
Genesis: A System for Large-scale Parallel Network Simulation*

Boleslaw K. Szymanski, Adnan Saifee, Anand Sastry, Yu Liu and Kiran Madnani
Department of Computer Science, RPI, Troy, NY 12180, USA

{szymansk,saifea,sastra,liuy6,madnak}cs.rpi.edu

Abstract

We describe a novel approach to scalability and effi-
ciency of parallel network simulation that partitions the
networks into domains and simulation time into intervals.
Each domain is simulated independently of and concur-
rently with the others over the same simulation time inter-
val At the end of each interval, packet delays and drop rates
for each inter-domain flow are exchanged between domain
simulators. The simulators iterate over the same time inter-
val until the exchanged information converges to a constant
value within the prescribed precision. After convergence,
all the domain simulators progress to the next time inter-
val. This approach allows the parallelization with infre-
quent synchronization.

The biggest challenge for this method is to ensure iter-
ation convergence for protocols, such as TCP, that adjust
source rate to the current network conditions. The main
contribution of this paper is to demonstrate that by judi-
cious design of the domain processing and information ex-
change, the proposed approach efficiently parallelizes net-
work simulation with TCP flows.

1. Introduction

The major difficulty in simulating large networks at the
packet level is the enormous computational power needed to
execute all events that packets undergo in the network [5].
Packets crossing the boundaries of the parallel partitions
impose tight synchronization between parallel processors,
thereby lowering parallel efficiency of the execution [4].

This paper reports the progress of our long-term research
on developing an architecture that can efficiently simulate
very large heterogeneous networks in near real time [10, 8].
Our approach combines simulation and modeling in a sin-

*This work was partially supported by the DARPA Contract F30602-
00-2-0537 and by the grant from the University Research Program of
CISCO Systems Inc. The content of this paper does not necessarily re-
flect the position or policy of the U.S. Government or CISCO Systems--no
official endorsement should be inferred or implied.

gle execution. The network parts, called domains, are simu-
lated at the packet level concurrently with each other. Each
domain maintains however the model of the network exter-
nal to itself which is built by using periodical output from
other domain simulations. If this model is faithfully rep-
resenting the network, the domain simulation will exactly
represent the behavior of its domain, so its model will be
correct and can be used by other simulations. Each do-
main simulation repeats its execution each time adjusting
its model of the rest of the network and feeding the other
simulations with increasingly precise model of its own do-
main. As a result, all domain simulations collectively reach
a convergence to the consistent state of all domains and all
models.

Our method can also be seen as a variant of a general
scheme for optimistic simulation referred to as Time-Space
Mappings proposed by Chandy and Sherman in [2]. Al-
though all optimistic simulations can be viewed as variants
of this scheme, very few apply, as we do, iterations over
the same time interval to find a solution. In fact, we are
aware of only one other network simulator [3] that uses such
an iterative scheme. It, however, simulates a single switch
with many sources, whereas our design targets simulations
of thousands of routers interconnected into a network. Con-
sequently, the parallelization techniques used by these two
simulators are different.

2. Genesis Approach

Although our approach has been described earlier [10,
8], we provide a brief summary here, to make the paper
self-contained. The system is able to use different simu-
lators in a single coherent network simulation, hence we
called it General Network Simulation Integration System,
or Genesis in short.

In Genesis, each network domain consists of a subset of
network sources, destinations, routers and links that con-
nect them. It is simulated concurrently with other domains
and repeatedly iterates over the same simulation time inter-
val, exchanging information with other domains after each
iteration. In the initial iteration, each domain assumes ei-

89
0-7695-1608-4/02 $17.00 © 2002 IEEE

ther zero traffic flowing into it (when the entire simulation
or a particular flow starts in this time interval) or the traffic
characterization from the previous time interval. External
traffic into the domain for all other iteration steps is defined
by the activities of the external traffic sources and flow de-
lays and packet drop rates defined by the data received from
the other domains in the previous iteration step. The whole
process is shown in Figure 1 . .

Lr -7] /

 -i=l

* la Ih~l ¢lt~. ~ y doal~ia 2 ~ . l s chcck- palmh~ll

¥ a *
P •

E

Dotage (warkm.)

Figure 1. Progress of the Simulation Execu-
tion

Each domain is simulated on a separate processor which
has a full description of the flows whose sources are within
domain but needs to approximate flows with sources exter-
nal to the domain that are routed to or through the domain.
This is achieved as follows. In addition to the nodes that
belong to the domain by the user designation, we also cre-
ate d o m a i n c l o s u r e that includes all the sources of flows that
reach or pass through this domain. Since these are copies
of nodes active in other domains, we call them s o u r c e p r o x -

i e s . Each source proxy uses the flow definition from the
simulation configuration file.

The flow delay and the packet drop rate experienced by
the flows outside the domain are simulated by the random
delay and probabilistic loss applied to each packet travers-
ing in-link proxy. These values are generated according to
the average packet delay and its variance as well as observed
packet loss frequency communicated to the simulator by its
peers at the end of simulation of each time interval. Each
simulator collects this data for all of its own out-link proxies
when packets reach the destination proxy.

Consider a flow from an external source S to the in-
ternal destination T, passing through a sequence of exter-
nal routers r l , • • . r n and internal routers r n + l , • • • r k . The
source of the flow is represented by the sequence of pairs
(t l , p l) , . . . (t i n , p r o) , where ti denotes the time of depar-

ture of packet i and ioi denotes its size. At router j , a packet
i is either dropped, or passes with the delay d~, i . For uni-
formity, dropping can be represented as as delay T greater
than the total simulation time. Hence, to replicate a flow
with the source proxy S t sending packets to router rn+l ,
packet j produced by S ' at time t i needs to be delayed by

= ~ = 1 d , , i . A delay at each router is the sum time D j n

of constant processing, transmission and propagation de-
lays and a variable queuing.delay. If the total delay over
all external routers is relatively constant in the selected time
interval, a random delay with proper average and variance
approximates Dj well. Thanks to the aggregated effect of
many flows on queue sizes, this delay changes slower than
the traffic itself, making such model precise enough for our
applications.

For sources that do not use feedback flow control, this
approach faithfully recreates the dynamics of the flow [8].
However, to control congestion in network or internet, some
protocols use congestion feedback. The most important
among them is TCP protocol used in TCP/IP-based inter-
net congestion control [7]. TCP uses sliding-window flow
and error control mechanism for this purpose. The sliding-
window flow control provides means for the destination to
pace the source. The rate at which the source can send
data is determined by the rate of incoming acknowledgment
packets from them previous window. Any congestion on
the path from the source to destination will slow down the
data packets on their way to destination and the acknowl-
edgment packets on their way back to source. As a result,
the source will decrease it flow rate to decrease or eliminate
this congestion. This mechanism is by no means reliable
because TCP does not measure the congestion directly but
deduces its presence from the round trip time for data and
acknowledgment packets. In addition, there are no means
in TCP to establish collaboration between different sources
contributing to the congestion at the particular router. As
a result, TCP flows demonstrate complex dynamics by ad-
justing their rate to the changing conditions on their paths
to destination.

For our method, the important property of TCP traffic is
that the rate of the source is dependent on the conditions not
only in the source domain but also in all intermediate and
destination domains of the traffic. Additionally, each data
flow has a corresponding acknowledgment flow that paces
the source. As a result, for the TCP traffic, the precision of
our flow simulation depends on the quality of the replication
of the round trip traffic by the packets and their acknowl-
edgments. Moreover, the feedback loop for iterations is ex-
tended. For example, in two domain TCP traffic, a change
in congestion in the source domain will impact delays of
data packets in the destination domain in the following iter-
ation and the delays of the acknowledgment packets in yet
subsequent iteration. As a result, convergence is slower in

90

simulation of networks with TCP flows.
Our experience indicates that communication networks

simulated by Genesis will converge thanks to monotonicity
of the path delay and packet drop probabilities as a function
of the traffic intensity (congestion). The speed of conver-
gence depends on the underlying protocol. For protocols
with no flow feedback control like UDP, simulations typ-
ically requires 2-3 iterations [8]. As presented in this pa-
per, protocols with feedback based flow-control, like TCP,
require number of iterations up to an order of magnitude
larger then UDP-like protocols. However, our results were
obtained with the fixed size of the time interval. We plan
to investigate using the variance of the path delay of each
flow to adaptively define the time interval to speed up con-
vergence without severely affecting the parallel efficiency.
When the delays change slowly, the time interval could be
large before the convergence is affected. On the other hand,
if the flow delays change rapidly, it should be small to de-
crease the absolute change of the traffic delay during a sin-
gle iteration to speed up the convergence.

The efficiency of our approach is greatly helped by the
non-linearity of the sequential network simulation. It is easy
to notice that the sequential simulation time grows faster
than linearly with the size of the network. Theoretical anal-
ysis supports this observation because for the network size
of order O(rt), the sequential simulation time include terms
which are of order:

• O(n * log(n)), that correspond to sorting event queue,

• O(n(lo.q(n)) 2) to O(n2), depending on the model of
the network growth, that result from number and com-
plexity of events that packets undergo flowing from
source to destination. The average length of a path
traversed by each packet, the number of active flow
sources, the number of flows generated by each source
and even the number of packets in each flow may grow
at the rate of O(loy(n)) to O(rta) , where 0.5 < cz < 1,
as the function of n, the number of nodes in the net-
work. They together create the superlinear growth in
the number of the events processed by the simulation.

Some of our measurements [9] indicate that the dominant
term is of order O(n 2) even for small networks.

We conclude that it is possible to speed up the sequen-
tial network simulation more than linearly by splitting it
into smaller networks and parallelizing the execution of the
smaller networks. As we demonstrate later, with modest
number of iterations the total execution time can be de-
creased by the order of magnitude or more. Our primary
application is the use of the on-line simulation for network
management [9] to which the presented method fits very
well, especially when combined with on-line network mon-
itoring.

3. Des ign Overv iew

Genesis, though independent of the underlying simulator
used, nevertheless requires extensions in the description of
the simulation provided by the user as well as in the simu-
lation system. The extensions presented in this paper were
made specifically for the ns [6] system, probably the most
widely used network simulator, thanks to its large number
of implemented protocols. They also specifically support
both UDP-like and TCP-like protocols.

The user is responsible only for annotating domains in
the simulation configuration file. This is achieved simply by
labeling each node in the configuration by the correspond-
ing domain number. Based on these annotations, the ex-
tensions to the ns system process domain definition and its
closure, collect the data for information exchange and im-
plement the information exchange, as well as monitor con-
vergence. A sample domain and its closure is presented in
Figure 2 and discussed below.

Bmdct io~¢dlou~cc/dcc, fi nation

Domain l o

, " ,, I

j keleton o f

Skeleton o f Domain 2 "-1 Domain 3

Figure 2. Active Domain with Connections to
Other Domains

Support for domain definition in Genesis, i.e., identify-
ing which nodes belong to a particular domain, is the first
step towards creating the domain closure. By definition, in
the domain closure each external source proxy is directly
connected to the destination domain of its flow. We refer to
such replicated source as an source proxy and we call the
link that connects it to the domain border router an in-link
proxy.

The design supports the selective activation and deacti-
vation of domains. The purpose is to process entire sim-
ulation configuration on each participating processor, but
then, during simulation, to keep active only one domain clo-
sure while maintaining the routing information for the entire
simulation. This information is needed in identifying the

91

destination domains for all packets that leave the domain.
Consider the sample network in Figure 2. The network

is split into three individual domains, numbered 1, 2 and
3. Packets that flow into the domain from outside (with
sources in skeletons of domains 2 and 3 in Figure 2) are
produced by their source proxies in the domain closure and
delayed or dropped during transition through in-link proxies
(marked by boxes in Figure 2).

Exchange of data uses a Farmer-Worker collaboration
model in which one processor collects the data from all the
others and redirects them to all the simulators. This simpli-
fies design of the data exchange but is not the most efficient
solution, especially because the simulator rarely finishes
each time interval simulation at the same time. Scalability
of the solution, and the large communication latency when
the distributed rather than parallel environment is used, fa-
vors the tree-like data exchange design in which constant
size group of processors report to a next level representative.
This is the organization that we are currently implementing.

Recording the information needed for data exchange in-
volves calculating, for each packet leaving the domain, the
time expired from the instance a packet leaves its source to
the time it reaches the destination proxy. Also recorded is
information about each packet source and its intended ex-
ternal node destination as well as whether the packet was
dropped by a router inside the domain.

This approach is intuitive and works well for protocols
that generate packets without feedback flow control, such as
Constant Bit Rate (CBR), UDP and others. However, mod-
eling the inter-domain traffic which uses feedback based
flow control, such as one of many variants of TCP, requires
more processing capabilities. The process of modeling such
traffic is shown in Figure 3 and involves the following steps.

1. In the first iteration, the packets with a source within
the domain and destination outside that domain flow
along the path defined by the network routing through
internal links to the destination proxy. We refer to such
packets as DATA packets. The same internal links
also serve as the path for the flow feedback, that is
acknowledgment, abbreviated as ACK, packets. The
timing and routing information of both kinds of pack-
ets (DATA and ACK) within the domain are collected
at the flow source and the destination proxy.

2. In the second iteration, the timing and routing infor-
mation collected at the source domain is used to cre-
ate a source proxy and in-link proxy in the destina-
tion domain. The source proxy in the destination do-
main is activated and the traffic external to the domain
and entering the domain is simulated using informa-
tion collected in the first iteration in the source domain.
In addition, the timing and routing information within
the destination domain for packets flowing to external

nodes is collected at the destination proxy. This infor-
mation will be used in the source domain to define the
source domain in-link proxy that will reproduce ACK
packets and send them to the original flow source.

D o - - i n 2

D e m i ~ t i o h

Dzt~m ~ d I~days "-

Soo, lrc© Plroxy I¢~zt ivn 2

Q72 ~
Link Droxi~" " ' - - _ , " ' ' ' ' - - . . ~ / " "%,

C o l l a r Inu-lxdomin I~aek" " " ' ' ' " Dol~. in 2

, ~ l } ° ~ i a 1 | t a ~ i ~ 2t

('olle~'t In~ltdolmdn p ~ k e t

Figure 3. Increased number of iterations to
support feedback-based protocols

. In the third iteration, in-link proxy and source proxy
are created in the source domain similar to iteration
2, but this time for the ACK packets returned by the
flow destination. The timing and routing information is
obtained from the previous iteration of the destination
node and is used to initiate the flow of ACK packets
within the source domain. This completes the defini-
tion of the full feedback traffic.

Note, that unlike the traffic without feedback control that
uses one iteration delayed data to model traffic in the des-
tination domain, delay here is two iterations. That is, the
ACK packet traffic in the source domain in iteration n is
modeled based on information from n - i iteration about
the ACK packets produced by the DATA packet flow that
was modeled using information from n - 2 iteration about
the DATA packets in the source domain. Hence, there is
delayed feedback involved in the convergence in this case,
since an extra iteration is required to recreate the in-link
proxy and source proxies in both the source and the desti-
nation domains.

In the following section, we described in some detail the
implemented Genesis extensions in the context of ns simu-
lator [6].

92

3.1. NS Simulator Specific Support in Genesis 4. Performance

Several changes were introduced to NS simulator to en-
able Genesis integration of domains. The initial implemen-
tation of these changes for UDP traffic has been described
in [8], here we list them with the remarks what changes
were necessary for TCP traffic.

1. Domain definition was introduced as a Tcl-level script-
ing command that is used to define the nodes which
are part of the domain for the current simulation. The
domain closure for TCP traffic is extended by adding
proxies for all external TCP destinations that will pro-
duce ACK packets sent to the sources within the do-
main. Border is the most important new class added to
the ns. A border object represents the active domain in
the current simulation.

. Connector is responsible for receiving, processing and
then either delivering the packets to the neighboring
node or dropping them. To support protocols with
flow-control, modifications have been made to sup-
port sending feedback information in the form of ACK
packets and collecting information about those pack-
ets sent from the external TCP destination. Connectors
with target proxies abbreviate the path from the bound-
ary of the domain to the destination by providing direct
connector from there to the target proxy.

3. Traffic generator is used to generate traffic flows ac-
cording to a timer. ACK traffic generators are modi-
fied to activate/deactivate sending packets, depending
on the position of the source and domain and the itera-
tion number (see Figure 3).

4. Link proxies are used to connect the source proxies to
a particular cross-link on the border of the destination
domain both for DATA and ACK packets.

5. Synchronization of individual domain simulations is
based on messages sent to the server and preceded with
Message Identification Parameters which identify the
state of the simulation. A decision whether to check-
point the current state or to restore the saved state is
made by each domain simulation based on the com-
parison of flow delays and packet drop rates in two
subsequent iterations. Diskless checkpointing enables
the simulation to easily iterate over the same simula-
tion time interval.

The steps of collaboration of simulators and the server
are shown in Figure 1.

Our tests for the Genesis involved three sample network
configurations, one with 64 nodes and 576 TCP flows, the
other with 27 nodes and rich interconnection structure with
162 TCP flows and the third one with 256 nodes and 3072
TCP flows. These networks are symmetrical in their inter-
nal topology. We simulated them on multiple processors by
partitioning them into different numbers of domains with
varying number of nodes in each domain. The rate at which
packets are generated and the convergence criterion are var-
ied to give a wide-range of values for the speedup and accu-
racy of the simulation for both non-feedback and feedback-
based protocols. To test the Genesis performance at the bor-
ders of the domain, temporal congestion is introduced by
varying the packet generation rate along links leaving the
domain. Other performance measurement parameter intro-
duced is the ability to average out delay information over
the previous iterations. This helps to achieve faster conver-
gence to the solution and decrease the number of the itera-
tions over the same time interval.

For 64 and the 256-node networks, the smallest domain
size is four nodes; there is full connectivity between these
nodes. Four such domains together constitute a larger do-
main in which there is full connectivity between the four
sub-domains. Finally, four large domains are fully con-
nected and form the entire network configuration for the 64-
node network. On the other hand, 16 of such large domains
are grouped together to form the entire network configura-
tion for the 256-node network (cf. Figure 4).

The 27-node network is an example of Private Network-
Network Interface (PNNI) network [1] with a hierarchi-
cal structure. The Private Network-Network Interface pro-
tocol suite is an international draft standard proposed by
the ATM Forum. The protocol defines a single interface
for use between the switches in a private network of ATM
(asynchronous transfer mode) switches, as well as between
groups of private ATM networks. The main feature of PNNI
protocols is scalability, because the complexity of routing
does not increase drastically as the size of the network in-
creases. Thus, this is an interesting test case for Genesis
approach. PNNI network smallest domain is composed of
three nodes. Three such domains form a large domain and
three large domains form the entire network (cf. Figure 5).

All test were run on up to 16 processors (always the num-
ber of processors used is equal to the number of domains)
on Sun 10 Ultrasparc and 800 MHz IBM Netfinity worksta-
tions. For both architectures, the machines were intercon-
nected by the 100Mbit Ethernet.

93

Figure 4. A fragment of 256-node configura-
tion showing flows from a sample node to all
other nodes in a network

4.1 256-node network

a.(b + 1)%3.c
(a + 1)%3.b.c

Each node in the network is identified by four digits
a.b.c.d, where a,b,c,d is greater than 0 and less than or equal
to 3. Each digit identifies domain, sub-domain and sub-sub-
domain and node rank, respectively, within the the higher
level structure.

Each node has twelve flows originating from it. Sym-
metrically, each node also acts as a sink to twelve flows.
The flows from a node x.y.z go to nodes:
a.b.c.(d + 1)%4 a.b.c.(d + 2)%4 a.b.c.(d + 3)%4
a.b.(c + 1)%4.d a.b.(c + 2)%4.d a.b.(c + 3)%4.d
a.(b + 1)%4.c.d a.(b + 2)%4.c.d a.(b + 3)%4.c.d
(a + 1)%4.b.c.d (a + 2)%4.b.c.d (a + 3)%4.b.c.d
Thus, this configuration forms a hierarchical and symmetri-
cal structure on which the simulation is tested for scalability
and speedup.

4.2. 27-node configuration

The network configuration shown in Figure 5, the PNNI
network adopted from [1], consists of 27 nodes arranged
into 3 different levels of domains containing three, nine and
27 nodes, respectively. Each node has six flows to other
nodes in the configuration and is receiving six flows from
other nodes. The flows from a node a.b.c can be expressed
a s :

a.b.(c + 1)%3 a.b.(c + 2)%3

• A ~ ~.m~c ~ r lie, m ,

a.(b + 2)%3.c
(a -t- 2)%3.b.c

%

~ .

Figure 5. 27-node configuration and the flows
from the sample node

In a set of measurements, the sources at the borders of
domains produce packets at the rate of 20000 packets per
second for half of the simulation time. The bandwidth of
the link is 1.5Mbps. Thus, certain links are definitely con-
gested and congestion may spread to some other links as
well. For the other half of the simulation time, these sources
produce 1000 packets per second. Since such flows require
less bandwidth than provided by the links connected to each
source, congestion is not an issue. All other sources produce
packets at the rate of 100 packets per second for the entire
simulation. The measurements were done with the Telnet
traffic source that generates packets with constant size of
500 bytes.

Domain 27-nodes 64-nodes
Network 3885.5 1714.5

Large 729.5 414.7
Small 341.9 95.1

Speedup 11.4 I 18.0

Table 1. Measurements results on IBM Netfin-
ity (times are in seconds) for non-feedback
based protocols. Large domains contain 9 or
16 nodes and small domains contain 3 or 4
nodes

94

" l l m l n g l l - 2 7 N o d e ¢ o n f i g u r l l U o n s

3oo - [' , ~ : : : t , ; ~t~::~;~'~:t~:~f~<~*,~1~:_.~.C:p'-~,+.~f~~

o l O 3 0 4115 (

S I I m u l a U o n " l ime . (s e o)

T l l n l f l g . s - 6 4 n o d e ¢ o n f l g u r a l l l o n l l

8 0 0 -~;.,"'I','.!'""" : ~ : ~ - : ' . ~ " ~ : ~ , ~ ' , ~ : ~ : , , ~

~ ~ooo

o

S l m l . l l a l U O n T i m e (l i e ,o)

6 4 n o d e c o n f i g u r a t i o n s (M i x e d T r a f f i c)

400o
!

1 0 o 0 o ~:" "

o 1 5 3-0 4 5 6 0

S h l m . a l a l l o n T i m e (~ ,o©)

T l m b g l l , - 2 . 5 6 N o c l e $ ¢ ~ ' l l l g u r a t l o n l i

1 8 O O : ~ : :

¥ 140 p ~ , ,

8 o o ~t+~, ,?-~, :.., a . o . 5

2 0 0 ~
O

O 2 5 ~ 7 5 1 0 o

S l l nnC~b t l on ~ (R O)

Figure 6. Speedup achieved for 27 and 64-
node network for TCP traffic

Speedup was measured in three cases involving (i)
feedback-based protocols, (ii) non-feedback based proto-
cols, and (iii) the mixture of both, with UDP traffic con-
stituting 66 percent of flows and TCP traffic making up the
rest of the flows. We noticed that if mixed traffic involves
a significant amount of non-feedback based traffic, then it
requires fewer iterations over each time interval and hence
yields greater speedup up than the feedback based traffic
alone.

Table 1 presents a small subset of the timing results ob-
tained from the simulation runs. It shows that partitioning
the large network into smaller individual domains and simu-
lating each an independent processor can yield a significant
speedup.

Domain
Network

Large
Small

27-nodes
357.383
319.179

93.691

64-nodes 256-node
1344.198 1780.092
1630.029 (A)
223.368: 799.267

Speedup 3.81 6.02 2.69

Table 2. Measurements results on IBM Netfin-
ity (times are in seconds) for feedback based
protocols (A)-indicates non-convergence due
to domain size

For the non-feedback based protocols originally delays
from the previous iteration were directly used in the next
iteration, leading to modest speedup (cf. Table 2 and Fig-
ure 6). According to the analysis presented in [8], the fixed

Figure 7. Speedup achieved for 64 and 256-
node network for mixed traffic TCP-1/3 UDP-
2/3

point solution delay lays in between the delays measured
in the two subsequent iterations. Hence, a delay for each
flow used in the next iteration is a function of the delays
from the current and previous iterations. As expected, us-
ing the this method of computing delay improves the Gen-
esis performance. This is shown in Figure 7 for 64-node
domains with mixed traffic. I f dota is the previous esti-
mate of the delay, and d m is currently observed values of
the delay, then the new estimate of the delay is computed
asdnew = a , d r , + (1 - a) * d o t a , where0 < a < 1.
Varying values of the parameter a, impacts the responsive-
ness of the delay estimate to new and old values of observed
delays. As a result, a impacts the speed of the simulation
by increasing/decreasing the time required for convergence
with an optimum value at a = 0.5.

To measure the accuracy of the simulation runs, queue-
monitors were placed along internal links along which con-
gestion is most prevalent. These queue-monitors indicated
that the number of packets dropped and the queue-sizes dif-
fered from the corresponding values measured over the se-
quential simulation of the entire network much less than 1%
for both the feedback and non-feedback based protocols.
Another measure of accuracy was based on the long range
dependent behavior of aggregation of TCP flows that was
expected to be self-similar. We calculated the Hurst param-
eter on selected links with heavy TCP traffic using rescaled
adjusted range statistic and arrived at the same value of
0.699 for both a sequential simulation of the entire network
and the Genesis domain-based simulation.

95

5. Future Work

In the paper, we demonstrated that Genesis approach
works for complex network protocols such as TCE Genesis
delivered superlinear speedup for large network simulation
on distributed computer architectures.

Several directions for improving efficiency of the current
implementation include:

• adaptive selection of time interval based on a variance
of the delay and packet drop rate of the inter-domain
traffic,

• graph-theoretic based network partitioning algorithm
that will optimize domain definitions by minimizing
inter-domain traffic,

• non-constant model of the flow delay, for example us-
ing the linear model of the flow delay based on em-
pirical data or using empirically collected delay time
distribution should speed up convergence to the fixed
point solution,

• aggregation of inter-domain flows passin3 through the
same border router may improve efficiency by en-
abling replacement of many individual source proxies
by a single aggregate proxy.

R e f e r e n c e s

[I] Bhatt, S., R. Fujimoto, A. Ogielski, and K. Perumalla,
"Parallel Simulation Techniques for Large-Scale Net-
works" IEEE Communications Magazine, 1998.

[2] Chandy, K. M., and R. Sherman, "Space-time and sim-
ulation," Proceedings of Distributed Simulation, 1989,
Society for Computer Simulation, pp. 53-57.

[3] McGough, A. S., and I. Mitrani, "Efficient Distributed
Simulation of a Communication Switch with Bursty
Sources and Losses," In Proceedings of the 14th Work-
shop on Parallel and Distributed Simulation, pp. 85-
92, May 2000.

[4] Fujimoto, R.M., "Parallel Discrete Event Simulation;'
Communications of the ACM, vol. 33, pp. 31-53, Oct.
1990.

[5] Law, L. A., and M. G. McComas, "Simulation Soft-
ware for Communication Networks: the State of the
Art," IEEE Communication Magazine, vol. 32, pp. 44-
50, 1994.

[6] ns(network simulator). See web site at http
/ / w w w - mash.cs.berkeley.edu/ns.

[7] Stallings, W., High Speed Networks: TCP/IP and
ATM Design Principles, Prentice Hall, Upper Saddle
River, NJ, 1998.

[8] Szymanski, B., Y. Liu, A. Sastry, and K. Madnani,
"Real-Time On-Line Network Simulation;' Proc. 5th
IEEE International Workshop on Distributed Simu-
lation and Real-lime Applications DS-RT 2001, Au-
gust 13-15, 2001, IEEE Computer Society Press, Los
Alamitos, CA, 2001, pp. 22-29.

[9] Ye, T., D. Harrison, B. Mo, S. Kalyanaraman, B. Szy-
manski, K. Vastola, B. Sikdar, and H. Kaur, "Traffic
Management and Network Control Using Collabora-
tive On-line Simulation;' Proc. International Confer-
ence on Communication, ICC2001, 2001.

[10] Zhang, J. -E, J. Jiang and B. K. Szymanski, "A Dis-
tributed Simulator for Large-Scale Networks with On-
Line Collaborative Simulators," Proc. European Mul-
tisimulation Conference, vol. II, pp. 146-150, Society
for Computer Simulation Press, 1999.

96

