nodes in the configuration and is receiving six flows from 
other nodes. The flows from a node a.b.c can be expressed 
a s :  

a.b.(c + 1)%3 a.b.(c + 2)%3 

• A ~ ~.m~c ~ r  lie, m ,  

a.(b + 2)%3.c 
(a -t- 2)%3.b.c 

% 

~ . 

Figure 5. 27-node configuration and the flows 
from the sample node 

In a set of  measurements, the sources at the borders of  
domains produce packets at the rate of  20000 packets per 
second for half of  the simulation time. The bandwidth of 
the link is 1.5Mbps. Thus, certain links are definitely con- 
gested and congestion may spread to some other links as 
well. For the other half of the simulation time, these sources 
produce 1000 packets per second. Since such flows require 
less bandwidth than provided by the links connected to each 
source, congestion is not an issue. All other sources produce 
packets at the rate of  100 packets per second for the entire 
simulation. The measurements were done with the Telnet 
traffic source that generates packets with constant size of  
500 bytes. 

Domain 27-nodes 64-nodes 
Network 3885.5 1714.5 

Large 729.5 414.7 
Small 341.9 95.1 

Speedup 11.4 I 18.0 

Table 1. Measurements results on IBM Netfin- 
ity (times are in seconds) for non-feedback 
based protocols. Large domains contain 9 or 
16 nodes and small domains contain 3 or 4 
nodes 
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Figure 6. Speedup achieved for 27 and 64- 
node network for TCP traffic 

Speedup was measured in three cases involving (i) 
feedback-based protocols, (ii) non-feedback based proto- 
cols, and (iii) the mixture of  both, with UDP traffic con- 
stituting 66 percent of  flows and TCP traffic making up the 
rest of  the flows. We noticed that if mixed traffic involves 
a significant amount of non-feedback based traffic, then it 
requires fewer iterations over each time interval and hence 
yields greater speedup up than the feedback based traffic 
alone. 

Table 1 presents a small subset of the timing results ob- 
tained from the simulation runs. It shows that partitioning 
the large network into smaller individual domains and simu- 
lating each an independent processor can yield a significant 
speedup. 

Domain 
Network 

Large 
Small 

27-nodes 
357.383 
319.179 

93.691 

64-nodes 256-node 
1344.198 1780.092 
1630.029 (A) 
223.368:  799.267 

Speedup 3.81 6.02 2.69 

Table 2. Measurements results on IBM Netfin- 
ity (times are in seconds) for feedback based 
protocols (A)-indicates non-convergence due 
to domain size 

For the non-feedback based protocols originally delays 
from the previous iteration were directly used in the next 
iteration, leading to modest speedup (cf. Table 2 and Fig- 
ure 6). According to the analysis presented in [8], the fixed 

Figure 7. Speedup achieved for 64 and 256- 
node network for mixed traffic TCP-1/3 UDP- 
2/3 

point solution delay lays in between the delays measured 
in the two subsequent iterations. Hence, a delay for each 
flow used in the next iteration is a function of the delays 
from the current and previous iterations. As expected, us- 
ing the this method of computing delay improves the Gen- 
esis performance. This is shown in Figure 7 for 64-node 
domains with mixed traffic. I f  dota is the previous esti- 
mate of  the delay, and d m is currently observed values of 
the delay, then the new estimate of  the delay is computed 
asdnew = a , d r ,  + ( 1 - a ) * d o t a ,  where0  < a < 1. 
Varying values of the parameter a, impacts the responsive- 
ness of  the delay estimate to new and old values of  observed 
delays. As a result, a impacts the speed of the simulation 
by increasing/decreasing the time required for convergence 
with an optimum value at a = 0.5. 

To measure the accuracy of the simulation runs, queue- 
monitors were placed along internal links along which con- 
gestion is most prevalent. These queue-monitors indicated 
that the number of packets dropped and the queue-sizes dif- 
fered from the corresponding values measured over the se- 
quential simulation of the entire network much less than 1% 
for both the feedback and non-feedback based protocols. 
Another measure of accuracy was based on the long range 
dependent behavior of aggregation of TCP flows that was 
expected to be self-similar. We calculated the Hurst param- 
eter on selected links with heavy TCP traffic using rescaled 
adjusted range statistic and arrived at the same value of  
0.699 for both a sequential simulation of the entire network 
and the Genesis domain-based simulation. 

95 



5. Future Work 

In the paper, we demonstrated that Genesis approach 
works for complex network protocols such as TCE Genesis 
delivered superlinear speedup for large network simulation 
on distributed computer architectures. 

Several directions for improving efficiency of  the current 
implementation include: 

• adaptive selection of  time interval based on a variance 
of the delay and packet drop rate of  the inter-domain 
traffic, 

• graph-theoretic based network partitioning algorithm 
that will optimize domain definitions by minimizing 
inter-domain traffic, 

• non-constant model of the flow delay, for example us- 
ing the linear model of the flow delay based on em- 
pirical data or using empirically collected delay time 
distribution should speed up convergence to the fixed 
point solution, 

• aggregation of inter-domain flows passin3 through the 
same border router may improve efficiency by en- 
abling replacement of  many individual source proxies 
by a single aggregate proxy. 
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