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Abstract 

We present, in this paper, a dynamic load balanc- 
ing algorithm developed for Clustered Time Warp, 
a hybrid appmach which makes iisc! of Time W a r p  
het.ween cliisters of LPs and a wqiieiitial mechanism 
within the clusters. The load balancing algorit.hm fo- 
ciisw on distributing the load of the simidation evenly 
among the procestton and then tries to reduce inter- 
procesmr commiinication.. . We make use of a t.rigger- 
ing technique based on the throiighpiit of the simii- 
lation system. The algorithm was implemented and 
its performance was measiired tisin two of the largest 
benchmark digital circuits of the 18CAS’89 series. In 
order to  memiire the effects of the algorithm on work- 
load distribution, inter-processor conimiinicat.ion and 
rollback, we defined three distinct metrics. 

bsidts  show that by dynamically balancing the 
load, the throughput was improved by 40 to  100% 
when compared to  Time Warp. Throughput. is t.he 
number of non mllf.nl-bact message events per unit 
time. 

When the algorithm tried to  reduce inter-processor 
commiinication, rollback. were siihstantially rediiced. 
Severt.hdess, no srihstantial improvement was oh- 
served on the overall simiilation time, siig esting that 
load distribution is the most important &tor to  he 
taken into consideration in speeding iip the simidihon 
of digital circuits. 

1 Introduction 
Logic simulation poses n severe challenge to the PDES 
commiinit,y due to the fine graniilarity of the compiiti+ 
tion, the very larrqe number of basic elements, and the 
low level of circuit activit3. Two different classes of 
algorithms are commonly em loyed to  solve the syn- 
chronimtion problem of pardel  simulation: the con- 
servative approach introduced by Chandy, Misra 151, 
and Bryant [3], and the optimistic approach pioneered 
by Jefferson [9]. Conservative algorithms must either 
prevent or detect and break deanlloch. As for opti- 
mistic algorithms, processes must roll hack to cancel 
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u~mng compiit.ations. Fiirthermore, memory manage- 
ment IS] and instability Ill] are t.wo fundamental proh- 
lems of the Time Warp paradigm. 

In an attempt, to  accommodate the low level of cir- 
cuit activity, a hybrid approach Clustered Time Warp 
(CTW), 111, was developed. C?’W makes iise of Time 
t’arp et.1vee.n cltisters of LPs and itses a seqiient.ial 

algorithm within t.he clusters. In CTW, several clus- 
ters can reside on the same processor, hiit a single chis- 
ter cannot, he split. among different processors. Three 
checkpointing algorithms were developed and repre- 
sent. a different memory vs. execution time trade-off. 

Empirical results [13], have shown that a very 
stmng locality exists in digit.d circuits, siiggest.ing that 
hishrical information can he iised t~o improve the map- 
pine of t,he simiilatd model onto processors. In this 
spint., we feel that the iise of a dpunic load balanc- 
ing technique can substantially improve the perfor- 
mance of logic simtlations. Fiirthermore, the fact t.hat 
CTW groiips LPs i n h  clusters makes the load balanc- 
ing mechanism easier to  implement since instead of 
having to deal with individual LPs, only clusters are 
considered. 

Oar dynamic load balancing algorithm attempts to 
evenly distribute t.he load among the processors. We 
believe the most important factor in load balancing 
of parallel VLSI simulations k keeping the proces- 
sors as busy as possible, even at the expense of in- 
creased inter-proces.sor commtinications and rollback.. 

provide evidence to support this contention later 
in the paper. 

The remainder of t.he paper proceeds as follow. Sec- 
tion 2 discitsses related residts, while section 3 de- 
scribes our algorithm in detail. Section 4 de,scrihes 
our experiments, and the concluding sect.ion follows. 

2 Related results 
In 112, Sicol and Reynolds present a statistical ap- 

to  a set of processors. their approach, a work graph 
is created to describe the precedence relations between 
the nodes. Edges in the work gra h are weighted 
depending on the communication de&s between the 
nodes and their overlap. If over a clock cycle, the 
time region of the activity of two nodes overlap, par- 
allelism can he achieved by mapping these two nodes 
on two different, processors. Given the work graph, 

pmac f! to dynamically artit.ion a circuit and to  map it 
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the authors partition the nodes into clusters by 11s- 
ing a min-ciit. clustering algorithm based on Losen's 
approach 110). The coiiiplexity of their algorit,hm is 
O(E.y7 - K ) . l q 1 y 7  - K ) )  where M is the number 
of no es in the wor - graph, E is the niimher of edges 
and K is t.he number of partit.ions. Their empirical re- 
sults m ositive. Severtheless, the tests were done on 
a single &-gate circuit and the authors assumed net- 
works having no directed cycles. Because of the small 
size of the model, the lack of other t.ests, and the re- 
strictions piit on the connectivity graph of the circuit, 
it is extremely difficult to  extrapolate the results to 
large sequential circuits. 

Reiher and Jefferson introduce in 1141 a new metric 
cded the eflectioe iLtifixntion which is "the proportion 
of work that is effective". The authors define effective 
work as the "work that will not he rolled hack". Based 
on this metric, t.heir load balancing algorithm mm-es 
logicrrl rocesses from processors which are doing a 
lot of e8ect.h work t.o other processors which are do- 
ing little effective work. The performance resilts pre- 
sented in the paper were obtained from ninning two 
typical benchmark simulations. One was a battlefield 
simiilation, from which they obtained an improvement 
of 25$% of the total simiilation time by iising their load 
balancing algorithm. The other model was a simidic 
tion of two-dimensional frictionless licks moving and 
colliding on a table. Since the niimter of picks used 
was quite high relatively to  the number of processors, 
the simulation was naturally balanced and very little 
improvement was ob.wwed. 

Burdorf and M&.i 41 present a dynamic load hd- 
ancing algorithm whic 6 executes on their L i s p h w d  
Time Warp system running on a network of work- 
stations. Their approach was motivated by the fact 
that users may load the workstations while a dmidn- 
tion was taking place, hence the need to  move objects 
moimd to give the iiwrs a higher priorit,y on compiit- 
in6 resources. They chow the simulation time (Local 
Virtiid Time) as a metric based on the assumption 
that rollbacks are extremely cost.ly since they iindo 
work which must he redone aftem-ards. Therefore, 
the main purpose of their algorithm is to reduce the 
variance between the objects' simulation times. By 
movinq on the same processor objects which are far 
ahead in time and objects that are far behind, the ail- 
thors believe that objects will synchronize with each 
othew and less rollbacks will occur, hence speeding 
iip the simulation. In their performance residts, they 
find a five to  ten times performance improvement mer 
a simulation which does not use a dynamic I d  hal- 
mcing strategy. 

Glazer [7] 81 presents a dynamic load balancing 

ric proportional to  the ratio of the amount of compii- 
tation time required by a process over its simiilation 
advance. Once the time slice length.. are derived, pro- 
cesses are allocated to processors in an attempt to 
eqiidixe the load on each processor. Three simulation 
models wen? constnided to  re resent different c1~'ses 
of simidation: II pipeline mode[ a hierarchical network 
model and a distributed network model. These models 
were ran on PARALLEX, a simulated multi- mces.wr 
environment. and the experimental results slow that 
speedups ranging from 12% for the pipeline model lip 

strategy hse d on time slices. A time slice is a met- 

to 49% for the distrihiit.ed network model were oh- 
sewed. Rollbacks were &so decreawd during the 1 0 4  
halandn process, iip to 50%. 

In [I$, the authors present a method for dynamic 
load-balancing for a simtilator whose: logical processes 
act? groiiped into clusters and which rims on a network 
of workstations. They introduce the Virtual Time 
Progress (VTP) which reflects how fast a simiilat.ion 
proce,ss continiies in virtiial time. Load imbalance is 
t.ranslat.ed into a variation het.ween the VTPs of the 
proces.wrs. By moving one or more cliisters diirin 
the execution of the simiilat.ion, the load is balancefi 
by trying to get dl of t.he VTPs to be approximately 
t,he same value. Their resiilts are  quite encouraging 
since on a drcilit of aronn? 10,000 gates, they obtain 
a simulation n i t i m e  about 20% smaller than the time 
needed for the same simulation without load balanc- 
ing. Severtheless, only two workstations were used for 
t.he simrdation and only one circilit was tested, so it 
is difficult. to  draw any general conclusion from these 
performance results. 

A number of the existing load balancing strategies 
we have described above base their decision to invoke 
the load balancing algorithm on the rogress of virtiial 
time in real time. In the domain o!logic simulation, 
the compiitational graniilarity is fine and is approxi- 
mately the same at all of t.he LPs. Furthermore the 
level of circuit activity is low. conseqiientlr, we have 
decided to emphasize the role of the load in our dy- 
namic load hiISancing algorithm and we have not used 
any virtiial time metric. 

3 The Algorithm 
In this section? we describe our dynamic load hdanc- 
ing algorithm in detail. 

3.1 Workload distribution 
Due to the fine computational granii1arit.y of logic .sim- 
illation, we need a metric to memiire the load t,hat is 
emy to  compute and does not create too much over- 
heiui. W e  define the load of a cluater to he the mim- 
her of evenks which were rocessd by its constititent 
logical pmcesses since the fnst 1 0 4  balance in the sim- 
idation. This includes the rolled back event.. as well 
it9 the straqlers. Each processor dso computes its 
load, which I.. the slim of the loads of all the clris- 
ters hasted by that procemsor. The load balance is 
improved by moving cliisters from overloaded to iin- 
derloaded proces.sors. Given the load information of 
the clusters and the processors, oiir algorithm itera- 
tively chooses the most loaded and the least loaded 

difference 6 Load of both procesors is then cAculated. 
6Load 2 represents the load that must he trmtferred 

sixme workload once the transfer has been performed. 
Since we want to  move as few clusters as ossible, 
we will choose the cluster whose load is the cyosest t o  
fiLood/2, and assign it to  Pliylll. The load of 
and P/iyhl ILT~? then ripdated and the same procedure 
is execiited iteratively. 

p r ~ c m ~ o r ~  (mspectiveJy P/,eaag ~tnd Z'liyrtl). The load 

€rom d j,ar,vy to Pliyj,l M that h t h  are likely to have the 
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In the current implementation of Clustered Time 
Warp, a processor called the pilot is dedicated to col- 
lecting statistics and other types of information from 
the processors involved in the simiilation. In order to 
simplify the implementation, we assigned the load hal- 
mcing task to this processor. Processors periodically 
send their load information to t.he pilot by piggyhack- 
ing it on the GVT token. 

3.2 Inter-Processor communication 
Delays created by inter- rocessor communications 

clition time of a parallel simulation. Conseqiient.ly, we 
extend our algorithm to incor orate the commiinica- 
tion factor. Instead of direct.$ picking tip the most 
heavily loaded cluster C I ~ ~ ~ ~ ~ ~  in processor PlIsasJry, we 
will consider all the clusters whose load is close to 
that of C~Isll,,y. W e  say that two clusters have approx- 
imately the same load when their difference ds less 
than a certain tolerance. In our implementation, a 
tolerance of 105% was used. Then for each of these 
clusters, we evaluate the change that woiild occur in 
inter-processor commiinications if it is moved to any 
of the lightly loaded processors. The move that mini- 
mi7m commiinication is then chosen. 

3 h i n  a cliist.er Ck from processor Pi to proces- 
sor Pj is fikely to alter the amount of commiinication 
between these two processors. It may worsen the situ- 
ation since other clusters in Pi which art? commiinicat- 
ing with ck will have to send events mer the network. 
On the other hand, the situation is also improved since 
clusters in Pj which were commrinicating with Ck will 
not need to send messa es over the network anymore. 
Therefore the overall ctange in commiinication load 
is: 

may play an important. ro P e in determining the ex+ 

where ICC(C,, 9) is the number of messages ex- 
changed between clusters C, and Cb. The number of 
messages is calcillated over a certain period of time 
which must he lon enough so that the measure can 
he considered as r&able. In the casse of logic simiih 
t.ion, this period of time must inchide the processing 
of at least one inpiit vector so that d l  parts of the 
circuit have a chance to he activated. Since the load 
hrtlancing algorithm is not activated until the whole 
system becomes stable, several inpiit vectors which 
woild have already been processed. 

3.3 Pseudocode 

Input: 11 is the set of all processors. 

Output: C,,I,,, is the dilster to move. 
Prleal is the destination processor of C,,,,,,. 

3.4 Triggering the load-balancing 

Once a move has been decided iipon, the loa& of the 
t.wo processors involved in the transfer are reevalii- 
ated. Then a decision process is started to find what 
clilster to  move nnd where to move it. This proce- 
dure will converge to a hetker mapping of clusters, hiit 
not necessarily to the opt.imal one. This procesq can 
he repeated until the estimated workload distribution 
cmnot he improved tigon. Severtheless, this pmce- 
diire woiild not he very realist.ic for two main rea..ons. 
First., there Ls no control over the number of move. 
Second, even though the processors' l o a h  are reed-  
iiated each time a move has been decided iipon, the 
newly evaliiated loa& do not necessnrily reflect the ac- 
tual resulting load of the processors, mainly hcaiue 
the l o a h  of the other processors have changed. There- 
fore, an iterative method was used. At each step of 
the load-balmcing algorithm, only a certain number 
of clusters will he Aumd to move. Then the system 
waits until the following two conditions are satisfied 
before triggering other moves: 

The cost of moving the clixisters has been amor- 

0 Sew i iptedate  measures are available. 

Oiir load-Mandn trifigering mechanism is based 
on the thmo~~hptrt of &e tamillation system, defined as 
the number of non mlled-back message events per unit 
time. The t.hroiigh tit does not. inchide anti-messages. 
In the domain of yogic: simulation, we feel that the 
throughput is a better measure of the overall speed 
of the simillation than the G\T advance. This is b e  
cause the GVT advance h more dependant then the 
throughput on the natiire of the model and its he- 
havior. A large advance in G\T can ht! achieved by 
pmcessing a small number of events. 

Since the throiiqhpiit fliictiiates over time, a least- 
sqiiare apprcatimation is used to obtain the general 
trend of thro,tlghpiits, expressed by a first-degree eqw+ 
tion. The .system is considered stable when the coef8- 
dents obtained from the ap roximat.ion do not vary by 
more then 5%. In our irnpkmentation, a throiighptit 

algorithm 

t.i7~d by the resulting speed-up. 
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Figiire 1: Throiighput during a t.ransfer 

point is cdcdated every 3 sw,onds, t,he 1eas.t-square 
approximation spans 6 points. 

When a move is init.iated at real t.ime t = tnla,.l, the 
throughpiit of the system tends to  decrease since pro- 
cesom are s ending their time transferring clusters. 
Then, once t t e  operation is com leted, the throiigh- 
put increases, reMhes its originaf~diie at. t = t,,,, 
which is equivalent to the break-even time (as defined 
in 115)). The throughput finally reaches a stable mliie 
larger than that previous to  the transfer. Figiire 1 
depicts this sit,iiation. 

Triggering the load balancing mechanism each time 
the stability is detected might actudly decrease 'the 
overall speed of the simulation, even if the find 
throughpiit is higher than the previous one. A.. we 
have seen, movin clusters aroiind has a cost in terms 
of throiighpiit wkch is represented by the shaded 
area in the in tend  [tnl,lr.l,te.e,,] in figire 1. On 
the other hand, the transfer has the benefit of ilti- 
mately increasing the overall throiigh iit of the s p  
tem by an amoiint equal to t.he area a t w e  the inter- 
v d  [t,vtf,,ttf,,& If the next load balancing mechanism 
h triggered hefore the gain in throughput is equal to 
t.he cost of the trmqfer, the overall speed of the sim- 
illation might wti i l ly  decrease. A.$ a consqiience, 
before launching the next load-bdanhnq mechnniqm, 
we wait at lea& until the following condltion is satis- 
fied: 

where Tor,i(t) is the approximation of the throiigh- 
put before the tramfer and T(t)  is the wttid thmiigh- 
put. 

Observations have indicated that ILS the simulation 
progresses, the improvements become less sipificmt 
and the period between each balancing adjustment 
grows longer. Once the cost of moving cliisters does 
not improve the throiigh ut sa a.. to "pay hack" the 
cost of the t.ransfers, the Lad balancing mechanism is 
halted. 

3.5 Metrics 
To memiire the effect of the load balancing mecha- 
nism, we define three metrics which depict different 
characteristics of the simiilation system. 

3.5.1 ,& Workload distribution 
To measure the qiility of the load-bdance, we define ,tJ 
ass the ratio of the standard deviation of t.he processor 
loa& to  t.he maximum load observed. The lower t.hat 
,$ is, the more equally the load is distributed. 

where n =I II I and 11 is the set of all processors, 

3.5.2 7: Inter-processor communication 
We define 7 as hdng the ratio of the number of events 
exchanged between procemors (Ci1,,-) to  the number of 
events exchanged between cliisters (Cl,,i,,r). The lower 
that 7 is, the lower is the inter-processor communica- 
tion. 

7 = ~ i , , c / C l o l a l  

3.5.3 p: Cancelled computation 
is defined as the ratio of the number of events rolled 

tack ( ~ c a f L c e r r e r i )  to the tot$ number of events pro- 
ms..d (E,,,.<Krnxt,f). The lower that p is, the les.. com- 
piit.ation is cancelled. 

P = Ec,lr,esrrc,i/El,rce""~~ 
The three metrics ,3, 7, and p are measured over 

the same period of time a.. the throiighpiit and only 
their mean cAciilated over the six previoiis points is 
considered. 

4 Implement ation and 

4.1 Implementation 
In Clustered Time \\'arp, each gate of a digital dr- 
ciiit is modelled by il Logical Proces.. . LPs me then 
piiped into clusters which me in tiim mapped onto 
processors. Several clit.ters may reside on the same 
node, hut a single cltwter cannot be split among dif- 
ferent proce.s.wrs. 

Three checkpointing algorithms were developed for 
CTW: 

Experiments 
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CRC C Clustered Rollback, Clustered Check- 

0 LRCC Local Rollback, Cliistered Checkpoint. 

0 LRLC h c d  Rollback, Local Checkpoint. 

Each of these techniques offers a different memory 
vs. execution time trade-off [l]. CRCC is the least 
expensive in terms of memory, and LRLC is the least 
expensive in terms of time. In our experiments, we 
make exclnsive use of LRCC since it. offers an inter- 
mediate choice for both of these characteristics. 

Clilster sizes in the r a n p  of 50 to 200 gates were ex- 
perimented with. Since htt,le difference was observed 
between these sizes, we present the results for 100 
gates. W e  used a string artitioning algorithm, be- 

have shown that. it favors conciirrency over cone par- 

point. 

caiise of its simplicity an (f espedally becaiise res1lt.s 

titioning 121. 
The dynamic load balancing al orithm was imple- 

mented on top of Clustered Time bar and run on a 
BBS Biitterfly GPlOOO miiltiprocessorfi]. The imple- 
mentation of message assing in the similation is in- 
dependent of the r h w ~ m a m o r y  of the Butte&. Con- 
sGiiently oilr results will apply to distribiitd memory 
architectures. 

Moving a cliister from one processor to another is 
a 2-pha.se operation. First, the sendinq proces.sor en- 
codes the data stnictiire of the duster into a m e s a  e 
and then sends it to the receiving processor. Wh& 
the transfer is taking place, events are still sent to 
the original processor which stores them in a forward 
list. Once the transfer is over, the second phase of 
the transfer starts. The receiving processor sends an 
acknowledgment to the sending one which then sends 
it the forward list and broadcasts to all the other pro- 
cessora the new location of the cliister. Even though 
routing hbles are updated immediatelyz due tn vnri- 
able commtinication delays it is still pomble for a pro- 
cessor to receive messages for a duster that has heen 
moved away. In this caw, the message is simply for- 
warded to  the correct processor. 

4.2 Experiments 
W e  conducted a series of experiments in order to deter- 
mine how well oiir dynamic load-ManAng d orithm 
performs when compared to Time-Warp. &e also 
tried to measiire the effects of load distribiition, inter- 
processor communication and rollhacks on the over- 
all performance of the simulation. The drciiits riwd 
in our study are digital circitits selected from the IS- 
CAS'89 benchmarks. For the sake of the clarity, we 
only present the resilts obtained from simiilatioas of 
two of the largest circuits table 1 since they are both 

ot!er circuits and they have chamcteristics which re- 
sult in two different behaviors. 

First of all, we analyzed the effect of workload &is- 
trihiition without considerin inter-processor commii- 
nicxitioas and rollbacks. To tks end, a series of simida- 
t.ions were ran on 20 processors with tire Time \V 
(TW), with Clilstered Time \?'asp (ZTW), and ~3 
CTW rising our load balancing techiqiie (BCTW). 

re resentative of the res11 I '  ts which we obtained with 

Table 1: Circuits C1 (~38417) and C2 (.s38584) 
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Figure 2: GVT Adtmce for C1 

Each simidation consisted of the processing of about 
300,000 events (cancelled events were not considered). 
Figures 2 and 3 show t.he rogress of the Global Vir- 
trial Time verzltis the Real t ime  for C1 and C2 respec- 
tively, using TW', CTU' and BCTW. 

For both circuits, the figures dearly show that the 
total simulation time has been substantially decreased 
when load balancing was ised. CTW is about 10% 
slower than pan! TW for both circuitrc1. This is due to 
the intrinsic properties of the LRCC a l p i t h m  used 
for CTU'. LPs tend to roll hark further in time: when 
a straggler is detected since their checkpoint intends 
tend to be larger than in Time \ V q  111. On the other 
hand, substantial memory savings are realized using 
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Figure 3: GVT Advance for C2 
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Figiire 4: j3, 7 and p for C2 

LRCC. 
When using Clustered Time War with our load 

hitlancin algorithm, we observe for 81 a decrease of 
about 15% of the simulation time compared to Time 
U7mp and 25% compared to CTW without load hnl- 
andng. For C2 the simulation was 40% shorter com- 
pared to TW. +he reason why load balancing had a 
more pronounced effect on circuit C2 may he found 
in the locillity of its activity. The same partitioning 
and the same ma ping algorithm were iised for both 
circuits. Sewrt hefess, the workload distrihiition of C2 
at the be 'nning of the simulation was not as good as 
that of &, which is: caiied by a stronger locality of 
the activity in C2. As a consqiience moving clusters 
oiit of the overloaded processors ad a.s&pung them 
to underloaded processors tends to speed lip the whole 
simulation more effectively for C2. 

rect conseqiience, rm-lerlded procemors have less to 
do, and Bince overloaded processors are still busy, the 
load imldance gets worst?, explaining the increme of 
@. Once clusters of LPs have been transferred, p starts 
to  decrease to  a valiie lower than that at the be 'n- 
ning of the simulation, indicating that the load &- 
ante is better. Biit this: improvement has a cast both 
in inter-processor commiinications and rollbacks. We 
can observe that abont 86% of the messnges exchanged 
between dilsters ace sent over the commiinication net- 
work, instead of 77% previous to transfer. This in- 
crease was expected since loded  clitsters have been 
more evenly distrihiited over the rocessors. Roll- 
backs also increase from about 10% fkfore the transfer 
to ahout 20 to  30% after the transfer. Severtheless, 
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Figin! 5: Throughput for C2 

80 

70 

60 

50 

40 

30 

20 
10 

0 
20 40 60 80 100 120 140 160 180 

R e a l  T i m e  ( s e c o n d s )  

Figwe 6: Mean and S.D. of the: CP'L's' activity for C2 

despite the costa meat.ed by ext.ra rollback.. and inter- 
pmcessor commiinications, the overdl throughpiit of 
the system incn!as:es. Even thoiigh the effect was less 
pmnotinced, we oben-ed the same phenomenon for 
c1. 

Fipue 5 shows the impact of the lod-balandng 
algonthm on t.he throughput of the system during the 
simidation of C2. W e  can notice that soon after the 
transfer of clusters initiated, the throii hpiit he- 
comes smaller than that of Time Warp. %nce the 
transfem cue over, it becomes twice as lcuge aa that of 
Time %'twp. 

For each processor, we meattiired the w,t.ivity, which 
is the ercentage of time spent on computation diir- 
ing a ked period of time. At different points in the 
simulation, we cdcillated the mean and the standmi 
deviation of the processor activities. The remllts are 
given in figure 6 and the - show that as the load bal- 
ancing mechanism trm&rs clusters from overloaded 
to underloaded processors, the activity rises from 25% 
ii to SO%, and the standard deviation decreases by 
akmt 40%. This roves that the computation load 
became more eve& distrihiited over the processors. 
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Similar resilts were obtained with C1, except. for the 
fact that the throughput of the . stem did not in- 
crease im much as for C2. Inst.sJof an increase of 
lW%, me ohserved an incre?.e in the throiighpiit of 
40%. Sote that C2 has a stronger locality of wtivity, 
which makes it easier for the load hnlmdng algori t hm 
to improve the overall throiighpiit of the system. 

If the load balancing mechanism tries to minimize 
inter-processor commiinications, we ohsen-e in figiire 
7 that 7 coiild only he slightly decreased by a h i t  5%. 
Figure 8 also shows that, on the average, the m o u n t  
of com litation crtncelled by rollback.. has dm been 
r d u c d  even though at some point.s, it i.. lar er. Fig- 
tire 9 shows for C2 the advance of the G& versiis 
red time for Cht&md Time Warp with load hnlanc- 
in (BCTN'), and Cliistered Time Warp with loaid 
danc ing  considering inter- rocesmr cammiinication 
(BCTWSIPC). Even thong! we obwwe a small im- 
provement of the total simulation time, it h ohtiotts 
siich an improvement is negligible when compared to 
that obtained with workload distribiition done. 

Figiire 10 shows t.he improvement. of the throiigh- 
piit obtained by rising the lord balancing algorithm it4 
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Figure 9: Effect on the GVT Advance for C2 if IPC 
is minimized 

a function of the number of processors. L17e observe 
that as the niimher of proces.wrs increases, we obtain 
better erformance. This is diia to the fact that when 
a smalrniimber of processors are i~wd,  the load on 
the processors is mil& higher, bhiis leaving very litt.le 
room to improve the loaid balancing. The improve- 
ment eventiidly levels off when the load is distnhiited 
among a large enough number of processors. 
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Figure 10: Improvement of the Throiighpiit 

5 Conclusion 
We have described in thB paper a dynamic load- 
balancing algorithm for Clustered Time Warp a dis- 
tributed logc similator which makes use of Time 
Warp between clitsters of LPs and a sqwntial  
dgorithm within each climter. The advantage of the 
ditstering approach to load balancing is that instead of 
having to move indit-idtial LPs from one processor to 
another, clitstem of LPs can be moved. W e  have also 
described a triggering t.echniqiie ha.wd on the through- 
piit of t.he simiilation. Throughput. is the number of 
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non mlleA-back message events per unit. time. 
Ft7e have shown that a substantial acceleration of 

the simillation speed can he obtained. Two circuits of 
more than 20 000 gates were tested and improvement 
of 40 nnd 100% were oht.ained for the throughput. 

Finally, we have shown that the improvement that 
can he obtained by reducing rollbacks and inter- 
processor commiinications is limited and that the fmris 
should be on e i ~ t d y  distributing the ti)orUod oiler the 
promsaor.9 ,qo a.9 to keep them 
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