The Dynamic Load Balancing of Clustered Time Warp
for Logic Simulation

Hervé Avril *and Carl Tropper

School of Computer Science
McGill University, Montréal, Canada H3A 2A7
Email : herve@cs.mcgill.ca, carl@magic.cs.megill.ca

Abstract

We present, in this paper, a dynamic load balanc-
ing algorithm developed for Clustered Time Warp,
a hybrid approach which makes use of Time Warp
between clusters of LPs and a sequential mechanism
within the clusters. The load balancing algorithm fo-
cuses on distributing the load of the simulation evenly
among the processors and then tries to reduce inter-

rocessor communications. We make use of a trigger-
ing technique based on the throughput of the simu-
lation system. The algorithm was implemented and
its performance was measured using two of the largest
benchmark digital circuits of the IgCAS’SQ series. In
order to measure the effects of the algorithm on work-
load distribution, inter-processor communication and
rollbacks, we defined three distinct metrics.

Results show that by dynamically balancing the
load, the throughput was improved by 40 to 100%
when compared to Time Warp. Throughput is the
number of non rolled-back message events per unit
time.

When the algorithm tried to reduce inter-processor
communication, rollbacks were substantially reduced.
Nevertheless, no substantial improvement was ob-
served on the overall simulation time, suggesting that
load distribution is the most important factor to be
taken into consideration in speeding up the simulation
of digital circuits.

1 Introduction

Logic simulation poses a severe challenge to the PDES
community due to the fine granularity of the computa-
tion, the very large number of basic elements, and the
low level of circuit activity. Two different classes of
algorithms are commonly employed to solve the syn-
chronization problem of parallel simulation: the con-
servative approach introduced by Chandy, Misra [5),
and Bryant [3], and the optimistic approach pioneered
by Jefferson [9]. Conservative algorithms must either
prevent or detect and break deadlocks. As for opti-
mistic algorithms, processes must roll back to cancel

*alzso with the Hutchison Avenue Software Corporation,
Montréal, Canada

1087-4097/96 $5.00 © 1996 IEEE

20

wrong computations. Furthermore, memory manage-
ment [6] and instability [11] are two fundamental prob-
lems of the Time Warp paradigm.

In an attempt to accommodate the low level of cir-
cuit activity, a hybrid approach, Clustered Time Warp

CTW) [1], was developed. CTW makes use of Time
NVarp between clusters of LPs and uses a sequential
algorithm within the clusters. In CTW, several clus-
ters can reside on the same processor, but a single clus-
ter cannot be split among different processors. Three
checkpointing algorithms were developed and repre-
sent a different memory vs. execution time trade-off.

Empirical results [13], have shown that a very
strong locality exists in digital circuits, suggesting that
historical information can he used to improve the map-
ping of the simulated model onto processors. In this
spirit, we feel that the use of a dynamic load balanc-
ing technique can substantially improve the perfor-
mance of logic simulations. Furthermore, the fact that
CTW groups LPs into clusters makes the load balanc-
ing mechanism easier to implement since instead of
having to deal with individual LPs, only clusters are
considered.

Our dynamic load balancing algorithm attempts to
evenly distribute the load among the processors. We
believe the most important factor in load balancing
of parallel VLSI simulations is keeping the proces-
sors as busy as possible, even at the expense of in-
creased inter-processor communications and rollbacks.
We provide evidence to support this contention later
in the paper.

The remainder of the paper proceeds as follow. Sec-
tion 2 discusses related results, while section 3 de-
scribes our algorithm in detail. Section 4 describes
our experiments, and the concluding section follows.

2 Related results

In {12}, Nicol and Reynolds present a statistical ap-
proach to dynamically Ip:-l.rtit.iml a circuit and to mapit
to a set of processors. In their approach, a work graph
is created to describe the precedence relations between
the nodes. Edges in the work graph are weighted
depending on the communication deELys between the
nodes and their overlap. If over a clock cycle, the
time region of the activity of two nodes overlap, par-
allelism can be achieved by mapping these two nodes
on two different processors. Given the work graph,

http://herveQcs.mcgill.cn

the authors partition the nodes into clusters by us-
ing a min-cut clustering algorithm based on Losen’s
approach [10]. The complexity of their algorithm is
O(E.(N — K).logs(N — KY)) where N is the number
of nodes in the work graph, E is the number of edges
and K is the number of partitions. Their empirical re-
sults are positive. Nevertheless, the tests were done on
a single 64-gate circuit and the authors assumed net-
works having no directed cycles. Because of the small
size of the model, the lack of other tests, and the re-
strictions put on the connectivity graph of the circuit,
it is extremely difficult to extrapolate the results to
large sequential circuits.

Reiher and Jefferson introduce in [14] a new metric
called the effective utilization which is ”the proportion
of work that is effective”. The authors define effective
work as the ”work that will not be rolled back”. Based
on this metric, their load balancing algorithm moves
logical processes from processors which are doing a
lot of effective work to other processors which are do-
ing little effective work. The performance results pre-
sented in the paper were obtained from running two
typical benchmark simulations, One was a battlefield
simulation, from which they obtained an improvement
of 25% of the total simulation time by using their load
balancing algorithm. The other model was a simula-
tion of two-dimensional frictionless pucks moving and
colliding on a table. Since the number of pucks used
was quite high relatively to the number of processors,
the simulation was naturally balanced and very little
improvement was observed.

Burdorf and Marti ;;1] present a dynamic load bal-
ancing algorithm which executes on their Lisp-based
Time Warp system running on a network of work-
stations. Their approach was motivated by the fact
that users may load the workstations while a simula-
tion was taking place, hence the need to move objects
around to give the users a higher priority on comput-
ing resources. They chose the simulation time (Local
Virtual Time) as a metric based on the assumption
that rollbacks are extremely costly since they undo
work which must be redone afterwards. Therefore,
the main purpose of their algorithm is to reduce the
variance between the objects’ simulation times. By
moving on the same processor objects which are far
ahead in time and objects that are far behind, the au-
thors believe that objects will synchronize with each
others and less rollbacks will accur, hence speeding
up the simulation. In their performance results, they
find a five to ten times performance improvement over
a simulation which does not use a dynamic load bal-
ancing strategy.

Glazer [7] (!8] presents a dynamic load balancing
strategy based on time slices. A time slice is a met-
ric proportional to the ratio of the amount of compu-
tation time required by a process over its simulation
advance. Once the time slice lengths are derived, pro-
cesses are allocated to processors in an attempt to
equalize the load on each processor. Three simulation
models were constructed to represent different classes
of simulation: a pipeline model, a hierarchical network
model and a distributed network model. These models
were ran on PARALLEX, a simulated multi-processor
environment and the experimental results show that
speedups ranging from 12% for the pipeline model up

21

to 49% for the distributed network model were ob-
served. Rollbacks were also decreased during the load
balancing process, up to 50%.

In [15], the authors present a method for dynamic
load-balancing for a simulator whose logical processes
are grouped into clusters and which runs on a network
of workstations. They introduce the Virtual Time
Progress (VTP) which reflects how fast a simulation
process continues in virtual time. Load imbalance is
translated into a variation between the VTPs of the
processors. By moving one or more clusters durin
the execution of the simulation, the load is balance
by trying to get all of the VIPs to he approximately
the same value. Their results are quite encouraging
since on a circuit of around 10,000 gates, they obtain
a simulation runtime about 20% smaller than the time
needed for the same simulation without load balanc-
ing. Nevertheless, only two workstations were used for
the simulation and only one circuit was tested, so it
is difficult to draw any general conclusion from these
performance results.

A number of the existing load balancing strategies
we have described above base their decision to invoke
the load balancing algorithm on the progress of virtual
time in real time. In the domain oF logic simulation,
the computational granularity is fine and is approxi-
mately the same at all of the LPs. Furthermore, the
level of circuit activity is low. Consequently, we have
decided to emphasize the role of the load 1n our dy-
namic load balancing algorithm and we have not used
any virtual time metric.

3 The Algorithm

In this section, we describe our dynamic load balanc-
ing algorithm 1n detail.

3.1 Workload distribution

Due to the fine computational granularity of logic sim-
ulation, we need a metric to measure the load that is
easy to compute and does not create too much over-
head. We define the load of @ cluster to be the num-
ber of events which were processed by its constituent
logical processes since the last load balance in the sim-
ulation. This includes the rolled back events as well
as the stragglers. Each processor also_computes its
load, which 1s the sum of the loads of all the clus-
ters hosted hy that processor. The load balance is
improved by moving clusters from overloaded to un-
derloaded processors. Given the load information of
the clusters and the processors, our algorithm itera-
tively chooses the most loaded and the least loaded
processors (respectively Pucquy and Pigni). The load
difference § Load of both processors is then calculated.
§Load 2 represents the load that must be transferred
from Pjqvy t0 Prigit so that both are likely to have the
same workload once the transfer has been performed.
Since we want to move as few clusters as possible,
we will choose the cluster whose load is the closest to
6Load/2, and assign it to Pnym. The load of P;.,,,wy
and Py are then updated and the same procedure
is executed iteratively.

In the current implementation of Clustered Time
Warp, a processor called the pilot is dedicated to col-
lecting statistics and other types of information from
the processors involved in the simulation. In order to
simplify the implementation, we assigned the load bal-
ancing task to this processor. Processors periodically
send their load information to the pilot by piggyback-
ing it on the GVT token.

3.2 Inter-Processor communication

Delays created by inter-processor communications
may play an important role in determining the exe-
cution time of a parallel simulation. Consequently, we
extend our algorithm to incorporate the communica-
tion factor. Instead of directly picking up the most
heavily loaded cluster Cheavy i processor Pheauy, We
will consider all the clusters whose load is close to
that of Cheany. We say that two clusters have approx-
imately the same load when their difference is less
than a certain tolerance. In our implementation, a
tolerance of 10% was used. Then for each of these
clusters, we evaluate the change that would occur in
inter-processor communications if it is moved to an;
of the lightly loaded processors. The move that mim-
mizes communication is then chosen.

Moving a cluster Ci from processor P; to proces-
sor P; is fikely to alter the amount of communication
between these two processors. It may worsen the situ-
ation since other clusters in P; which are communicat-
ing with C} will have to send events over the network.
On the other hand, the situation is also improved since
clusters in P; which were communicating with Cj will
not need to send messages over the network anymore.
Therefore the overall change in communication load
is:

§TPC(Cy, P, Fy) = Y L ICC(Cy,Ca) =), ICC(Cs,Com)

vC.€ PJ VOmEDr;

where ICC(C,,C}) is the number of messages ex-
changed between clusters C, and Cp. The number of
messages is calculated over a certain period of time
which must be long enough so that the measure can
be considered as reliable. In the case of logic simula-
tion, this period of time must include the processing
of at least one input vector so that all parts of the
circuit have a chance to be activated. Since the load
balancing algorithm is not activated until the whole
system becomes stable, several input vectors which
would have already been processed.

3.3 Pseudocode

Input: II is the set of all processors.

Output: C,.oue is the cluster to move.
Pjent is the destination processor of Ciove.

22

begin
(1) Picwr — 0
(2) Criova —)
(3) select Pigae € N | Load(Prigne) = Minpen(load(F;))
() select Pyoguy € 1M | Lood(Phcasy) = Mazp,en(Load(P;))
(5) 8Load — Load(Phcayy) — F-0ad(Piighs)
(6) let T C Prcary | YC; € Tr. = Load(Ci) < &l.0ad/[2
(7) select Choavy € Tr | 1.00d(Cheavy) = Mazc;er,(Load(C;))
(8) for each C; € I, | Lood(Ci) = L0ad(Cheavy)

(9) for each P; € 1| Load(Pyeayy) — Load(P;) > 2.1.0ad(C;)

(10) if JIPC(CG, Phcauy: Pj) < JIPC(Cmm:m Phnm:y: Pycat)
(1) Pioat — Pj
(‘2) Crove — Ct'
endif
endfor
endfor
end.

34 Triggering the load-balancing

algorithm

Once a move has been decided upon, the loads of the
two processors involved in the transfer are reevalu-
ated. Then a decision process is started to find what
cluster to move and where to move it. This proce-
dure will converge to a hetter mapping of clusters, but
not necessarily to the optimal one. This process can
be repeated until the estimated workload distribution
cannot be improved upon. Nevertheless, this proce-
dure would not be very realistic for two main reasons.
First, there is no control over the number of moves.
Second, even though the processors’ loads are reeval-
uated each time a move has heen decided upon, the
newly evaluated loads do not necessarily reflect the ac-
tual resulting load of the processors, mainly because
the loads of the other processors have changed. There-
fore, an iterative method was used. At each step of
the load-balancing algorithm, only a certain number
of clusters will be allowed to move. Then the system
waits until the following two conditions are satisfied
before triggering other moves:

o The cost of moving the clusters has been amor-
tized by the resulting speed-up.

o New up-to-date measures are available.

Our load-bala.ncin%triggering mechanism is based
on the throughput of the simulation system, defined as
the number of non rolled-back message events per unit
time. The through[lmt does not include anti-messages.
In the domain of logic simulation, we feel that the
throughput is a better measure of the overall speed
of the simulation than the GVT advance. This is be-
cause the GVT advance is more dependant then the
throughput on the nature of the model and its be-
havior. A large advance in GVT can be achieved by
processing a small number of events.

Since the throughput fluctuates over time, a least-
square approximation is used to obtain the general
trend of throughputs, expressed by a first-degree equa-
tion. The system is considered stable when the coeffi-
cients obtained from the approximation do not vary by
more then 5%. In our implementation, a throughput

Throughput

Credits

|
|
!
4

Ltwd
Real Time

Figure 1: Throughput during a transfer

point is calculated every 3 seconds, the least-square
approximation spans 6 points.

When a move is initiated at real time t = 4,4, the
throughput of the system tends to decrease since pro-
cessors are spending their time transferring clusters.
Then, once t[l)xe operation is completed, the through-
put increases, reaches its original value at t = ..,
which is equivalent to the break-even time (as defined
in [15]). The throughput finally reaches a stable value
larger than that previous to the transfer. Figure 1
depicts this situation.

Triggering the load balancing mechanism each time
the stability is detected might actually decrease the
overall speed of the simulation, even if the final
throughput is higher than the previous one. As we
have seen, moving clusters around has a cost in terms
of throughput which is represented by the shaded
area in the interval [tuiart,teven) in figure 1. On
the other hand, the transfer has the benefit of ulti-
mately increasing the overall throughput of the sys-
tem by an amount equal to the area above the inter-
val [tevenstend). If the next load balancing mechanism
is triggered before the gain in throughput is equal to
the cost of the transfer, the overall speed of the sim-
ulation might actually decrease. As a consequence,
before launching the next load-balancing mechanism,
\;edwait at least until the following condition is satis-

ed:

lend T(t) _ Lo

lnt-rt

ad
Tora(t)

lncart

where T,(t) is the approximation of the through-

put hefore the transfer and T'(t) is the actual through-
put.

Observations have indicated that as the simulation
progresses, the improvements become less significant
and the period between each balancing adjustment
grows longer. Once the cost of movinf, clusters does
not improve the throughput so as to "pay back™ the
(I:I(a)jt, ‘()if the transfers, the B)a,d balancing mechanism is

ted.

23

3.5 Metrics

To measure the effect of the load balancing mecha-
nism, we define three metrics which depict different
characteristics of the simulation system.

3.5.1 3: Waorkload distribution

To measure the quality of the load-balance, we define 3
as the ratio of the standard deviation of the processor
loads to the maximum load observed. The lower that
3 is, the more equally the load is distributed.

n—1
8 = 1 E:':()
" Load,ax

where n =| II | and II is the set of all processors,

(Load(P;) — Load)*
n-1

Loaduz = Max(Load(P;)) VP; € II and

—_— z:“_“‘ Load(T%)
Load = —

3.5.2

We define v as being the ratio of the number of events
exchanged between processors (Cjp.) to the number of
events exchanged hetween clusters (Cigtar). The lower
that « is, the lower is the inter-processor communica-
tion.

~: Inter-processor communication

1= Cip(:/ Clotal

3.5.3

is defined as the ratio of the number of events rolled

k (Ecancelied) to the total number of events pro-

cessed (Eprocenned). The lower that p is, the less com-
putation is cancelled.

p: Cancelled computation

Pr= Ecmme"ml/Epmcﬁnnﬁd

The three metrics 3, v, and p are measured over
the same period of time as the throughput and only
their mean calculated over the six previous points is
considered.

4

Implementation and

Experiments

4.1 Implementation

In Clustered Time Warp, each gate of a digital cir-
cuit is modelled by a Logical Process. LPs are then
grouped into clusters which are in turn mapped onto
processors. Several clusters may reside on the same
node, but a single cluster cannot be split among dif-
ferent processors.

CTTV\],]’me checkpointing algorithms were developed for

e CRCC Clustered Rollback, Clustered Check-
point.

¢ LRCC Local Rollback, Clustered Checkpoint.
o LRLC Local Rollback, Local Checkpoint.

Each of these techniques offers a different memory
vs. execution time trade-off [1]. CRCC is the least
expensive in terms of memory, and LRLC is the least
expensive in terms of time. In our experiments, we
make exclusive use of LRCC since it offers an inter-
mediate choice for both of these characteristics.

Cluster sizes in the range of 50 to 200 gates were ex-
perimented with. Since hittle difference was observed
between these sizes, we present the results for 100
gates. We used a string (Imrt.it.ioning algorithm, be-
canse of its simplicity and especially because results
have shown that it favors concurrency over cone par-
titioning [2].

The dynamic load balancing algorithm was imple-
mented on top of Clustered Time Warp and run on a
BBX Butterfly GP1000 multiprocessorfl]. The imple-
mentation of message passing in the simulation is #n-
dependent of the shared memory of the Buiterfly. Con-
sequently our results will apply to distributed memory
architectures.

Moving a cluster from one processor to another is
a 2-phase operation. First, the sending processor en-
codes the data structure of the cluster into a message
and then sends it to the receiving processor. While
the transfer is taking place, events are still sent to
the original processor which stores them in a forward
list. Once the transfer is over, the second phase of
the transfer starts. The receiving processor sends an
acknowledgment to the sending one which then sends
it the forward list and broadcasts to all the other pro-
cessors the new location of the cluster. Even though
routing tables are updated immediately, due to vari-
able communication delays it is still possible for a pro-
cessor to receive messages for a cluster that has been
moved away. In this case, the message is simply for-
warded to the correct processor.

4.2 Experiments

We conducted a series of experiments in order to deter-
mine how well our dynamic load-balancing algorithm
performs when compared to Time-Warp. a’e also
tried to measure the effects of load distribution, inter-
processor communication and rollbacks on the over-
all performance of the simulation. The circuits used
in our study are digital circuits selected from the IS-
CAS’89 benchmarks. For the sake of the clarity, we
only present the results obtained from simulations of
two of the largest circuits sta.ble 1) since they are both
representative of the results which we obtained with
other circuits and they have characteristics which re-
sult in two different behaviors.

First of all, we analyzed the effect of workload dis-
tribution without considering inter-processor commu-
nications and rollbacks. To this end, a series of simula-
tions were ran on 20 processors, with pure Time Wi
(TW), with Clustered Time Warp (CTW), and w?ftrg
CTW using our load balancing technique (BCTW).

24

inputs | outputs | flip-fiops | total
C1 | 838417 28 106 1,636 | 23,949
C2 | 838584 12 278 1,452 | 20,995

Table 1: Circuits C1 (s38417) and C2 (s38584)

9000

T T T | I | F
o 8000 - / . -
£ V4 o
& 7000 |- /’l - -
’l

o 6000 1= ” T -
3 5000 b= o’ -
-~ -,’
T 4000 |- -~
= 3000 |- ‘ TR — ~
2 2000 |- = "BCTWN - .
S 2 CTW" ---
© 1000 = =

0 1 1 1 1 1]

0 50 100 150 200 250 300 350

Real Time (seconds)
Figure 2: GVT Advance for C1

Each simulation consisted of the processing of about
500,000 events (cancelled events were not considered).
Figures 2 and 3 show the progress of the Global Vir-
tual Time versus the Real Time for C1 and C2 respec-
tively, using TW, CTW and BCTW.

For bhoth circuits, the figures clearly show that the
total simulation time has been substantially decreased
when load balancing was used. CTW is about 10%
slower than pure TW for both circuits. This is due to
the intrinsic properties of the LRCC algorithm used
for CTW. LPs tend to roll back further in time when
a straggler is detected since their checkpoint intervals
tend to be larger than in Time Warp [1]. On the other
hand, substantial memory savings are realized using

6000 T 7 T 17 A
1 s .e
E 5000 |- ; : -
& ! P
)
~ 4000 }- A . -
] H o
3 f <
,
5 3000 |- [-~
'/ 'l'
= 2000 |~ * PR —— -
3 d: "BCTW" ==~
o 1000 |- "CTW® - —
PR - T TR N T W |
0 S0 100 150 200 250 300 350

Real Time (seconds)

Figure 3: GVT Advance for C2

100 T T T T 1
80 -~ -~ ——-———_g_
o
e 60 b~
U
]
g 40 -
20 Ve s T
‘\-l -
0 L1 i1 1 L1
0 20 40 60 80 100 120 140 160 180
Real Time (seconds)
Figure 4: 8, v and p for C2
LRCC.

When using Clustered Time Warp with our load
balancing algorithm, we observe for C1 a decrease of
ahout 15% of the simulation time compared to Time
Warp and 25% compared to CTW without load bal-
ancing. For C2, the simulation was 40% shorter com-
pared to TW. The reason why load balancing had a
more pronounced effect on circuit C2 may be found
in the locality of its activity. The same partitioning
and the same mapping algorithm were used for both
circuits. Nevertheless, the workload distribution of C2
at the beginning of the simulation was not as good as
that of Cgll, which is caused by a stronger locality of
the activity in C2. As a consequence, moving clusters
out of the overloaded processors and assigning them
to underloaded processors tends to speed up the whole
simulation more effectively for C2.

Figure 4 shows the variation of the three metrics 8
(load imbalance), 7 (inter-processor communication)
and p (rollbacks) during the simulation run of C2 us-
ing the Clustered Time Warp engine along with the
dg'na.mic load balancing mechanism. The first transfer
of clusters was triggered 21 seconds after the beginning
of the simulation. For a period of about 10 seconds,
overloaded processors are husy sending the states of
the clusters and logical processes which have been as-
signed to underloaded processors. During this time,
fewer messages are processed and generated, which is
shown by the sudden decrease of gamma. As a di-
rect consequence, underloaded processors have less to
do, and since overloaded processors are still busy, the
load imbalance gets worse, explaining the increase of
8. Once clusters of LPs have heen transferred, 8 starts
to decrease to a value lower than that at the begin-
ning of the simulation, indicating that the load bal-
ance is better. But this improvement has a cost both
in inter-processor communications and rollbacks. We
can observe that about 86% of the messages exchanged
between clusters are sent over the communication net-
work, instead of 77% previous to transfer. This in-
crease was expected since loaded clusters have been
more evenly distributed over the processors. Roll-
backs also increase from about 10% before the transfer
to about 20 to 30% after the transfer. Nevertheless,

25

~ 2500 T | T T |
o "BCTH" —
2 2000 p~- P ——- —f
2
§ 1500 H —
: A

]
> 1000 H H N \v\ -
& “| W |")\l\“\svl" VIR J
2 s00 H Vo ~
3
M
& 0 L 1 1 1 1

0 50 100 150 200 250 300

Real Time (seconds)

Figure 5: Throughput for C2

| 1 1 |

_1

60 80 100 120 140 160 180
Real Time (seconds)

Processor Utilization (%)

40

Figure 6: Mean and 5.D. of the CPUs’ activity for C2

despite the costs created by extra rollbacks and inter-

processor communications, the overall throughput of

the system increases. Even though the effect was less

Iémnmmced, we observed the same phenomenon for
1

Figure 5 shows the impact of the load-balancing
algonthm on the throughput of the system during the
simulation of C2. We can notice that soon after the
transfer of clusters are initiated, the throughput be-
comes smaller than that of Time Warp. Once the
transfers are over, it becomes twice as large as that of
Time Warp.

For each processor, we measured the activity, which
is the tg:,rcentnge of time spent on computation dur-
ing a fixed period of time. At different points in the
simulation, we calculated the mean and the standard
deviation of the processor activities. The results are
given in figure 6 and they show that as the load bal-
ancing mechanism transters clusters from overloaded
to underloaded processors, the activity rises from 25%
::.E to 60%, and the standard deviation decreases by

out 40%. This proves that the computation load
became more evenly distributed over the processors.

20
80
70
60
50
40 M -
30 H -

20 H "BCTW" -

n W o
10 H BCTW+IPC n
o it 1t 1 1 1 1

0 20 40 60 80 100 120 140 160 180
Real Time (seconds)

percent

Figure 7: Effect on v for C2 if IPC is minimized

percent

"BCTW" =——
"BCTW+IPC" —~= 7

i1t 1 {1 1 1

0
0 20 40 60 80 100 120 140 160 180
Real Time (seconds)

Figure 8: Effect on p for C2 if IPC is minimized

Similar results were obtained with C1, except for the
fact that the throughput of the system did not in-
crease as much as for C2. Instead of an increase of
100%, we observed an increase in the throughput of
40%. Note that C2 has a stronger locality of activity,
which makes it easier for the load balancing algorithm
to improve the overall throughput of the system.

If the load balancing mechanism tries to minimize
inter-processor communications, we observe in figure
7 that v could only be slightly decreased by ahout 5%.
Figure 8 also shows that, on the average, the amount
of computation cancelled by rollbacks has also heen
reduced, even though at some points, it is larger. Fig-
ure 9 shows for C2 the advance of the GVT versus
real time for Clustered Time Warp with load balanc-
ing (BCTW), and Clustered Time Warp with load

ancing considering inter-processor communication
(BCTW+IPC). Even though we ohserve a small im-
provement of the total simulation time, it is obvious
such an improvement is negligible when compared to
that obtained with workload g‘istribution alone.

Figure 10 shows the improvement of the through-
put obtained by using the load balancing algorithm as

26

6000

5000 -
4000 =~

3000 -

2000 P~

"BCTW" ~—
"BCTW+IPC" ~—- o

Global Virtual Time

1000 -

| SV N I IS U S

0 20 40 60 80 100 120 140 160 180
Real Time (seconds)

0

Figure 9: Effect on the GVT Advance for C2 if IPC
is minimized

a function of the number of processors. We observe
that as the number of processors increases, we obtain
better performance. This is due to the fact that when
a small number of processors are used, the load on
the processors is much higher, thus leaving very little
room to improve the load balancing. The improve-
ment eventually levels off when the load is distibuted
among a large enough number of processors.

= ,

£ 100 -T - T

Y 90 = s \\\:

g 80f "c1* — / =

§ o) mc2" --- J -

2 60 / -
4

& 50 }=— / -~

- 40 =

5 30}

£ 20}

) g

3 10F

u 0

= 5 10 15 20 25

Number of processors

Figure 10: Improvement of the Throughput

5

We have described in this paper a dynamic load-
balancing algorithm for Clustered Time Warp, a dis-
tributed logic simulator which makes use of Time
Warp between clusters of LPs and a sequential
algorithm within each cluster. The advantage of the
clustering approach to load balancing is that instead of
having to move individual LPs from one processor to
another, clusters of LPs can be moved. We have also
described a triggering technique based on the through-
put of the simulation. Throughput is the number of

Conclusion

non rolled-back message events per unit time.

We have shown that a substantial acceleration of
the simulation speed can be obtained. Two circuits of
more than 20,000 gates were tested and improvement
of 40 and 100% were obtained for the throughput.

Finally, we have shown that the improvement that
can be obtained by reducing rollbacks and inter-
processor communicationsis limited and that the focus
should be on evenly distributing the workload over the
processors 30 as to keep them as busy as possible.

References

[1] Bervé Avril, Carl Tropper, ”Clustered Time Warp
and Logic Simulation”, pp112-119, PADS’95

[2] J.V. Briner Jr., "Fast Parallel Simnmlation of Digital
Systcuus”, PADS'01, pp71-77

[3] R.E. Bryant, "Simulations of Packet Commmmnication
Architecture Computer Systems”, T.R.-188, MIT,
LCSi, 1977

{4] C. Burdorf, J. Marti, "Load Balancing Strategics for
Time Warp on Multi-User Workstations”, The Cow-
puter Jonrnal, Vol.36, No.2, pp168-176, 1993

[5] K. Chandy, J. Misra, "Distributed Simulation: A
Casc Study in Design and Verification of Distributed
Programs”, IEEE Trans. Softwarc Eng., $-5, pp440-
453, Scpt. 1979

[6] R.M. Fujimoto, " Parallcl Discrete Event Simulation”,
CACM, Vol.33, No.10, pp31-53, 1990

[7] David M. Glazer, "Load Balancing Parallel Discrete
Event Simulations”, Ph.D. thesis, McGill University,
1993

[8] David M. Glazcr, Carl Tropper, "A Dynamic Load
Balancing Algorithin for Time Warp”, pp318-327,
Parallel and Distributed Systems, Vol4, No.3, March
1993

[9] D.R. Joffersom, " Virtnal Thme”, ACM Trans. Prog.
Lang. Syst., Vol.7, No.3, ppd04-425, July 1985

[10] S.L. Losen, "A Global Algorithmn for the Multi-
Partitioning of Graphs”, M.Sc. thesis, University of
Virgiuia, Jannary 1985

{11] B. Lubachevsky, A. Schwartz, A. Weiss, "Rollback
Somctimes Works... if Filtered”, Proc.1989 Winter
Siumlation Conference, pp0630-639, Doceruber 1989

[12] David M. Nicol, Paul F. Reynolds, Jr., "A Statis-
tical Approach to Dynamic Partitioning”, pp53-56,
PADS'85 .

{13] B.L. Noble, R.D. Chamlxxlain, "Predicting the Fu-
ture: Rosource Requirements and Predictive Opti-
wism”, PADS'95, ppl57-164

[14] Peter L. Reiher, David Jefferson, ”Virtual Time

Bascd Dynamic Load Management in the Time Warp
Opcrating Systemn”, pp103-111, PADS'90

27

{15] R. Schlagenhaft, M. Rubwandl, C. Sporrer, H. Baner,
"Dynamic Load Balancing of a Multi-Cluster Sit-
ulator on a Network of Workstations”, ppl75-180,
PADS'95

