194 Topics in Distributed Algorithms

leading to them. The occupied storage is not explicitly returned to the pool of available
memory locations. It may then happen that the computer runs out of storage, while actu-
ally not all storage is being used. The task of a garbage collection algorithm is to return
formerly used storage to the pool of available space.

In this chapter we aim at a_general method for deriving garbage collection algorithms.
The underlying idea is to start from a simpler ‘‘base algorithm’ that is correct and well-
understood, and to derive a concurrent garbage collection algorithm by applying transfor-
mations or by superimposing additional control. We will show that solutions to the termi-
nation detection problem can be almost mechanically transformed into solutions to the gar-
bage collection problem. It turns out that virtually all existing (on-the-fly) garbage collec-
tion algorithms can be obtained by applying the transformation to a suitable termination
detection protocol. Several new, highly parallel garbage collection algorithms can also be
derived by following this approach.

In section 5.1 we introduce the garbage collection problem and present the transfor-
mations of Termination Detection algorithms to garbage collection algorithms. In section
5.2 we present a number of examples of the transformation. We conclude in section 5.3
with additional observations and remarks.

5.1 The Transformation

5.1.1 Garbage Collection

In many applications of computer systems the data is organized as a directed graph of
varying structure. In this graph a fixed set of nodes exists, called the roots, which are the
allowable entry points of the structure (for example, because these nodes are identified with
the variables of the program). A node is called reachable if there is a directed path of
edges leading from a root to the node. We refer to the subset of the reachable nodes as
the data structure. Non-reachable nodes, i.e., nodes not belonging to the data structure, are
called garbage nodes. A user program, also called the mutator, can add or delete edges
between reachable nodes. The mutator never adds or deletes edges to or from garbage
nodes. New nodes are allocated from a set of free nodes, called the heap, when new nodes
are needed. The heap is mostly implemented as a linear list or a more general linked
structure. We assume that there is a special root pointing to the heap, so heap nodes are

5.1 The Transformation 195

always reachable. Thus we can treat the “‘creation’’ and addition of a new node to the
data structure as a sequence of mutations within the data structure. When an edge is
deleted, a node may be disconnected from the data structure and become a garbage node.

Garbage nodes cannot be made reachable again by the mutator, because no edges are »"
added to garbage nodes.

We assume that the computer’s memory is organized as an array of cells, each capa-
ble of representing one node of the directed graph. From now on we use the words cell
and node interchangeably. A cell i can have several fields (representing the data), among
which is a field children (i), containing the set of pointers to nodes to which an edge from
[exists. Thus addition and deletion of edges consist of execution of the following code by T3

the mutator:
ADD(,j) :‘(_;_;

{ i and j are reachable nodes }

children (i) == children (i) L {j }

DELETEC()):
{ i is reachable, j € children(i) }
children (i) == children(i)— {j}

The task of a garbage collecting system is to identify garbage nodes and recycle them
to the heap. Most garbage collectors are of the so- called ‘‘mark-and-sweep’’ type. Every
round of such a collector consists of two phases. The first is the marking phase, which
attempts to color the reachable nodes different from the garbage nodes. For this purpose
an extra field color is added to each cell. This field can have the value white (‘“‘garbage’’)
or black (‘‘reachable’’). (Later we introduce some more colors and extra fields.) An algo-
rithm for the marking phase is also called a graph marker. The second phase is the

appending phase, in which a sweep through the memory is made and the garbage nodes
are appended to the heap. During the second phase the marking is undone, so the system
:s ready for the next round of garbage collection.

3

In this chapter we focus on the graph marking phase of garbage collecting systems. i
\Marking algorithms do not really mark the garbage nodes, but rather mark the reachable 3
nodes, starting from the roots. At the end of the marking phase the unmarked nodes are =
-onsidered as garbage. Observe that the reverse is not always true: it is possible in some
carbage collecting systems that garbage nodes have been marked, namely if they turned o
w0 garbage after they were visited by the graph marking algorithm. These nodes will :
~onsequently not be collected in the current round of the collector, but they will be in the
~axt round. We define a collecting system to be safe if no reachable nodes are ever

196 Topics in Distributed Algorithms

appended to the heap.

Many algorithms for graph marking are based on a sequential traversal algorithm for
directed graphs, like Schorr and Waite [SW6T7], or Wegbreit [We72]). These algorithms
have the disadvantage that the mutator must be *‘frozen’’ during the marking phase. These
garbage collectors are often called as an interrupt routine when the heap is (nearly) empty,
and thus cannot be used in real-time applications. In the past ten years several algorithms
were developed for on-the-fly garbage collection, in which the graph marking phase can be
run concurrently with the mutator and yet it is guaranteed that all reachable nodes are
being marked. See e.g. Dijkstra er al. [Dij78], Ben-Ari [Be84], Hudak and Keller [HKS82],
or Hughes [Hu85]. We study on-the-fly garbage collection in considerable detail in this
chapter.

It is useful to distinguish several computational models for the on-the-fly garbage col-
lection problem. In the early papers the problem was considered for the classical von Neu-
mann type computer. There is one central processing unit, having access to one array of
memory cells, and this processor runs the mutator program as well as the garbage collec-
tion program. Dijkstra er al. [Dij78] considered the possibility of using a second, special
purpose, processor dedicated to garbage collection only. In this computational model there
are two processors (or processes) working on the same data independently and con-
currently. To minimize exclusion and synchronization overheads, the actions of the two
processes are to interleave in as small a “‘grain™ as possible. More recently, research has
focussed on a more distributed type of computer system (see [HK82, Hu85]). The underly-
ing motivation originates from the development of functional programming languages
(LISP, SASL, etc). Functional programs are quite suitable for distributed evaluation and
employ the kind of data structure we have defined. Here we assume a ““pool’” of proces-
sors, with each processor having its own array of memory cells. Of course, a child of a
cell may now reside in the memory of another processor (i.e., links may be ‘‘interproces-
sor’’).

5.1.2 Graph Marking

In this section we develop the heuristics for transforming a termination detection protocol
into an on-the-fly garbage collection algorithm. The graph marking algorithm will consist
of a set of marking processes with a termination detection algorithm superimposed on it.
The set of marking processes is always (almost) the same one, while many different termi-
nation detection algorithms are used. For this reason we refer to the superimposition as a
transformation of the termination detection algorithm. For an extensive description and

5.1 The Transformation 197

treatment of the termination detection problem, see section 3.3 and chapter 4. It is
assumed that each of a set of processes can be in an active or a passive state. A passive

process can become active only by interaction with an active process. It can be shown 5
that the state in which all processes are passive is stable. The purpose of a termination s
detection algorithm is to detect that the system is in this state.

We concentrate on the graph marking phase of garbage collection algorithms. Sup- A
pose that each cell in the memory contains a field color, and that initially color (i) = white =
for all i. The purpose of the marking phase is to blacken every node that is reachable from
one of the root nodes. Then, the appending phase will collect the white nodes and whiten
the black ones, so the collecting algorithm can be repeated. To avoid any reachable cells
from being collected, we must ensure that all reachable cells are marked before the
appending phase takes over. In deriving the essential theory, we first assume that the =
mutator is frozen while the graph marker is working, which means that the data structure is

1L

i

fixed. We subsequently adapt the mutator program so as to run concurrently with the
marker safely.

5.1.2.1 The Basic Transformation. For each cell i in the computer’s memory we
introduce the (conceptual) process MARK1(i), defined as

MARK1(i):
{wait until activated by external cause})
forall j € children (i) do 5
if j was not activated before (* i.e., in this round *)
then activate j ; 3
color (i) = black ;
stop. (* i.e., become passive *) :

Let M = {0,1,..,N~1} be the set of cells in the computer’s memory and define the set of

processes IP by IP = { MARKI1(i) i e M}. In the following we sometimes refer to a cell ,
as to its associated process and vice versa. Initially all cells are passive and white (we ,
mean that all cells are white and all associated processes are passive). For an edge e from ‘5
cell p to cell g, we say p is the source and ¢q is the trarger of e. j«;i

Definition 5.1.2.1: INV is the property that for all edges, the source is active or white or
he target is active or black.

Lemma 5.1.2.2: INV holds in the initial state of the system.

198 Topics in Distributed Algorithms

Proof: Obvious, because all cells are white in the initial state. [

All processes are waiting to be activated in the initial state. Of course, nothing happens
unless processes are activated. The system is started by execution of the following code:

MARK_ROOTS:
forall r € roots do activate r.

The execution of MARK_ROOTS maintains INV. Some scheduling mechanism will be
assurned or provided for the execution of the set of processes.

Lemma 5.1.2.3: INV remains true (while processes in IP execute).

Proof: Initially INV holds as stated in lemma 5.12.2. The activation of a node by
MARK ROOTS trivially maintains INV. We proceed to show that /NV is maintained by
the execution of MARK1(@). To this end we remark first that after the activation of a cell
the cell is active or black. Second, we use ai additional invariant saying that before
MARK1(i) arrives at the statement stop, all children of i have been activated.

No edges are added, and we consider the truth of INV with respect to an edge (i,))- INV
can be violated only by (1) j becoming passive and white or (2) i becoming passive and
black. But (1) transitions to passive white do not occur. Further (2), before MARKI1(G)
arrives at the statement stop it has activated all children of i. Hence we have our addi-
tional invariant that now all children have been activated. Thus, when i becomes passive
and black, j is active oOr black. U

Lemmas 5.1.2.2 and 5.1.2.3 show that /NV is an invariant of the system.

Lemma 5.1.2.4: Under the assumption that an active process eventually executes its next
statement, the systen will terminate.

Proof: IP consists of only a finite number of processes. Each of them is activated at most
once and runs to completion in finite time. [

Crucial for the correctness of our heuristic is the following lemma:

Lemma 5.1.2.5: Upon termination of the system, all reachable cells are black.

Proof: Upon termination all cells arc passive and hence (because they have been activated)
all roots are black. Upon termination all cells are passive and hence (by INV) edges with
a black source have a black target. A cell is reachable if it is a root or there exists a path
of edges from a root t0 the node. By induction it follows that the reachable cells are
black. O

5.1 The Transformation 199

Lemma 5.1.2.6: Upon termination of the system, all black cells are reachable.

Proof: It is invariant that each active cell is reachable. Initially this holds. If a node is
activated in MARK_ROOTS it is a root and thus reachable. If a node j is activated by
MARKI1(7) it is a child of i and by the invariant i is reachable, hence j is reachable. No
edges are removed, so reachable cells remain reachable, which proves the invariant.
Because only active cells are blackened, the result follows. [

Lemmas 5.1.2.2 through 5.1.2.5 prove the following theorem:

Theorem 5.1.2.7: When a termination detection protocol and a scheduling mechanism are
superimposed on P = {MARKI(@)!I i € M}, a correct graph marking algorithm is
obtained.

By lemma 5.1.2.6 the graph marker marks only reachable nodes and hence the resulting
collecting algorithm collects all garbage nodes in one round.

5.1.2.2 The Basic Transformation with Concurrent Mutator Actions.
Now assume the mutator is active concurrently with the graph marking system: edges can
he added or deleted in an unpredictable way while the graph marking algorithm is execut-
‘ng. The correctness proof in section 5.1.2.1 is adapted accordingly.

We first study the effect of the deletion of edges. When edges are deleted, cells may
secome garbage during the marking phase even when they were marked already, and
‘emma 5.1.2.6 fails. (Its proof used the fact that no edges are removed.) So there can be
carbage nodes that will not be collected. A weaker version of lemma 5.1.2.6 holds.

Lemma 5.1.2.8: Upon termination of the system, all black nodes were reachable at the
~eginning of the (current) marking phase.

Proof: It is invariant that each active cell was reachable at the beginning of the current
—arking phase. Initially this holds. If a node is activated in MARK _ROOTS it is a root
=nd thus reachable. If a node j is activated by MARKI1(i) it is a child of i and by the
variant,i was reachable at the beginning of the marking phase. If j was a child of i at
“7e beginning of the marking phase it was also reachable, if it was added later then it was
-2achable at the time of addition, and hence also at the beginning of the marking phase.
Zven under deletion (and insertion) of edges reachability of a node at a fixed moment in
:ome is stable. Because only active cells are blackened, the result follows. U]

3o a marked garbage node that remains uncollected is guaranteed to remain unmarked in
=2 next marking phase. This means that any garbage node is guaranteed to be collected
+:thin two rounds of the collector. The DELETE primitive given in section 5.1.1.1

=
=
2

W
¥

.,

4

%
4

200 Topics in Distributed Algorithms

respects the graph marker’s invariant /NV. Thus, although deletions make the collector
work ““slower’’, they do not affect correct operation. Therefore deletions are allowed to
take place concurrently with the graph marker algorithm.

A more serious problem is the addition of edges. The mutator may decide to add an
edge between a passive black cell and a passive white one, thus violating INV. In this
case the system as introduced in the previous subsection is incorrect. The following classi-
cal example, due to Dijkstra er al. [Dij78], shows that it is impossible to construct a safe
graph marking algorithm without modifying the mutator program. Suppose a and b are
reachable nodes and ¢ is a node that is reachable only via ¢ and b. Let the mutator enter

the loop
repeat
DELETE (a,c) ; ADD (a,c) ;
DELETE (b,c) ; ADD (b,¢)
until false.

Thus at any moment the data structure is in one of the three states shown in figure 5.1.
Now assume the mutator always brings the graph into state 3 when the marking algorithm
is inspecting a, and into state 2 when the marking algorithm is inspecting b. Then the

13

collector never “‘sees’” ¢ and ¢ will remain unmarked. The conclusion is that in order to
obtain a correct graph marking system, it is necessary to put overheads on the mutator
actions. We require the mutator to activate nodes also, in order to maintain INV. From

now on addition of edges is done by (atomically) executing the following code:

@) ® | @ ®| e (0)

Figure 5.1

3.1 The Transformation 201

ADD(j):
(* i and j are reachable *)
children (i) = children(i) U {j};
if i is not passive white and j is passive white then activate j.

Because the mutator touches reachable cells only, this modification of the mutator main-
tains the invariant in the proof of lemma 5.1.2.8.

Lemma 5.1.2.9: ADD(i,j) now maintains INV and INV is still an invariant of the system.

Proof: The new edge does not lead from a passive black to a passive white node because
of the (possible) activation of j. The addition of the new edge respects INV for any edge
leading to or from i or j or any other edge. Activation of j respects INV for edges lead-
ing to or from j. The status of all other edges remains unchanged. ADD(, j) maintains
the additional invariant in the proof of lemma 5.1.2.3, and it follows that also
MARK_ROOTS and MARKI1(i) still maintain INV. [

Stability of termination (see section 3.3.1.2) was proved under the assumption that only
active processes could send activation messages. We must prove that this stability still
holds under activations by the mutator.

Lemma 5.1.2.10: When the system has terminated, no activations by the mutator take
place.

Proof: The mutator can activate a passive, white reachable node. When the system is ter-
minated no such node exists, by lemma 5.1.2.5. U

It follows that the termination of IP is stable. Also, termination detection protocols can
work correctly under spontaneous activation by the mutator. Lemma 5.1.2.10 implies that
when there is such an activation, there is at least one active node (or activation message) in
the system. If the “‘spontaneous’’ activation is treated as an activation by this active node
(or, by the sender of this message), the termination detection protocol will work correctly.
As the proof of lemma 5.1.2.10 is not constructive, termination detection protocols that use
acknowledgements and/or administration of messages may give difficulties. In these proto-
cols it is necessary that an active node is explicitly found (see section 5.2.3).

The discussion results in the following main theorem:

Theorem 5.1.2.11; When a termination detection protocol and a scheduling mechanism are
superimposed on P = {MARKI(i)! i e M}, and the addition of edges is implemented as
in ADD(j), a correct concurrent graph marker is obtained.

k]

wfd

T

204 Topics in Distributed Algorithms

the path, starting at i and stepping from successor to successor, passes through every pro-
cess exactly once and returns to i.

The termination detection algorithm is an example of our general construction of algo-
rithms for Distributed Infimum Approximation; see section 4.2.5.3. It can be seen as a dis-
tributed version of the following code:

repeat
success = true;
forall processes p do
begin
wait until p is not active ;
visit p
end
until success.

Define an observation period of a process to be the time between two subsequent visits.
Then ‘‘visit p’’ means:

if p was active since last visit then success = false.

Distributing this code is easy. The leader repeatedly sends out a boolean token on the ring,
containing the value of success. To maintain the necessary information between two visits
of the token, we assume there are two states for a passive process, namely hlue and idle.
(These states are black and white, respectively, in [DFG83]. We use other terms to avoid
confusion with the marking colors.) Blue processes are passive processes that have been
active earlier in their current observation period. Idle processes have been passive during
their entire current observation period. So active processes that finish their job initially
become blue. Only after the token passes does the process become idle. Active processes
do not pass the token until they have turned blue.

The leader starts by sending out a rrue token. An idle process passes the token
unchanged. A blue process passes the token as false to its successor and becomes idle. In
this way a blue process reports the fact that it was active in the last observation period.
When the leader recovers the token as true and is passive itself, termination is concluded.
If a false token is recovered, a new (rrue) token is sent out.

Lemma 5.2.1.1: The DFG protocol satisfies the safety condition (see also theorem 4.1.3.2).

Proof: Assume the leader concludes termination. No process turned the token into false,
so all processes were idle when they passed it. Hence all processes were passive during
the entire last observation period. It follows from the way the observation periods are
determined that there is a point in time where all processes were passive. This state is

~ithms

Ty pro-

~T algo-
< a dis-

T VIsits.

:he ring,
L0 Visits
=nd idle.
-0 avoid
:ve been
2 during
‘nitially
"TOCESSES

~2 token
‘dle. In
~ period.
ncluded.

1.1.3.2).
=0 false,
¢ during
riods are
s state is

5.2 Examples of the Transformation 205

stable, hence termination still holds. [

Lemma 5.2.1.2: The DFG protocol satisfies the liveness condition (see also theorem
4.1.3.2).

Proof: Suppose the system terminates before the token passes the leader for the i ! time.
(That is, during the i % our of the token.) Then all processes are either blue or idle. Dur-
ing the (i +1)m tour at the latest all processes turn to idle, and at the end of the (i+2)‘h tour
the leader concludes termination. [

In the original version of the DFG algorithm only the leader can conclude termination.
The so-called floating leader variant is based on the following observation:

Lemma 5.2.1.3: When the token has visited all processes consecutively without encounter-
ing a blue process, the system 1s terminated.

Proof: Call the last process in this sequence the leader. Now the proof is as the proof of
lemma 5.2.1.1. [

So instead of a boolean token we can use an integer token, which has the value k if it has
visited k consecutive processes that were not blue when the token passed it. The only task
of the original leader is to send a token <0> onto the ring to start the algorithm.

Remark: In this version of the floating leader variant it is necessary that the processes
know the total number of processes in the ring. Another variant uses unique identifiers for
the processes instead. A blue process that receives the token, stamps the token with its
identity and passes it on. Termination is concluded by an idle process that receives the
token with its own identity.

52.1.2 Derivation of the Graph Marking System. We will superimpose the
floating leader variant of the DFG protocol onto the set of processes
P = {MARKI1() | i€ M}, as outlined in section 5.1.2. Each cell can be in one of three
states as far as the DFG protocol is concerned (active, blue or idle), and in one of two
states as far as the marking is concerned (white or black). This yields a total of six states,
which we represent by four colors according to table L.

206 Topics in Distributed Algorithms

Table I
marking colors
white black
active | gray “blue” (2)
detector states blue . (D) blue
idle white black J

Remember that a process colors its associated cell black before turning passive. Hence
combination (1) in table I never occurs. The statement "color (i) == black" in MARK! is
immediately followed by "stop.". State (2) occurs only between the execution of these two
statements. Now, if we replace these statements by "color (i) := blue", we skip this state.
(Note that the color of a node now indicates not only whether it has been marked or not,
but also the state of its associated process.) The four remaining possible values of color (i)
now have the following meaning:

white : node i is not marked and MARK1(i) is idle.

gray : MARKI(i) has been activated but has not run to completion yet. It is still

active, and node i is not yet marked.
blue : node i is marked and MARK1(i) is a blue process.
black : node i is marked and MARKI1(i) is a passive process.

In a gray node i the following transcription of MARK1 must be exccuted:

forall j € children (i) do
if color (j) = white then color () := gray ;
color (i) := blue.

The leader starts the termination detection algorithm by sending a token <0> onto the ring.
The token circulates, and is changed by the processes it passes as follows:

— White or black processes add 1 to the token value.

— Gray processes keep the token until they become blue, and then act as blue
processes.

— Blue processes change the token into <0>, and change themselves to black.
A process that increases the value of the token to N concludes termination.

A natural choice for the successor of i is of course S ({) = i+1 mod N, and we can
let the token start its journey in cell 0. We now combine the termination detection algo-
rithm with the MARKI1 processes, add a ‘‘scheduler’” for the MARK] processes, and

o orithms

Hence
ARKI1 is
n¢se two
~1s state.
3 or not,
color (i)

o 1s still

:he ring.

as blue

we can
on algo-
ses, and

5.2 Examples of the Transformation 207

transform the resulting program to a complete graph marking algorithm. We do this in
several steps. The first step is writing out the termination detection algorithm. The termi-
nation detection algorithm is simulated by the following program (foken denotes the value
of the token, cell the cell it is visiting):

(* Initiate token *)
token = 0 ; cell .= N-1;
(* Circulate token *)
repeat
(* Travel to next cell *)
token = roken+1 ; cell = (cell+1) mod N :
(* Wait, if cell is gray *)
if color (cell) = gray then
wait until color (cell) = blue
(* Token becomes 0 if cell is blue *)
if color (cell) = blue then
begin token = 0 ; color (cell) := black end
until token = N.

In the second step we add the scheduling and execution of MARKI processes. We must
ensure that every gray MARKI process eventually executes and become blue. We do this
by substituting the code for MARKI1 for the wait statement. Thus a gray process executes
when it has the token; and only then. The procedure MARK _ROOTS must be executed
before the termination detection procedure starts. This results in the following code:

e
vy

FEITE

Luo bt

e
¢

Az

208 Topics in Distributed Algorithms

(* MARK ROOTS *)
forall r € roots do color(r) = gray ;
token = 0 ;cell .= N-1;
repeat
token = token+1 ; cell = (cell+1) mod N ;
if color (cell) = gray then
begin (* execute MARKI1(cell) *)
forall j € children(cell) do
if color (j) = white then color (j) = gray ;
color (cell) .= blue
end ;
if color (cell) = blue then
begin token = 0 ; color (cell) := black end
until token = N.

Note that all gray processes are eventually scheduled and hence the system is still
guaranteed to terminate. The derivation of a graph marking algorithm is now complete.
All components (marking processes and MARK ROOTS, scheduling, and termination
detection) are put together.

We apply a few simplifications to the resulting code. In the following transformation
step we eliminate the color blue and combine the two if-statements to one. Observe that a
node is blue only between the completion of MARKI1 in that node and the assignment to
color in the subsequent (second) if-statement. In fact, the blue color is used only to
“trigger’’ the second if-statement in the main loop. Conversely, because processes can
turn blue only as a result of the first if-statement, the second one is not executed if the first
if-statement is not. Hence either the statements are both executed, or neither of them is.
Thus the blue color can be eliminated by combining the two if-statements into one. This is
done in the next version of the program, where also the ‘‘shorthand’ shade (j) is intro-
duced for “‘if color (j) = white then color (j) = gray’’:

A gorithms

T 1s still
complete.
~mination

Zormation
~¢ that a
mment to
. only to
233es can
I the first
em is.
This is

23 intro-

5.2 Examples of the Transformation 209

(* MARK_ROOTS *)
forall r € roots do shade r) ;
token == 0 ;cell .= N-1;
repeat
token = token+1 ; cell = (cell+1) mod N
if color (cell) = gray then
begin forall j € children (cell) do shade g ;
token = 0 ; color (cell) .= black
end
until token = N,

(In fact, shade(j) is more than Just a shorthand. The clause "if color (/) = white
then color (j) := gray" can be implemented as the setting of a single bit. Encode white as
00, gray as 01 and black as 11, then it is equivalent to “‘set the second bit to 1°°. When
one 1s interested in deriving a fine-grained system it is essential that the operation takes
one access to j, not two.)

The reader is invited to compare this algorithm to the one given in Dijkstra et al.
[Dij78] and note the similarities. In [Dij78] it is not observed that it is possible to elim-
inate one arithmetic operation ("token := token+1") from the loop. Instead of using a
token with a counter (the first variant of the floating leader DFG we presented) we can use
a token with the identity of the last process that received the token when it was gray (see
the remark at the end of section 5.2.1.1). The resulting on-the-fly garbage collection algo-
rithm is

forall r € roots do shade (r) ;
id:=0 ;cell .=0:
repeat
if color (cell) = gray then
begin forall j € children (cell) do shade (j) ;
id = cell ; color(cell) = black
end ;
cell == (cell+1) mod N
until cell = id,

5.2.1.3 Concurrent Mutator Activities. According to section 5.1.2.2, the graph
marker designed in section 5.2.1.2 allows concurrent mutator modifications in the data-
structure. The mutator executes the following code indivisibly when it adds an edge (i,)):

[R

o
Mg
il

1% [% VPR

g

210 Topics in Distributed Algorithms

ADD(j):

children (i) == children(i) + {j} ;

shade (j). |
Because the DELETE action preserves the invariants of the system it can remain
unchanged, as argued in section 5.1.2.2. Because we assumed (section 5.1.1) that the heap
nodes are reachable nodes, the ‘‘extension’’ of the data structure with new nodes is not a
new type of mutation, but rather a series of additions and deletions of edges between
reachable nodes. This concludes the derivation of the essential phase of the on-the-fly gar-
bage collection algorithm of Dijkstra er al. [Dij78].

5.2.2 A Highly Parallel Garbage Collector

As In section 5.2.1 we assume here that the mutator and collector processors share one
array of memory cells. In this section we introduce a highly parallel garbage collector, i.c.,
a collector that consists of many garbage collecting processes. The collector and its under-
lying termination detection protocol are generalizations of those in section 5.2.1.

5.2.2.1 A Highly Parallel Termination Detection Protocol. The DFG protocol
basically consists of sequentially visiting all processes. The protocol is described by the
following code, where the passing of the token ensures that the inner loop is in fact exe-
cuted sequentially,

DFG:
repeat
success = true
forall processes p do
begin wait until p is not active ;
if p is blue then
begin success := false ; p becomes idle end
end
until success.

(This is the original version, not the floating leader variant.) The fact that the DFG proto-
col executes the inner loop sequentially is not essential, and also is not used in its correct-
ness proof. Hence any protocol is correct in which all processes are visited exactly once
during each iteration of the main loop. An extensive study of the structure of terminatio-

5.2 Examples of the Transformation 211

detection algorithms is found in chapter 4. The basis of the on-the-fly garbage collection
algorithms in this section is the following termination detection protocol skeleton:

repeat
success = true
forall i do “‘visit ;*’
until success.

Here “‘visit i*” consists of a termination detection visit (as in section 5.2.1) as well as a
possible execution of MARKI.

5.2.2.2 A Highly Parallel Graph Marking System. In order 1o turn the proto-
col skeleton for distributed termination detection into a graph marking system, three things
need to be done:

— Add the code for MARK_ROOTS,

~ Specify the code for “‘visit i, and

— Supply a scheme according to which nodes are visited.
Using the same color and notations as in section 5.2.1, the code for MARK_ROOTS is of
course

MARK_ROOTS:
forall i € roots do shade r).

A “'visit” has the same semantics as in section 5.2.1, Again we combine the termination
Jetection protocol with a scheduler, to execute the code for MARKT1 in gray nodes. So
“i5it (i) becomes the following routine:

VISIT():
if i is gray then MARKI1() ;
“termination detection visit to node i’’.

>m. if we combine the two statements into one as we did at the end of section 5.2.1.2

VISIT():
if color(i) = gray then
begin forall j e children (i) do shade (j) ;
color (i) := black ; success = false
end.

2 supply two parallel visiting schemes to complete the garbage collecting systems. The
“ost scheme works for an arbitrary number of marking processors, the second scheme
- 7xs for exactly two marking processors. For the first scheme, assume that there are &

&b,

§
VRN

U YRR I i s g
BPIERRL Yl

& A VE Ry

212 Topics in Distributed Algorithms

processors available for garbage collection. The simplest traversal scheme for the
processes is to partition the set M of cells into & parts, and assign each garbage collection
processor to a part. So let {S; | 1<i <k } be a partition of M. The marking system is
given by:

forall r € roots do shade r);
repeat
success = true ;
forall i € {1,..,k} pardo
forall peS; do visit(p)
until success.

See Cohen [Co85] for a more detailed garbage collection algorithm along these lines. This
visiting scheme has the disadvantage that the partition of the memory cells must be fixed in
advance. It is not possible to adapt the workload of a processor to its speed dynamically.
This is possible in our second scheme, suited for two processors. Let the two processors
start at opposite ends of the cell array, and work towards each other. When they meet
somewhere, all processes have been visited. Call the two garbage collecting processes
GCA and GCB. We can describe the two processes as follows:

GCA: GCB:

forall r € roots do shade (r);

repeat repeat
synchronize ; synchronize ;
success = true ;
a:=0; b =N-1;
synchronize ; synchronize ;
repeat visit(a) ; repeat visit (b) ;

a:=a+l b = b-

until a > ; until b <q ;
synchronize synchronize

until success. until success.

Here the statement synchronize is a synchronization primitive: it is assumed that a
processor that comes to this statements waits until the other processor also comes to a
statement synchronize. Then they pass this point in the program simultaneously. The
reader is invited to improve on this Wa'lgorithm in two ways: (1) decrease the
synchronization overheads, and (2) make a dynamic scheme for more than two processors.

5.2 Examples of the Transformation 213

5.2.2.3 Concurrent Mutator Actions. Concurrent mutator actions in these graph
marking systems are handled as in section 5.2.1.3.

5.2.3 The Marking System of Hudak and Keller

Hudak and Keller [HK82] presented a garbage collector that is suitable for a completely
distributed environment. An arbitrary number of mutator and collector processes can be
active at any time. In this section we show that their algorithm is obtained by superimpos-
ing the distributed termination detection protocol of Dijkstra and Scholten [DS80] on the
set 1P, of processes MARK2(i). We discuss the Dijkstra and Scholten protocol, its
transformation to the Hudak and Keller algorithm according to section 5.1.2, how con-
current mutator actions can be allowed using this algorithm, and how more concurrent mu-
tator actions can be supported.

5.2.3.1 The Distributed Termination Detection Protocol of Dijkstra and
Scholten [DS80]. Basically the protocol by Dijkstra and Scholten (hereafter called the
DS protocol) is an acknowledgement scheme for activation messages. It is assumed that
the initial source of all activity in the network is one special process E. Each process p
keeps two counters:
C(p) = the number of activation messages that p has received but not yet ack-
nowledged, and
D (p) = the number of activation messages that p has sent but not yet received an ack-
nowledgement for.
We call a process p engaged iff D (p)>0 or C(p)>0. For an engaged process p, its en-
gagement message is the message that caused it to become engaged, and p’s activator or
father is the sender of p’s engagement message. C(E)= 0 always and E has no father. p
is required to acknowledge all activation messages it receives (this action is called signal-
ing in [DS80]), but it is not allowed to acknowledge its engagement message as long as it
1s active or D (p)>0. As soon as p is passive and D (p)= 0, p is assumed to acknowledge
all messages in finite time, its engagement message as the last. Dijkstra and Scholten
prove the following facts for this signaling scheme:

Lemma 5.2.3.1: (Safety) When E becomes unengaged, the system is terminated.

Lemma 5.2.3.2: (Liveness) When the system is terminated, £ becomes unengaged within
finite time.

214 Topics in Distributed Algorithms

The algorithm is described as a very general, non-deterministic scheme (p is free to decide
when it signals the other messages it receives). It is enough for p to maintain the number
of ACKs it still has to receive (D (p)), rather than keep a set of unacknowledged messages.
Also, when p acknowledges a message, p need not mention the message concerned.

5.2.3.2 Derivation of the Graph Marking System. For the purpose of deriving
the graph marking system we assume that each message, except the engagement message,
is acknowledged immediately. Hence the value of C (1) can only be 0 (for an unengaged
process) or 1 (for an engaged process). When running MARK?2(i), a test for earlier activa-
tions is necessary anyhow. By the primitive activare (i, father) we mean: send an activa-
tion message, containing the sender’s identity father, to i. The receipt of this message by i
triggers execution of the procedure ACTIVATE(, father), which contains the code for
MARK?2(i) as well as the code for the DS protocol:

ACTIVATEC(, father):
if i was not activated before then
begin C(i):=1;
forall j € children (i) do
begin activate (j i) ; D ()=D@)+1end;
color (i) := black ;
while D (i)>0 do
begin receive an ACK ; D (i) =D()-1end:
signal (father) ; C(i):= 0
end
else (* i.e., i is or has been engaged already *)
signal (father).

The primitive signal (father) means: send an acknowledgement to the node Jather,

The complete graph marking algorithm that we derive now is ““message driven’’, i.ec..
something can happen only upon the receipt of a certain message. We write the algorithm
in “messagé driven form™, i.e., with a piece of code for every possible message that can
arrive. This piece of code is run to completion before the next message is accepted, thus
ensuring atomicity of the described actions. State information about the process is storec
explicitly. Suppose node i contains yet another field father (i). We present the message
driven form. Again, signal (father (i)) means that a signal is sent to Sfather (i). The re-
ceipt of such an acknowledgement by i triggers execution of SIGNAL().

5.2 Examples of the Transformation 215

ACTIVATE(, father): (* executed if i receives an activation message from father *)
if i was not activated before then
begin father (i) == father ; C(i) =1 ;
forall j € children(i) do
begin activate (j,i) ; D (i) = D(i)+1end;
if D (i)= 0 then (* i has no children *)
begin color (i) := black ; C(@{) =0 ;
signal (father (i)) end
end
else (* i.e., i was activated before *)
signal (father).

SIGNAL(i): (* executed if i receives an acknowledgement signal *)
D(@y=D@)-1 ;
if D (i)= 0 then
begin color (i) := black ; C(i):= 0; signal(father(i)) end.

Note that we have deferred "color (i) := black" to the time of unengagement of i. This
minor change does not affect the correctness or termination properties of the algorithm.
We do this to ensure that the statements "color (i) := black" and "C (i) := 0" always ap-
pear together. Soon we replace these two statements by one, similarly to what we did in
section 5.2.1.2. Except between the two statements mentioned, a node is always in one of
the following three situations.

State 1: C(i)= 0, color (i) = white,

State 2: C(i) = 1, color (i) = white,

State 3: C(i) = 0, color(i) = black.
As in section 5.2.1 we use a coding trick and represent C in the color field by using the
extra color gray to represent state 2. The test "i was not activated before" is then replaced
by "i is white". The program for all node processes now becomes

216 Topics in Distributed Algorithms

ACTIVATEC(, father):
if color (i) = white then
begin father (i) := father ; color(i) = gray ;
forall j € children(i) do
begin activate (j,i) ;D ()= D()+1 end ;
if D (i)= 0 then
begin color (i) := black ; signal (father(i)) end
end
else
signal (father).

SIGNALC():
D@E)y=D(@)-1;
if D)= 0 then
begin color (i) := black ; signal(father (i)) end.

The marking process is elegantly started and controlled by the following transcription of
MARK ROOTS:

E:
(* MARK ROOTS *)
forall r € roots do
begin activate (r £) ; D(E):= D(E)+1 end;
while D(E) > 0 do
begin receive an ack ; D(E) :

D(E)-1 end.

Upon termination of E the marking has completed. Of course this part of the algorithm
can be written in message driven form also. This part is somewhat underdeveloped in
[HK82]. The original algorithm was suited only for graphs with one root.

We have ignored the scheduling of the processes. It is assumed that the run-time sys-
tem ensures that messages are eventually received and the procedures above are executed.
The algorithm can be run on an arbitrary number of processors, each with its own local
memory, and allows an arbitrarily large number of mutator processes to run concurrently
with it (under the restrictions derived in the next subsection). However, exclusive access
to cells is necessary. In [HK82] suitable ‘‘locking machinery’’ is built in to guarantee ex-
clusive access. This machinery is also ignored here.

5.2.3.3 Concurrent Mutator Activities. Some difficulties must be overcome when
we want to use the graph marker of the preceding subsection as a concurrent graph marker.

5.2 Examples of the Transformation 217

We now study how the graph marker of [HKS82] handles it. The Invariant INVa, as
defined in section 5.1.2, has the following form for the algorithm of Hudak and Keller:
(A) If i is a gray node then activation messages have been sent to all of its children,
(B) If i is a black node then no child of i is white.
We have B because i turns black only after receiving acknowledgements for the activation
messages it sent. The mutator must respect this invariant and thus it must activate nodes
sometimes. But, in order to enable a node to send an acknowledgement Iater, it must be
given a father. Hence the mutator must be able to find a gray node that is willing to
“‘adopt’’ the node. And, although lemma 5.1.2.10 guarantees that such a node exists, the
problem remains to find a suitable one. This is why in [HK82] the behavior of the mutator
is limited where the addition of edges is concerned. Only in a small number of specific
cases may edges be added.

One of these cases and its solution (see [HKS82)) is the following: the addition of an
edge (a,c) by a primitive add_grandson (a b ¢), where it is assumed that edges (a,b) and
(b,c) exist already. Obviously add_grandson (a ,b,¢) does not violate the invariant when
a is white (there are no requirements on ¢ in that case) or b is black (¢ is non-white al-
ready). This is also the case when both g and b are gray. By B it is impossible that a is
black and b is white. The remaining cases are (1) and (2) in table II.

Table 11
— p

white gray black

white - (1) impossible

b | gray - -)

black - - -

Case 1: Suppose a is gray and b is white. Then an activation message has been sent to
», but not necessarily to ¢. In order to maintain Invariant A, we have to send ¢ an activa-
tion message and here we can make g c’s father, i.e., a adopts c.

Case 2: Suppose a is black and b is gray. In this case we choose b to adopt ¢. Before
we can make the link, we must wait until the activation has resulted in ¢ becoming gray,
for according to B, it is not enough that an activation message is on its way to c.

We can now give the primitive ADD_GRANDSON.

LT% DB % I PR PLOR A . H
T o ygsii] oay

el

1

218 Topics in Distributed Algorithms

ADD GRANDSON(a,b,c)

(* a is reachable, b € children(a), and ¢ € children (b) *)
if color (a)= gray and color (b)= white then

begin activate(c,a); D(a) = D(a)+] end ;
if color (a)= black and color (b)= gray then

begin activate (c,b) ; D(b) = D (b)+1 ;

wait until ACTIVATE(c,b) is finished in ¢

end ;

children(a) := children(a) + {c}.

For more primitives that can be supported in a similar way, see [HK82, Hu83].

5.2.3.4 Allowing more Concurrent Mutator Activities. With some effort it is
possible to implement a more general ADD operation under the Hudak/Keller garbage col-
lector. Suppose the mutator adds an arbitrary edge (a,¢). Overhead is not necessary in all
cases that can occur. If @ is still white, or ¢ is gray or black, nothing needs to be done.
The need for cooperation in implementing a general ADD operation is summarized in table
I1I:

Table III
a
white gray black
white - (1) 2)
c gray - - -
black - - -

In two cases (see table III) special action is needed:

Case 1: If a is gray and ¢ is white, we can maintain the invariant by having a adopt c.
Case 2: If a is black already, this is impossible but ¢ must be at least gray before the link
can be made. The solution is to find an arbitrary gray node b and force it to adopt c.
That is, we send ¢ an activation message bearing b as sender. When this message is pro-
cessed by ¢, ¢ is (at least) gray and the link can be made.

The ADD operation can be implemented by the following program:

5.2 Examples of the Transformation 219

ADD(a,c):
if color (a)=gray and color (¢)=white then
begin activate (c,a) ; D(a) = D(a)+l end;
if color (a)= black and color (¢)=white then
begin b = ...; (* any gray process; sce the discussion below *)
activate(c ,b) ; D(b) = D(b)+1;
wait until ACTIVATE(c,b) is finished in ¢
end ;
children (a) = children(a) + c.

The key problem of course is finding a suitable gray node b as discussed in case 2. We
know by lemmas 5.1.2.10 and 5.2.3.1 that there is one. We give several suggestions to
find a suitable process b.

(1) The root process E is always engaged, as long as there is any engaged node (lemma
5.2.3.1). So one can take b = E always. This solution has some important disadvan-
tages.

— In most cases E will not reside on the same processor as a and/or c, hence this
choice can increase communication complexity considerably.

—~ When there are many ADD operations E will become a bottleneck. E will be
blocked most of the time, and the processor where it resides will be busy most
of the time handling ADD operations from other processors.

'2) Each processor can keep a pool of cells that are currently gray in its memory. This
pool is updated by the activate and signal procedures. When a gray cell is needed,
the host of a and/or ¢ check their pools for gray cells. If there is no gray cell in that
processor, they can ask their neighbors, etc.

IS}

Another idea would be to add some ‘‘special purpose’’ nodes to the data structure.
Suppose there is one special root S, on each processor p. S, has no “‘natural’’ chil-
dren, but will adopt nodes when such is necessary. S, is a root and will be grayed
immediately after the start of the marking phase. An extra mechanism must be built
in to ensure that
- S, wil remain engaged as long as the marking phase goes on, so it will be
available when necessary, and
— S, will become unengaged when the marking phase is finished, so it will not
unnecessarily block the garbage collecting process.
This implies that we must superimpose yet another termination detection protocol on
the system, which means that this method is not feasible.

3
i

