
Integrated Fluid and Packet Network Simulations �

George F. Riley1

Talal M. Jaafar1

Richard M. Fujimoto2

1College of Engineering
Department of ECE

Georgia Institute of Technology
Atlanta, GA 30332-0250

friley,jaafarg@ece.gatech.edu

2College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
fujimoto@cc.gatech.edu

August 9, 2002

Abstract

A number of methods exist that can be used to create sim-
ulation models for measuring the performance of com-
puter networks. The most commonly used method is
packet level simulation, which models the detailed be-
havior of every packet in the network, and results in a
highly accurate picture of overall network behavior. A
less frequently used, but sometimes more computation-
ally efficient, method is the fluid model approach. In this
method, aggregations of flows are modeled as fluid flow-
ing through pipes, and queues are modeled as fixed capac-
ity buckets. The buckets are connected via pipes, where
the maximum allowable flow rate of fluid in the pipes rep-
resents the bandwidth of the communication links being
modeled. Fluid models generally result in a less accurate
picture of the network’s behavior since they rely on aggre-
gation of flows and ignore actions specific to individual
flows.

We introduce a new hybrid simulation environment that
leverages the strong points of each of these two modeling
methods. Our hybrid method uses fluid models to repre-
sent aggregations of flows for which less detail is required,
and packet models to represent individual flows for which
more detail is needed. The result is a computationally ef-
ficient simulation model that results in a high level of ac-
curacy and detail in some of the flows, while abstracting
away details of other flows. We show a computational
speedup of more than twenty in some cases, with little
reduction in accuracy of the simulation results.

1 Introduction

Simulation has become the method of choice for many
networking research problems. As new protocols are de-
signed and tested, computer based simulations are used
to validate the correctness of the new protocol, and are

�This work is supported in part by NSF under contract number ANI-
9977544 and DARPA under contract number N66002-00-1-8934.

used to measure the performance of the new protocol un-
der a variety of experimental conditions. As new network
infrastructure methods are designed (e.g. active queue
management methods such as Random Early Detection
(RED) [5] and Proportional-Integral (PI) controllers [8]),
they are often tested and validated using simulation tech-
niques.

However, as the size and capacity of modern networks
have increased, the ability to accurately simulate such net-
works has decreased. Growth in network bandwidth alone
has seen a three order–of–magnitude increase in recent
years, placing severe strains on CPU cycles needed to sim-
ulate these high speed networks. For example, for a rel-
atively modest OC12 link at 622Mbps, a detailed packet
level simulation of a single link can result in over 500,000
simulation events per second. It’s easy to see that mod-
eling more than just a few such links can cause the over-
all execution time of a simulation to become excessively
large.

One approach to deal with the increased computa-
tional complexity of these simulations is to model the
networks in a different way. In [9], Huang proposed a
selective abstraction approach whereby some subset of
data flows are abstracted to model end–to–end behavior,
rather than each individual packet in the network. Sev-
eral researchers have looked at a fluid model approach
[12, 11, 27, 21, 22, 17, 10, 15], where the network is mod-
eled as fluid flowing through pipes, rather than individual
packets flowing on communication links.

Both of these abstraction techniques can, in some cases,
result in a more computationally efficient model. How-
ever, these methods usually result in less accurate results
due to abstracting away some important details in the be-
havior of the network. For example, the fluid model as-
sumes that data lost for flows entering a full queue is di-
rectly proportional to the inflow rate for each flow enter-
ing the queue. While this is certainly true over a long term
average, over shorter timescales loss patterns for individ-
ual flows may vary dramatically.

In our work, we seek to take advantage of the strong
points of both modeling methods (fluid and packets), by
creating an integrated hybrid simulation environment. We

1
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

use fluid models to model portions of the network where
computational efficiency is more important than precise
accuracy, and we use packet–level simulation to model
portions of the network where exact packet–by–packet
level detail is needed. The result is an integrated simu-
lation environment that can be significantly faster than the
packet models, while at the same time sacrificing little in
terms of accuracy of results.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the fluid models and packet
models, and describes our hybrid approach. Section 3 de-
scribes in detail our integration effort in creating the hy-
brid simulation environment. Section 4 describes the ex-
perimental methodology we used to validate our hybrid
simulator. Section 5 gives the results of the experiments.
Finally, section 6 gives some conclusions and future di-
rections of our research.

2 Conceptual Overview

In this section, we discuss the basic simulation methodol-
ogy used by the fluid model and packet model simulators,
highlighting the differences, strengths, and weaknesses of
each. Then we show how we integrated the two mod-
eling paradigms into a single simulation, leveraging the
strengths of each method. The subsequent sections de-
scribe in more detail the integration and the experiments
we performed to validate our approach.

2.1 Fluid Models
A simple fluid network model is shown in Figure 1.
With the fluid model approach for networks, data flow-
ing between systems are modeled as fluid flowing through
pipes. For this discussion, we assume non–looping, feed–
forward networks only, but the basic modeling method
(with some slight modifications) can be applied for feed-
back networks as well. At each station in the network
model, the flow of data is modeled with six continuous
processes, as follows:

1. �(t): the input flow rate (inflow) process into the sta-
tion. This models the aggregate rate (bits/sec) of data
being received at the station. This can be either from
the output of a previous station (as in the input to sta-
tion 3 in the figure), or an external data source model
(as in the input to station 1 in the figure).

2. �(t): the service rate process, namely, the maximal
fluid discharge rate from the server. This models the
maximum capacity (bits/sec) of the output commu-
nication link from that station.

3. c(t): the buffer capacity process. We point out that
it may generally be a function of time, so as to cap-
ture the effects of a shared-buffer used by competing
flows; however, in our present work we assume it to
have a positive fixed value, C bits.

4. x(t): the buffer occupancy process, namely the fluid
volume in the buffer. This models the amount of data
queued and awaiting transmission on the output link.

5. Æ(t): the fluid discharge rate (outflow) process from
the server. This models the rate (bits/sec) of data
leaving the station, and (presumably) arriving at a
subsequent station (see the input to station 3 in the
figure is the sum of the outflow rates at stations 1
and 2). Note that the outflow rate Æ(t) can never be
greater than the service rate �(t). In other words,
a station can never send data to a subsequent sta-
tion at a rate higher than the maximum bandwidth
of the physical communication link connecting the
two. The outflow rate can be less than �(t) however,
since a station with an empty queue will never output
more data than is being received.

6. (t): the loss rate (overflow) process due to a full
buffer. This models the data lost at the station.

The first three processes, �(t), �(t) and c(t), character-
ize the behavior of a fluid station, and are referred to as
defining processes. The other three processes, x(t), Æ(t),
and (t), are determined by the defining processes, and
are referred to as derived processes. See [25] for a de-
tailed description of basic principles in fluid flow network
modeling.

In creating the simulation model using the fluid flow
method, at any time instant t, the three derived processes
(x(t), Æ(t), and (t) are calculated precisely for each
station, using current values for the defining processes
at that station. When a calculated output rate Æ(t) be-
comes the input rate �(t) for a subsequent station, the
derived processes for that station are calculated, and the
process repeats until all stations with changes to the defin-
ing processes have calculated the derived processes. At
this point, the network has reached a steady state, and no
further computation is needed until one of three things oc-
curs:

1. One of the external data source models indicates
a new data generation rate. For example, an on–
off data source model indicates that the source has
changed from on to off, or from off to on.

2. A queue transitions from non–empty to empty (i.e.
x(t) = 0 at a given station). This potentially results
in a changed inflow rate at a downstream station.

3. A queue transitions from nearly full to full (i.e.
x(t) = c at a given station). This results in a change
in the overflow rate at the station.

Upon occurrence of any of the above three events, the
derived processes for each station are again calculated as
above, and the network again reaches steady state.

A number of trade-offs must be considered when
choosing to model a network in this fashion.

1. The simulation of the fluid model can be, in some
cases, extremely computationally efficient. Since the
simulation only models rate change events, the to-
tal computational complexity of the simulation can
be much less than the packet level simulation mod-
els. We have shown in prior experiments a speedup
of one hundred or more when modeling simple net-
works with the fluid approach as compared to de-
tailed packet level simulations. However, this com-
putational efficiency becomes less pronounced as the

2
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

α
c x

γ

δ
β

α
c x

γ

δ
β

α
c x

γ

δ
β

α
c x

γ

δ
β

α
c x

δ
β

γ

Station 1

Station 2

Station 3

Station 4

Station 5

Figure 1: Simple Fluid Model

Queue

Queue

Queue

Queue

Figure 2: Simple Packet Model

size of the network being modeled grows. This is
partially due to the well–known Ripple Effect in fluid
simulations. The ripple effect is caused by an in-
put flow rate change in a non–empty queue, which
causes output flow rate changes for all flows sharing
the queue. Thus a single rate change event for one
flow can cause multiple rate change events in down-
stream queues. See Liu et al. [12, 11] for a detailed
discussion the ripple effect.

2. The fluid modeling method can be more susceptible
to mathematical analysis than other modeling meth-
ods. Wardi et al. [24] have shown that describing the
network behavior as a set of differential equations
can lead to accurate Infinitesimal Perturbation Anal-
ysis of network behavior, giving good predictions for
future network performance. Towsley et al. [16] used
a fluid model and differential equations approach to
analytically describe the behavior of TCP endpoints
and active queue management techniques.

3. The fluid modeling method often results in reduced
accuracy in the network performance metrics pro-
duced by the simulations. The fluid models always
assume average behavior over some time horizon,
and do not necessarily capture the effects of unlucky
or unusual network behavior. For example, when
several flows are arriving at a full queue, the fluid
model computes loss rates for each flow proportional
to their input rate. In actual networks, the loss rates
of each of the competing flows can vary widely at
any point in time, due to simply bad luck, or strobo-
scopic effects of the arrival patterns.

4. As previously mentioned, networks with feedback
(either with potential routing loops in the network
topology or with input sources that adjust inflow
rates as a function of network behavior) are more dif-
ficult to simulate using fluid models. Routing loops
can cause an explosion in the number of rate change
events processed by the fluid model simulator, vastly
reducing the efficiency gains that are achievable.

Despite these tradeoffs and potential loss of accuracy, a
number of researchers have reported good results by using

the fluid flow models for network simulation [27, 21, 22,
17, 10, 15].

2.2 Packet Models

A sample packet level simulation is shown in Figure 2.
In this method of modeling networks, the simulator re-
tains information about every packet generated at each
source, and models the path of the packet at every point
in the network. Packets are tracked individually on each
link, in each queue, and at each data source and sink.
Packet losses are computed deterministically on a packet
by packet basis, leading to fairly precise and repeatable
network behavior. A number of research efforts and
commercial products exist that utilize the packet model-
ing method for network simulation, including ns2 [14],
pdns [19, 20], GloMoSim [28], SSF [4, 3], JavaSim [23],
and OpNet [1].

The packet level modeling method has the drawback of
increased computational complexity. Since the simulator
tracks and models every packet event (enqueue, dequeue,
transmit, receive, loss) for every packet in the system, the
total number of events processed can become excessively
large. Additionally, computer memory requirements also
grow in direct proportion to the total number of simulated
packets being modeled at any point in time, contributing
to memory resource limitations in packet level simula-
tions.

2.3 The Hybrid Approach

Our hybrid approach to network simulation leverages the
strong points of both the fluid and packet modeling meth-
ods, giving the computational efficiency of fluid models
combined with the accuracy of packet models. We cre-
ate an integrated environment where a portion of the data
flowing in the network is modeled using the fluid method,
and the remainder is modeled using the packet method.
A sample network topology illustrating how the fluid and
packet models are combined to create the hybrid model is
shown in Figure 3.

3
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

α

c x

γ

δ

β

α

c x

γ

δ

β

α

c x

γ

δ

β

α

x

γ

δ

β

c

Fluid Model

Packet Model

Hybrid Model

Figure 3: Hybrid Model

We start with the assumption that the network simula-
tion consists of two different classes of data flows. First
is a set of foreground traffic flows, for which detailed and
accurate modeling is needed. Second is a set of back-
ground flows, which exist and are modeled to compete
with the foreground flows, but for which detailed models
are not needed. The background flows exist to provide
realistic models of competing traffic for the foreground
flows, to allow the foreground flows to encounter realistic
congestion patterns at the various routers and links in the
network.

Using our integrated environment, which is described
in detail in the next section, we create two simulations.
Each simulator (fluid or packet–level) models the entire
network, but only one class of traffic. We use the fluid
modeling approach to simulate the background flows, us-
ing the existing (but slightly modified) Hybrid Discrete-
Continuous Fluid-Network Simulator (HDCF-NS) [15]
fluid simulator. We use the packet modeling approach
to simulate the foreground flows, using the existing (but
again slightly modified) pdns [20] packet simulator. Of
course, both simulations model the same network topol-
ogy, with the same queue limits and link capacities at
each station. The simulators then exchange information
at run–time, allowing the packet model simulation to be-
come aware of buffer occupancy due to the fluid model
flows.

The pdns simulator was enhanced to include a model
called a FluidQueue. This queue is a DropTail queue with
fixed capacity, but with the addition of a fluid level indi-
cator and a level rate change indicator. When the fluid
model detects a change in the buffer occupancy function
x(t) (described previously), it informs the corresponding
FluidQueue model in the pdns simulation of the new fluid
level rate change, using a distributed simulation technique
described in the next section. These rate change events
occur when an input rate changes, or when the buffer be-
comes full or empty.

For the actions needed when a rate change event is re-
cieved, or when a packet in the packet model simulation
arrives at a FluidQueue, we first define the follwing vari-
ables. Subscripts k and f refer to the information from
packet simulator and fluid simulator respectively.

Tk = Time of Rate Change Event k

xk = Fluid Level at time Tk

x0

k = Rate of Change of Xk

Tf = Time of Fluid Rate Change Event

x0

f = Rate of Change of X from Fluid at time Tf

Sp = Size of arriving packet

C = Maximum buffer capacity

� = Link Speed of Output Link

Dp = Delay of arriving packet due to fluid

Tp = Time delay for pending packet to fit in the queue
(described below)

When a rate change event from the fluid simulator is
received at time Tf , the following actions are taken.

1. Calculate the new fluid level xk+1 = xk + (Tf �
Tk)x

0

k.

2. Set the new fluid level rate change x0

k+1 = x0

f

3. Set time of last update Tk+1 = Tf

When a packet arrives at the FluidQueue in the packet
level simulation at time Tk+1, the following actions are
taken.

1. Calculate the new fluid level xk+1 = xk + (Tk+1 �
Tk)x

0

k. Note that x0

k is constant in the interval
[Tk; Tk+1] since any rate changes would be pro-
cessed as above, resulting in an updated Tk.

2. Calculate the extra queuing delay for this packet due
to the fluid in the queue, Dp = xk+1�. In other
words, the packet is assigned additional delay due to
fluid in the queue ahead of the arriving packet.

3. If the xk+1+Sp � C, admit the packet to the queue.

4. If the xk+1 + Sp > C, and if there is no pend-
ing packet (see step 5 below), admit the packet with
probability p = 1 � (�(t) � �(t))=�(t). In other
words, accept the packet with a probability propor-
tional to the fraction of the arriving fluid that is lost.
If there is a pending packet, drop the arriving packet
unconditionally.

5. If a packet is accepted probabalistically in step 4
above, this packet becomes a pending packet. Com-
pute the amount of time it takes for the pending
packet to fit completely in the queue Tp = (xk+1 +
Sp � C) �. In other words, determine when excess
data (above the specified queue limit C) will fit in
the queue, based on the amount of excess data and
the queue’s outflow rate. Schedule a future event at
time Tk+1 + Tp to indicate the packet is no longer
pending and is now fully resident in the queue.

4
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

The probabilistic acceptance of packets into nearly full
fluid queues, and the processing of the pending packet are
needed to realistically model the behavior of packets ar-
riving at congested queues. Even when packets arrive at
completely full queues (in real packet networks), there is
still a non-zero probability of acceptance, based on the
output rate of packets, and the relative input rate if incom-
ing packets. The above algorithm models this behavior.

3 Integration Methodology
As previously mentioned, we created an integrated sim-
ulation environment that incorporates both the fluid mod-
els and the packet models, simulating the same network at
the same time. However, we wanted to leverage existing
simulation technology and use existing simulators with as
little modification as possible. For the fluid model sim-
ulator, we chose the HDCF-NS[15] simulator, which is
written in Java. For the packet model simulator, we chose
parallel and distributed ns (pdns)[20], which is written in
C++ and TCL. We point out that the HDCF-NS simulator
already has built in a rudimentary packet and fluid hybrid
model. But, the HDCF-NS packet endpoint models lack
support for any layer–4 protocol. For our work we pre-
ferred to utilize the full–featured packet level simulation
environment found in ns2 and pdns. The two simulators
run autonomously (i.e. in separate processes and sepa-
rate address spaces), and exchange information at runtime
about the state of the simulated network. In all of our ex-
periments, the two processes execute on separate worksta-
tions connected by a Giga-Bit Ethernet network.

In such a distributed simulation environment, the sim-
ulators need to coordinate with each other in two basic
ways. First they need time management mechanisms to
insure that the simulation time between the simulators
advance in a manner that insures proper event causality.
Second is message exchange mechanisms, that the sim-
ulators can use to inform peers about state changes in
simulated objects. To facilitate this interaction, we uti-
lized the existing Georgia Tech Runtime Infrastructure Kit
(RTIKIT) [6, 7] originally developed by Fujimoto. The
RTIKIT is designed specifically to provide these services
to distributed simulation processes. The RTIKIT is part of
a larger distributed network simulation support environ-
ment called the Dynamic Simulation Backplane [18, 26].
The backplane is designed specifically to facilitate the
exchange of network protocol packets between heteroge-
neous simulators.

Conceptually, the fluid model simulation must inform
the packet model simulation of changes in the fluid level
at the queues. Furthermore, the two simulators must take
steps to insure the simulation time values stay in agree-
ment as the simulation progresses. To facilitate these
steps, we modified the HDCF-NS simulator in two sim-
ple ways.

1. The main event processing loop was modified to
specifically request permission to advance simula-
tion time to the time of the next event. Existing
functionality in the RTIKIT provides a distributed
consensus algorithm to insure that simulation time
is advanced in a manner that insures correct event

causality between the simulators. Using this func-
tionality, the time management capability was added
to HDCF-NS with just a few lines of C code linked
in using the Java Native Interface (JNI) package.

2. Each time a change in the fluid level rate of change
x0(t) is detected by HDCF-NS, the RTIKIT message
exchange mechanisms are invoked to notify pdns that
the fluid level at the queue is changing at a differ-
ent rate. The message sent to pdns includes the
simulation time, the queue number (a unique inte-
ger value agreed to by both HDCF-NS and pdns), the
fluid level, the rate of change of fluid level, the input
rate, and the output rate. Existing functionality in the
RTIKIT provides this message passing functionality,
and again was achieved with just a few lines of C
code using JNI.

Since the pdns packet level simulator is already de-
signed to operate in a distributed simulation environment,
it already contains time management functionality in the
main event processing loop. The changes to pdns required
for the hybrid model simulations were limited to the ad-
dition of the FluidQueue element previously discussed,
and some code in the message processing routines to de-
tect and forward the fluid rate change messages discussed
above.

4 Experimental Methodology

To illustrate the effectiveness of our hybrid approach, we
chose a simulation of a well known web response time ex-
periment by Jeffay et al. [2]. The experiment is designed
to measure the response time of individual web objects
under a variety of conditions. The topology for the orig-
inal experiment is shown in Figure 4. Each of the web
browser systems models the behavior of several hundred
simultaneous web browsing sessions. The size of individ-
ual web object requests and the time delay between the
requests is modeled based on empirical measurements de-
scribed by Mah in [13]. Each web server system models a
single web server, each handling a large number of simul-
taneous requests.

Such an experiment seemed to us to be an ideal plat-
form for demonstrating the foreground and background
traffic models, and the hybrid simulation approach. We
modified the original topology slightly (as shown in Fig-
ure 5), to increase the available bandwidth on the bottle-
neck link, while at the same time adding background traf-
fic sharing the link and competing with the foreground
web browser models. In this case the web object requests
and responses are the foreground traffic (which is being
measured by the experiment). The background traffic is
the competing traffic which is not being measured but ex-
ists to provide time–varying congestion levels to the fore-
ground flows. For this experiment, we used bursty on–
off data sources with a pareto distribution of on–off times
as the competing traffic. The experiment was performed
with various levels of foreground and background traffic
intensity to measure effectiveness of the hybrid approach
under different conditions.

5
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

Web BrowsersWeb Servers

100Mb 100Mb100Mb 10Mb 100Mb

Figure 4: Original Web Browsing Topology

Web BrowsersWeb Servers

100Mb 100Mb100Mb 2000Mb 100Mb

Background
Sources

Sinks
Background

Figure 5: Modified Web Browsing Topology

10

100

1000

10000

50 100 150 200 250 300

N
um

be
r

of
 B

ro
w

se
rs

Simulation Time

HDCFNS Model

Figure 6: HDCFNS Behavior

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time (ms)

hybrid
packet

Figure 7: WRT with 50 Background Flows

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time (ms)

hybrid
packet

Figure 8: WRT with 150 Background Flows

0

5

10

15

20

25

200 400 600 800 1000 1200 1400 1600 1800 2000

S
pe

ed
up

 F
ac

to
r

Number of Foreground flows

50 Background Flows
100 Background Flows
150 Background Flows
200 Background Flows

Figure 9: Speed Factor of the Integrated Model

6
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

We performed two basic sets of experiments: base-
line and integrated. The baseline experiment uses pdns
packet level simulator to model all the traffic flows, web
browsers, web servers, and competing traffic. As pre-
viously described, pdns models precisely all packets in
the network, resulting in good accuracy, at the expense of
longer simulation time. The length of simulation, and the
measured web object response time provide the baseline
with which to compare the integrated approach. The inte-
grated experiment uses the HDCF-NS fluid model simula-
tor to simulate the competing traffic, and pdns to simulate
the web traffic. Although the fluid model is an approxima-
tion, we found it to be acceptable in this application since
the background traffic is not being measured. The back-
ground traffic exists to cause varying congestion levels at
the bottleneck of the topology. The integrated fluid packet
model is expected to perform better than the baseline ap-
proach in terms of execution time while maintaining com-
parable accuracy in the results. The Web Response Time
(WRT) cumulative distribution function (CDF) was used
in the experiments as the metric for determining the accu-
racy of the simulation results.

5 Experimental Results

We noticed early in our experiments the ripple effect for
fluid simulation models. While the fluid model simulator
performed extremely well modeling moderate numbers of
flows (up to about 150), the execution time increased dra-
matically as the number of flows increased over approxi-
mately 200. This can be seen in Figure 6. Thus the hybrid
simulation approach looses effectiveness at these scales.

As mentioned earlier, we used web object response
time as the metric for comparing the accuracy of the hy-
brid approach. The web response time is measured by not-
ing the time of each web object request and the time each
object is completely delivered to the browser. Figure 7
and Figure 8 shows the comparison of web response time
between both integrated and base (pdns) models. Figure 7
is the result of a network topology with 50 competing
flows and 10 browsers. It is easy to see in the CDF that
85 percent of the web objects got served at at 500 seconds
in this experiment. Figure 8 is the result of a network
topology with 150 competing flows and 1000 browsers,
where 80 percent of the web object got served at 500 sec-
onds. This is expected since there are more traffic flows in
the network which might cause delays in serving the web
requests. However, the results show clearly there is lit-
tle difference in the accuracy of the measured foreground
traffic behavior in the hybrid approach, as compared to the
packets only approach.

In addition,the goal of this new integrated approach is
to speedup the simulation while maintaining the results
accuracy. Figure 9 shows the performance of the inte-
grated model comparing to the baseline. As illustrated,
speedup factors ranging from 15 to 21 were obtained
when there are a small number of browsers, decreasing
to about 2 to 4 as the number of browsers reach 2000.
The decrease in speedup is expected since the number of
foreground flows are increasing relative to a fixed amount
of background traffic.

We also point out that there is some overhead with the
synchronization of the hybrid and packet models in the in-
tegration, and that can be seen when there is a low number
of browsers and low number of competing flows. In this
case, the overhead of message passing and synchroniza-
tion largely offsets the gain from the hybrid approach.

Additionally, we see clearly the ripple effect in the fluid
simulation in our speedup graphs. For the case with 200
background flows, the execution time of the fluid simula-
tor becomes the pacing factor for the hybrid simulation,
resulting in the relatively poor speedup numbers in this
case. However, for cases with moderate numbers of com-
peting flows, (less than 200), we see substantial speedup
as expected.

6 Conclusions and Future Work

In this paper, we described the integrated fluid/packet
model, and evaluated its performance over the traditional
packet-level model. The web response time was used as a
measure key for comparing the accuracy of the simulation
results, while the simulation execution time was the basic
factor of simulation performance. Multiple simulations
for different network scenarios were analyzed to calculate
the relative performance of the new model. As expected,
the integrated model takes advantage of the computational
efficiency of the fluid simulation, and the details of in-
terest measures of the packet-level simulation. However,
the performance of the integrated model in more complex
networks (more traffic flows) was bounded by the ripple
effect of the fluid simulation.

Furthermore, our current integrated fluid/packet model
does not implement the effects of foreground traffic on
the background (i.e. the exchange of information is one-
way). We are presently working on ways to efficiently ad-
just fluid flow rates and levels in response to packet level
events in the packet based simulation.

References

[1] S. Bertolotti and L. Dunand. Opnet 2.4: an envi-
ronment for communication network modeling and
simulation. In Proceedings of the European Simula-
tion Symposium, October 1993.

[2] Mikkel Christiansen, Kevin Jeffay, David Ott, and
F. Donelson Smith. Tuning RED for web traffic. In
Proceedings of ACM SIGCOMM 2000, pages 139–
150, Aug 2000.

[3] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogiel-
ski. Towards realistic million-node internet sim-
ulations. In International Conference on Parallel
and Distributed Processing Techniques and Appli-
cations, June 1999.

[4] J. H. Cowie, D. M. Nicol, and A. T. Ogielski. Mod-
eling the global internet. Computing in Science and
Engineering, January 1999.

7
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

[5] Sally Floyd and Van Jacobson. Random early de-
tection gateways for congestion avoidance. IEEE
Transactions on Networking, 1(4):397–413, August
1993.

[6] Richard M. Fujimoto, Kalyan Permualla, and Ivan
Tacic. Design of high performance RTI software. In
Distributed Simulation and Real-Time Applications
2000, August 2000.

[7] R.M. Fujimoto, S. Ferenci, M. Loper, T. McLean,
K.S. Perumalla, G.F. Riley, and I Tacic. Fdk users
guide. Georgia Institute of Technology, March 2001.

[8] C.V. Holloty, V. Misra, D. Towsley, and W. B. Gong.
Analysis and design of controllers for aqm routers
supporting tcp flows. IEEE Transactions on Auto-
matic Control (to appear), 2002.

[9] P. Huang, D. Estrin, and J. Heideman. Enabling
large-scale simulations: selective abstraction ap-
proach to the study of multicast protocols. In Pro-
ceedings of the International Symposium on Mod-
eling, Analysis and Simulation of Computer and
Telecommunication Systems, July 1998.

[10] G. Kesidis, A. Singh, D. Cheung, and W.W. Kwok.
Feasibility of fluid–driven simulation for atm net-
works. In Proceedings of IEEE GLOBECOM 96,
Nov 1996.

[11] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong.
Fluid simulation of large scale networks: issues and
tradeoffs. In Proceedings of PDPTA’99, June 1999.

[12] Benyuan Liu, Daniel R. Figueiredo, Yang Guo, Jim
Kurose, and Don Towsley. A study of networks sim-
ulation efficiency: Fluid simulation vs. packet-level
simulation. In Proceedings of the 20th Annual Joint
Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM’01), April 2001.

[13] Bruce A. Mah. An empirical model of http network
traffic. In Proceedings of IEEE INFOCOMM, pages
592–600, 1997.

[14] S. McCanne and S. Floyd. The LBNL network sim-
ulator. Software on-line: http://www.isi.edu/nsnam,
1997. Lawrence Berkeley Laboratory.

[15] Benjamin Melamed, Shuo Pan, and Yorai Wardi.
Hybrid discrete-continuous fluid-flow simulation. In
Proc. of the SPIE International Symposium on Infor-
mation Technologies and Communications (ITCOM
01), Aug 2001.

[16] Vishal Misra, Wei-Bo Gong, and Don Towsley. A
fluid-based analysis of a network of aqm routers sup-
porting tcp flows with an application to red. In Pro-
ceedings of ACM SIGCOMM, Sep 2000.

[17] David Nicol, Michael Goldsby, and Michael John-
son. Fluid-based simulation of communication net-
works using ssf. In Proceedings of 1999 European
Simulation Symposium, June 1999.

[18] George F. Riley, Mostafa H. Ammar, Richard M.
Fujimoto, D. Xu, and K. Perumalla. Distributed
network simulations using the dynamic simulation
backplane. In Proceedings of the 21st Annual Con-
ference on Distributed Computing Systems, April
2001.

[19] George F. Riley, Richard M. Fujimoto, and
Mostafa H. Ammar. A generic framework for par-
allelization of network simulations. In Proceedings
of Seventh International Symposium on Modeling,
Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS’99), October 1999.

[20] George F. Riley, Richard M. Fujimoto, and
Mostafa H. Ammar. Parallel/Distributed ns. Soft-
ware on-line: www.cc.gatech.edu/ computing/ com-
pass/ pdns/ index.html, 2000. Georgia Institute of
Technology.

[21] D. Ros and R. Marie. Estimation of end-to-end de-
lay in high-speed networks by means of fluid model
simulations. In Proceedings of 13th European Sim-
ulation Multiconference, June 1999.

[22] D. Ros and R. Marie. Loss characterization in high-
speed networks through simulation of fluid models.
In Proceedings of SPECTS’99, July 1999.

[23] Jung-Ying Tyan and Chao-Ju Hou. Javasim: A
component-based compositional network simulation
environment. In Proceedings of the Western Sim-
ulation Multiconference, Communication Networks
And Distributed Systems Modeling And Simulation,
Jan 2001.

[24] Y. Wardi and G. Riley. Ipa for loss volume and
buffer workload in tandem sfm networks. In Pro-
ceedings of 6th Workshop on Discrete Event Systems
(WODES’02) (to appear), Oct 2002.

[25] Yorai Wardi and Benjamin Melamed. Continuous
flow models: modeling, simulation and continuity
properties. In Proceedings of 38th IEEE Conference
on Decision and Control, volume 1, pages 34–39,
1999.

[26] Donghua Xu, George F. Riley, Mostafa H. Am-
mar, and Richard M. Fujimoto. Split protocol stack
network simulations using the dynamic simulation
backplane. In Proceedings of the Ninth International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, August
2001.

[27] Anlu Yan and Wei-Bo Gong. Time–driven fluid
simulation for high-speed networks. IEEE Transac-
tions on Information Theory, 45(5):1588–1599, July
1999.

[28] X Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a
library for parallel simulation of large-scale wireless
networks. In Proceedings of the 12th Workshop on
Parallel and Distributed Simlations, May 1998.

8
Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

