
Parallel Network Simulation under Distributed Genesis �

Boleslaw K. Szymanski, Yu Liu and Rashim Gupta
Department of Computer Science, RPI, Troy, NY 12180, USA

�szymansk,liuy6,guptar�@cs.rpi.edu

Abstract

We describe two major developments in the General Net-
work Simulation Integration System (Genesis): the support
for BGP protocol in large network simulations and distri-
bution of the simulation memory among Genesis component
simulations.

Genesis uses a high granularity synchronization mecha-
nism between parallel simulations simulating parts of a net-
work. This mechanism uses checkpointed simulation state
to iterate over the same time interval until convergence.
It also replaces individual packet data for flows crossing
the network partitions with statistical characterization of
such flows over the synchronization time interval. We had
achieved significant performance improvement over the se-
quential simulation for simulations with TCP and UDP traf-
fic. However, this approach can not be used directly to simu-
late dynamic routing protocols that use underlying network
for exchanging protocol information, as no packets are ex-
changed in Genesis between simulated network parts. We
have developed a new mechanism to exchange and synchro-
nize BGP routing data among distributed Genesis simula-
tors. The extended Genesis allows simulations of more real-
istic network scenarios, including routing flows, in addition
to TCP or UDP data traffic.

Large memory size required by simulation software hin-
ders the simulation of large-scale networks. Based on our
new support of distributed BGP simulation, we developed
an approach to construct and simulate networks on dis-
tributed memory using Genesis simulators in such a way
that each participating processor possesses only data re-
lated to the part of the network it simulates. This solution
supports simulations of large-scale networks on machines
with modest memory size.

�This work was partially supported by the DARPA Contract F30602-
00-2-0537 and by the grant from the University Research Program of
CISCO Systems Inc. The content of this paper does not necessarily re-
flect the position or policy of the U.S. Government or CISCO Systems—no
official endorsement should be inferred or implied.

1. Introduction

In simulating large-scale networks at the packet level,
a major difficulty is the enormous computational power
needed to execute all events that packets undergo in the net-
work [3]. Conventional simulation techniques require tight
synchronization for each individual event that crosses the
processor boundary [1]. The inherent characteristics of net-
work simulations are the small granularity of events (indi-
vidual packet transitions in a network) and high frequency
of events that cross the boundaries of parallel simulations.
These two factors severely limit parallel efficiency of the
network simulation execution under the traditional proto-
cols [1].

Another difficulty in network simulation is the large
memory size required by large-scale network simulations.
With the emerging requirements of simulating larger and
more complicated networks, the memory size becomes a
bottleneck. When network configuration and routing infor-
mation is centralized in a network simulation, large mem-
ory is needed to construct the simulated network. Moreover,
memory size used by the simulation increases also with the
intensity of traffic loads that impact the average size of the
future event list. Although memory requirements can be
tampered by the good design and implementation of the
simulation software [4], we believe that to simulate truly
large networks, the comprehensive, distributed memory ap-
proach needs to be developed.

We have described the details of our novel approach to
scalability and efficiency of parallel network simulation in
Genesis in [7, 8]. Genesis combines simulation and mod-
eling in a single execution. It decomposes a network into
parts, called domains, and simulation time into intervals,
and simulates each network partition independently and
concurrently over one interval. After each time interval,
flow delays and packet drop rates observed by each domain
simulator are exchanged with others. Each domain simula-
tor will model the traffic external to its own domain based
on the flow data received from other domains. Link proxies
are used in Genesis to represent the external traffic paths.
Domain simulators iterate over the same time interval un-

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

til they reach a global convergence with controllable preci-
sion. An execution scheme is shown in Figure 1 that illus-
trates also synchronization between the repeated iterations
over the same time interval and use of checkpoints for the
domain simulators [8].

Figure 1. Simulation Execution Scheme in
Genesis

Genesis achieved performance improvement thanks to
simulating smaller number of events and its infrequent,
high-granularity synchronization mechanism. No individ-
ual packet was synchronized between two parallel simula-
tions; instead, packets were “summarized” on some metrics
(delay, drop rate, etc.) and only these data were exchanged
between domains at the end of each time interval. This ap-
proach was designed to simulate TCP and UDP data traf-
fics, but could not be used to simulate some other flows,
for example, data flows providing information for routing
protocols. This is because the traffic of a routing protocol
cannot be summarized; instead, different content and tim-
ing of each routing packet might change the network status.
Particularly, our desire to simulate BGP protocol required
us to develop new synchronization mechanism in Genesis.

Many parallel simulation systems achieved speed-up in
simulation time, however, they also required that every ma-
chine involved had big enough memory to hold the full net-
work, the requirement most easily achievable through the
systems with shared memory. In this paper, we describe the
newly developed version of Genesis that fully distributes
memory usage in Genesis. This version overcomes the
memory size limitation.

2 Synchronization Mechanisms in Genesis

Genesis uses a high granularity synchronization mecha-
nism to simulate network traffics, e.g., TCP or UDP flows.

This is achieved by having parallel simulators loosely coop-
erating with each other. They simulate partitioned network
concurrently with and independently of each other in one
iteration. They exchange data only during the checkpoints
executed between iterations. In addition, individual pack-
ets are not stored or exchanged among parallel simulators.
Instead, each data flow is summarized based on some pre-
defined metrics, and only the summarized traffic informa-
tion is exchanged among parallel simulators. This approach
avoids frequent synchronization of parallel simulators. We
have shown that it achieved significant speed-up for TCP or
UDP traffic simulations. The total execution time could be
decreased by an order of magnitude or more [7]. Our pri-
mary application was the use of the on-line simulation for
network management [10].

The Genesis approach was designed for network data
traffics, e.g., TCP or UDP traffics. In many network sim-
ulation scenarios, the real data of the traffics packets are
not important to the simulation result. However, for some
other traffic, especially related to network routing protocols,
e.g., routing protocols, summaries of packet flows are not
enough. The update information stored in a packet of such
a protocol need to be faithfully delivered to its destination.
In addition, these packets need to be delivered in the correct
time-stamp order. These two requirements are necessary to
preserve network dynamics in the simulation. Hence, new
synchronization mechanism is needed in Genesis to satisfy
these two requirements.

We developed an event-level synchronization mecha-
nism which can work within the framework of Genesis.
This work was done using our previous development of
Genesis based on SSFNet [6], which was reported in [9].
Particularly, we modified Genesis to support the simulation
of BGP protocol, in addition of TCP and UDP protocols. In
Genesis, when we simulate a network running BGP proto-
col for inter-AS (Autonomous System) routing, with back-
ground TCP or UDP traffics, we decompose the network
along the boundaries of AS domains. Each parallel simula-
tor simulates one AS domain, and loosely cooperates with
other simulators. When there are BGP update messages that
need to be delivered to neighbor AS domains, the new syn-
chronization mechanism in Genesis guarantees that these
messages will be delivered in the correct time-stamp order.

3 BGP Simulation Design Overview

In the simulation systems which use only event-level
synchronization based on either conservative or optimistic
protocol, the correct order of event delivery is guaranteed
by the protocol. The price, however is frequent synchro-
nization.

In Genesis, we take advantage of high granularity syn-
chronization for TCP and UDP traffics, and at the same

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

time synchronize BGP update messages by doing extra roll-
backs, to reflect the actual routing dynamics in the network.

In Genesis, simulators are running independently of each
other within one iteration. To simulate BGP routers sepa-
rately from the Genesis domain in each parallel AS domain
simulator, and to make them produce BGP update mes-
sages for its neighbor domains, we introduced proxy BGP
neighbor routers. Those are routers mirroring their counter-
parts which are simulated by other simulators. The proxy
BGP routers do not perform the full routing functionality
of BGP. Instead, they maintain the BGP sessions and col-
lect the BGP update messages on behalf of their counterpart
routers.

At the synchronization point in Genesis, the BGP up-
date messages collected in the proxy BGP routers, if there
are any, are forwarded to the corresponding destination AS
domain simulators through a component called BGP agent.
These update messages are delivered to the BGP agent in
the destination AS domain through a farmer/agent frame-
work, and are distributed there to the BGP routers which are
the destinations of these messages. The proxy BGP router
and BGP agent framework are shown in Figure 2.

UPDATE

Proxy BGP A

AS-A AS-B

BGP Agent

BGP A Proxy BGP B

BGP B

AS-B

BGP Agent

Farmer

Genesis Simulator 1 UPDATE

UPDATE
AS-A

message forward in simulation

Active Domain

Active Domain

Genesis Simulator 2

message forward in Agent/Farmer

Figure 2. Proxy BGP Routers and BGP Agents

This framework enables the system to exchange real
BGP message data among Genesis simulators. But this is
not a full solution yet. Within the independent simulation
of one iteration in Genesis, the BGP routers produce up-
date messages for their neighbors, but do not receive update
messages from their neighbors in other AS domains. Had
they received these update messages, as it happens in an
event-level synchronization simulation system, they would
have probably produced different update messages. In addi-
tion, the routing might also have been changed. To simulate

BGP protocol correctly, these BGP updates need to be exe-
cuted in their correct time-stamp order in each BGP router.
Genesis achieved this event-level synchronization for BGP
updates by doing extra rollbacks.

During the Genesis checkpoint after one time interval,
the BGP agent in each AS domain collects BGP update
messages from other BGP agents. If it receives some update
messages for the previous interval, it will force the AS do-
main simulator to rollback to the start time of the previous
interval. Then, it inserts all the received update messages
into its future event list. Its domain simulator will reiter-
ate the time interval again, and will “receive” these update
messages at the correct simulation time and will react to
them correspondingly. The BGP messages produced in the
current reiteration might be different from the once seen at
previous iteration. Hence, the rollback process might con-
tinue in domain simulators until all of them reach a global
convergence (the update messages in subsequent rollback
iterations are the same for each domain). Figure 3 shows
the flowchart of rollback in the BGP agent. High cost of
checkpointing the network state makes it impractical to in-
troduce separate rollbacks for BGP activities. Hence, the
UDP/TCP traffic checkpoints are used for all rollbacks in
Genesis.

Rollback

Convergence test

Insert received remote
BGP future events into

event list

BGP message
exchanging during

check-pointing

Simulation

Continue

Resume simulation

No

Yes

Figure 3. Synchronization for BGP Update
Messages

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

4 Simulation with Distributed Memory

Simulations of large-scale networks require large mem-
ory size. This requirement can become a bottleneck of scal-
ability when the size or the complexity of the network in-
creases. For example, ns2 uses centralized memory during
simulation, which makes it susceptible to the memory size
limitation. The scalability of different network simulators
was studied in [4]. This paper reports that in a simulation
of a network of a dumbbell topology with large number of
connections, ns2 failed to simulate more than 10000 con-
nections. The failure was caused by ns2’s attempt to use
virtual memory when swapping was turned off. This partic-
ular problem can be solved by using machines with larger
dedicated or shared memory. Yet, we believe that the only
permanent solution to the simulation memory bottleneck is
to develop the distributed memory approach.

In the version reported in [7], Genesis did not distribute
network information among domain simulators. Each of
them had to construct the full network and to store all
the dynamic information (e.g., routing information) for the
whole network during the simulation. To avoid such repli-
cation of memory, we developed a new version of Genesis
which completely distributes network information. Thanks
to this solution, Genesis is able to simulate large networks
using a cluster of computers with smaller dedicated memory
(compared to the memory size required by SSFNet simulat-
ing the same network), as shown in section 6.3.

Memory distribution is particularly challenging in Gen-
esis, because of its special high granularity synchronization
approach. In Genesis, within one time interval, one do-
main simulator is working independently of others, simu-
lating the partial traffics flowing within or through that do-
main. Other parts of these traffics, which are outside of
that domain, are simulated by proxy links which compute
the packet delays and losses based on flow “summaries”
provided by the outside domain simulators [7]. If the net-
work information is completely distributed among the do-
main simulators, each one has information about only a
part of the network. Hence, these simulators cannot simu-
late global traffics independently because information about
a flow source or its destination, or both will not be there.
We should notice the difference here from other event-level
synchronization systems. In those systems, to simulate dis-
tributed network, each individual event crossing the bound-
ary is forwarded to remote simulators regardless of its “se-
mantic meaning”, and the parallel simulators do not need to
simulate global flows independently.

As a solution, in each domain we introduced traffic prox-
ies that work on behalf of their counterparts in the remote
domains. Traffic proxies send or receive TCP or UDP data
packets as well as acknowledgment packets according to
the produced feedbacks. To simulate inter-domain flows,

partial flows are constructed between local hosts and proxy
hosts. Thus, in the simulation of one AS domain, the sim-
ulator just simulates one part of an inter-domain traffic by
using proxy hosts and proxy links, as shown in Figure 4.

Proxy Host

Proxy Host

Proxy Host

Inter-domain traffic

Inter-domain traffic

AS Domain Simulator

Host

Proxy Host

Proxy Link

Figure 4. Proxy Hosts and Inter-domain Traffic

The actual traffic path between local hosts and remote
hosts must be decided by inter-AS routing. For example,
inter-AS routing changes can cause remote inbound traffic
to enter the current AS domain from different entry points,
thus routing the flow through a different path inside the do-
main. We developed a method, described below, to con-
struct these remote traffic paths and to automatically adjust
them to reflect the current inter-AS routing decision.

5 Distributed Memory Simulation Design

To support distributed memory simulation in Genesis,
changes were made to both DML definition and SSFNet
based implementation.

Global routing information consistency: To compute
global routing in separate simulations, each of which
has only a part of the network, IP address consistency
is required to make the routers understand the routing
update messages. In addition, we use BGP proxies and
traffic proxies to act on behalf of their counterparts.
To use routing data, these proxies need to use the IP
addresses of their counterparts when they produce
traffic packets. We used a global IP address scheme
for the whole network, and introduced a mechanism of
IP/Interface address mapping, which translates local
addresses to and from global addresses used in our
BGP update messages.

Remote host, traffic and link: Those definitions were
added to the current DML definitions for SSFNet [6].
Remote host defines the traffic host (source or sink)

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

which is not within the current simulating domain, and
specifies the global IP address for this proxy. Remote
traffic pattern extends SSFNet to allow the definition
of a traffic which will use proxy IP address instead
of its own local IP address. Remote link is defined to
connect the remote host to the current domain, and it is
implemented as a Genesis proxy link which can adjust
its link delay and applied packet drop rates during the
simulation.

Proxy Host

AS Domain Simulator

Host

BGP

BGP

Global routing
decision

Proxy Host

…………
Proxy

Switch

Host

Figure 5. Remote Traffic Path Construction
with Proxy Switch

Remote traffic path construction: The difficult part of re-
mote traffic path construction was to decide how
to connect proxy hosts to the current AS domain.
Changes in inter-AS routing decision might change the
entry (exit) point of traffic packets to (from) the do-
main. Such a change cannot be determined during the
network construction phase. We designed a structure
which connected remote traffic hosts to a proxy switch,
instead of connecting them to any entry point directly,
as shown in Figure 5. When a packet sent by a proxy
host reaches the proxy switch, the proxy switch will
lookup an internal mapping from flow id to the current
inter-AS routing table, and will forward this packet via
the correct inbound link to one of the BGP routers
on the domain boundary. If the inter-AS routing is
changed by some BGP activities later, the proxy switch
will automatically adjust its internal mapping, and the
packets with the same flow id will be forwarded to a
different inbound link.

6. Performance Evaluation

6.1. Simulation Model

To test the performance and scalability of the Genesis
extension described here and to compare them to those of

SSFNet, we use a modified version of the baseline model
defined by the DARPA NMS community [5]. The topol-
ogy for the model that we are using can be visualized as
a ring of nodes, where each node (representing an AS do-
main) is connected to one node preceding it and another one
succeeding it. We refer to each node or AS domain as the
“campus network”, as shown in Figure 6. Each of the cam-
pus networks is similar to the others and consists of four
subnetworks. In addition, there are two additional routers
not contained in the subnetwork, as shown in the diagram.

Figure 6. One campus network

The subnetwork labeled Net 0 consists of three routers
in a ring, connected by links with 5ms delay and 2Gbps
bandwidth. Router 0 in this subnetwork acts as a BGP bor-
der router and connects to other campus networks. Subnet-
work 1 consists of 4 UDP servers. Subnetwork 2 contains
seven routers with links to the LAN networks as shown in
the diagram. Each of the LAN networks has one router and
four different LAN’s consisting of 42 hosts. The first three
LAN’s have 10 hosts each and the fourth LAN has 12 hosts.
Each of the hosts is configured to run as a UDP Client. Sub-
network 3 is similar to Subnetwork 2. Internal links and
LAN’s have the same property as Subnetwork 2.

The traffic that is being exchanged in the model is gen-
erated by all the clients in one domain choosing a server
randomly from the Subnetwork 1 in the domain that is a
successor to the current one in the ring. We used differ-
ent send-intervals of 0.1, 0.05 and 0.02 second to vary the
traffic intensities, and used different numbers of nodes (AS
domains) to vary the size of the network. Each simulation
was run for 400 seconds of the simulated time.

All tests were run on up to 30 processors on Sun 10
Ultrasparc workstations, which were interconnected by a
100Mbit Ethernet. In the simulations under distributed
Genesis, the number of processors used was equal to the
number of campus networks.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

6.2. Synchronization Convergence on BGP Bursts

In BGP network simulations, the first BGP update mes-
sage burst happens when AS domains need to exchange
BGP information to set up the global inter-AS routing. In
Genesis, AS domains are constructed distributively, and
BGP update messages are synchronized by re-iterating over
one time interval until the BGP messages exchanged among
domains converge (no more changes) on that interval, as
we showed in Figure 3. We measured the convergence of
the synchronization in Genesis for BGP networks with 10,
15 and 20 AS domains. Table 1 shows the number of re-
iterations needed in Genesis to converge during the BGP
message burst, and the number of BGP messages exchanged
by each AS simulator. It should be noted that the number
of needed iterations grows sublinearly with the number of
domains, so slower then the number of messages, which are
proportional to the number of domains.

No. of AS Iterations Messages
10 7 22
15 8 36
20 12 44

Table 1. BGP synchronization convergence

The results show that the number of re-iterations is re-
lated to the size of the network, and is proportional to the
longest distance (measured by number of intermediate AS
domains) between two AS domains. This distance decides
how many re-iterations are needed for BGP decisions from
one AS domain to reach all the other AS domains in the net-
work. In our ring-based topology, this distance is related to
the ring size.

Although larger BGP network will require more re-
iterations on BGP bursts in Genesis, our approach supports
scalability in terms of required memory size. In networks in
which BGP bursts are not frequent compared to the changes
in the background traffic, this approach also assures good
runtime performance thanks to high granularity synchro-
nization of the background traffic.

6.3. Simulation Performance

Genesis distributively constructs and simulates BGP
routers in AS domain simulators. To measure scalability
of this solution in terms of network size, we simulated BGP
networks of 10, 15, 20 and 30 AS domains, each run by
a Sun 10 Ultrasparc workstation with 256Mb of memory.
As shown in Figure 7, when the number of AS domains
increases, unlike SSFNet, the memory usage of one Gene-
sis AS simulator does not increase. As a result, by utilizing

0

100

200

300

400

500

600

10 15 20 30

No. of AS Domains

M
em

or
y

U
sa

ge
 (M

b)

SSFNet
Genesis

Figure 7. Memory usage of SSFNet and Gen-
esis for simulating different sizes of BGP
networks. Memory sizes of Genesis shown
above are the requirements for single AS sim-
ulator

more computers with smaller memories, we are able to sim-
ulate much larger networks.

0

50

100

150

200

250

300

350

400

0.1 0.05 0.02

Send Interval (second)

M
em

or
y

U
sa

ge
 (M

b)

SSFNet
Genesis

Figure 8. Memory usage of SSFNet and Gen-
esis for 20-AS BGP network simulations with
different send-rates

Memory usage of simulation is related not only to the
static network size, but also to the network dynamics. We
increased the traffic intensity by reducing the traffic send-
interval from 0.1 to 0.05 and 0.02 second. As shown in
Figure 8, although we did not observe very big changes in
memory usage in SSFNet on this campus network model,
Genesis showed even smaller increase in memory size with
the same changes in traffic (thanks to its smaller base mem-
ory size).

As we have shown in [7, 8], Genesis achieved execu-
tion speedups thanks to its high granularity synchronization
mechanism. In the described new version of Genesis, de-
spite the extra overheads introduced by distributing the net-
work, good speedups where achieved for 10, 15, 20 and 30

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

domain simulators with BGP routers. The Genesis domains
were defined by the AS boundaries. Figure 9 shows the
speedups of simulations for these networks.

0

2

4

6

8

10

12

14

16

10 15 20 30

No. of AS Domains

Sp
ee

du
p

Figure 9. Speedup achieved for simulations
of different BGP network sizes

Figure 10 shows that Genesis achieved higher speedups
with higher traffic intensities. This is because with higher
traffic intensity, more events need to be simulated in a fixed
simulation time. Theoretical analysis tells us that sequen-
tial simulation time includes terms of order ��� � �������,
due to sorting event queues. Genesis distributes the simula-
tion among domain simulators, which reduces the number
of events needed to be simulated by one simulator, so it can
achieve higher speedups when the traffic increases as well
as when the network size increases.

To measure the accuracy of the simulation runs, we mon-
itored the per flow end-to-end packet delays and packet drop
rates. We compared the results from distributed Genesis
with the results from sequential simulations under SSFNet,
and calculated the relative errors. Our results showed that
for most of the flows, the relative errors of both packet de-
lay and drop rate were within the range from 2% to 10%,
while a small number of individual flows had higher rela-
tive errors up to 15% to 20%. Considering the fact that in a
simulation with large number of flows, the network condi-
tion was mainly determined by the aggregated effects of sets
of flows, we calculated the root-mean-square of the relative
errors on each set of flows which went through the same
domain. These root-mean-squares of relative errors were
below 5%, which seems sufficiently close approximation of
the sequential simulation for many applications.

Simulation results showed that by fully distributing the
simulation in Genesis, we gained the scalability of mem-
ory size. In addition, the parallel simulation in Genesis
still achieved performance improvement in this distributed
framework, compared to sequential simulations.

0

2

4

6

8

10

12

14

0.1 0.05 0.02

Send Interval (second)

Sp
ee

du
p

Figure 10. Speedup achieved for 20-AS BGP
network simulations with different send-rates

6.4. Impacts of On-going BGP Activities

We have shown the synchronization convergence on
BGP bursts under Genesis in section 6.2. When a BGP
update message propagation happens, Genesis re-iterates
over the same time interval until the propagation converges.
Each re-iteration consumes simulation run time. When
BGP update message propagations happen periodically dur-
ing the simulation, the additional run time required by these
re-iterations will decrease the speedups achieved by utiliz-
ing parallel simulation. An interesting question is how such
on-going BGP activities would affect the simulation perfor-
mance.

To investigate this question, we introduced BGP session
crashes into our experiments in which the simulation time
was fixed at 400 seconds for 20 AS’s and, correspondingly
20 Sun 10 Ultrasparc workstations. The BGP session be-
tween two neighboring AS domains, campus network 3 and
4, crashed every � seconds, each time staying down for
��� seconds, and then coming back and staying alive for
another ��� seconds. We varied the value of � from 80 to
60, 40 and then 20 seconds. We also used different lengths
of iteration time intervals for Genesis check-pointing, de-
noted as � , which was set to 20, 10 and 5 seconds. Fig-
ure 11 shows the speedups achieved in these experiments.

As expected, in the simulation time intervals in which the
specified BGP session went down, BGP update messages
were propagated causing the broken routes to be withdrawn
and back up routes being set up. Accordingly, data packet
flows also changed and used the new routes. When that
BGP session came back again, BGP update messages prop-
agated again and re-established the broken routes. In either
case, the relevant time interval had to be re-iterated again
and again until it converged. So these intervals were “slow-
down” periods. The time intervals with no BGP propaga-
tions were “speed-up” periods thanks to parallel simulation
mechanism used by Genesis, as discussed in the previous

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

0

1

2

3

4

5

6

7

20 40 60 80

Crash Interval D (sec.)

S
p

ee
d

u
p T = 20 sec.

T = 10 sec.
T = 5 sec.

Figure 11. Speedup achieved with BGP
crashes run on 20 processors. D denotes
crash interval length. T stands for checkpoint
interval length

section. As a result, the proportion of the “slow-down” time
in the whole simulation time affects the overall speedup: the
less frequently the crashes happen, the greater the speedup
that can be achieved. On the other hand, the length of the
time interval also affects the total re-iteration time. Ide-
ally, the smaller the length of the time interval, the shorter
the total re-iteration time. But there are two other fac-
tors which benefit from longer intervals. First, small inter-
val length increases the synchronization and check-pointing
overheads between intervals and can overwhelm the simu-
lation speedup. Second, if the interval length is too small
to cover the BGP propagation period, then the next time in-
terval will need to be re-iterated in addition to the current
one.

In our experiments, we were able to reduce the iteration
time interval length to 5 seconds, as we observed that the
BGP propagation in our experiment scenario was around 3
seconds. As shown in Figure 11, we achieved significant
speedups for crash intervals greater than 40 seconds. Be-
sides the crash frequency, the iteration length also played
an important role in the performance. When using big iter-
ation interval length of 20 seconds, Genesis failed to pro-
duce any speedup with short crash interval of 40 seconds.
These results indicate that a method to automatically decide
the optimal iteration length for a given simulation scenario
could be a valuable future extension that can improve the
overall performance of the system.

7. Future Work

In the paper, we demonstrated that the described here
new Genesis version can work efficiently with fully dis-
tributed network memory. This design reduces and makes
scalable the memory size requirement for large-scale net-

work simulations. As a result, Genesis is able to simulate
huge networks using limited computer resources. One di-
rection of the future work in this ares is to apply Genesis
to more real-world applications, to construct more practical
network models and to simulate and analyze them in Gene-
sis.

With the new support of BGP simulation in Genesis,
study of the performance and stability of BGP can be an-
other direction of future research. The memory size re-
quired by BGP network simulation increases very fast when
the number of BGP routers and AS domains increases. As a
result, the simulation of large BGP networks was hindered
by the memory size limitation. Genesis offers a new ap-
proach to simulating BGP on distributed memory that is
scalable both in terms of simulation time and the required
memory.

References

[1] Bhatt, S., R. Fujimoto, A. Ogielski, and K. Perumalla, Par-
allel Simulation Techniques for Large-Scale Networks. IEEE
Communications Magazine, 1998.

[2] Fujimoto, R.M. Parallel discrete event simulation. Comm. of
the ACM, 33:31–53, Oct. 1990.

[3] Law, L.A., and M. G. McComas. Simulation software for
communication networks: the state of the art. IEEE Comm.
Magazine, 32:44–50, 1994.

[4] Nicol, D. Comparison of network simulators revisited. Avail-
able at http://www.ssfnet.org/Exchange/gallery/dumbbell/
dumbbell-performance-May02.pdf, May 2002.

[5] NMS (Network Modeling and Simulation DARPA
Program) baseline model. See web site at
http://www.cs.dartmouth.edu/ nicol/NMS/baseline/.

[6] SSFNet(Scalable Simulation Framework Network Models).
See web site at http://www.ssfnet.org/homePage.html.

[7] Szymanski, B., A. Saifee, A. Sastry, Y. Liu and K. Madnani.
Genesis: A system for large-scale parallel network simula-
tion. Proc. 16th Workshop on Parallel and Distributed Simu-
lation, pages 89–96, May 2002.

[8] Szymanski, B., Y. Liu, A. Sastry, and K. Madnani. Real-time
on-line network simulation. Proc. 5th IEEE Int. Workshop on
Distributed Simulation and Real-Time Applications, DS-RT
2001, August 13–15, 2001, IEEE Computer Society Press,
Los Alamitos, CA, 2001, pages 22–29.

[9] Szymanski, B., Q. Gu, and Y. Liu. Time-network partitioning
for large-scale parallel network simulation under ssfnet. Proc.
Applied Telecommunication Symposium, ATS2002, B. Bodnar
(edt), San Diego, CA, April 14–17, SCS Press, pages 90–95,
2002.

[10] Ye, T., D. Harrison, B. Mo, S. Kalyanaraman, B. Szyman-
ski, K. Vastola, B. Sikdar, and H. Kaur. Traffic manage-
ment and network control using collaborative on-line simu-
lation. Proc. International Conference on Communication,
ICC2001, 2001.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

