
The Dynamic Load Balancing of Clustered Time Warp
for Logic Simulation

Hem4 Aaril +and Carl !hpper
School of Computer Science

McGill Cniversit,y, Mont.rkal, Canada H3.4 2A7
Email : herveQcs.mcgill.cn, carl~iiiagic.cs.mcgi1l.ca

Abstract

We present, in this paper, a dynamic load balanc-
ing algorithm developed for Clustered Time Warp,
a hybrid appmach which makes iisc! of Time W a r p
het.ween cliisters of LPs and a wqiieiitial mechanism
within the clusters. The load balancing algorit.hm fo-
ciisw on distributing the load of the simidation evenly
among the procestton and then tries to reduce inter-
procesmr commiinication.. . We make use of a t.rigger-
ing technique based on the throiighpiit of the simii-
lation system. The algorithm was implemented and
its performance was measiired tisin two of the largest
benchmark digital circuits of the 18CAS’89 series. In
order to memiire the effects of the algorithm on work-
load distribution, inter-processor conimiinicat.ion and
rollback, we defined three distinct metrics.

bsidts show that by dynamically balancing the
load, the throughput was improved by 40 to 100%
when compared to Time Warp. Throughput. is t.he
number of non mllf.nl-bact message events per unit
time.

When the algorithm tried to reduce inter-processor
commiinication, rollback. were siihstantially rediiced.
Severt.hdess, no srihstantial improvement was oh-
served on the overall simiilation time, siig esting that
load distribution is the most important &tor to he
taken into consideration in speeding iip the simidihon
of digital circuits.

1 Introduction
Logic simulation poses n severe challenge to the PDES
commiinit,y due to the fine graniilarity of the compiiti+
tion, the very larrqe number of basic elements, and the
low level of circuit activit3. Two different classes of
algorithms are commonly em loyed to solve the syn-
chronimtion problem of pardel simulation: the con-
servative approach introduced by Chandy, Misra 151,
and Bryant [3], and the optimistic approach pioneered
by Jefferson [9]. Conservative algorithms must either
prevent or detect and break deanlloch. As for opti-
mistic algorithms, processes must roll hack to cancel

*also with the Hiitchimn Aveniie Software Corporation,
Montr&I, Canada

u~mng compiit.ations. Fiirthermore, memory manage-
ment IS] and instability Ill] are t.wo fundamental proh-
lems of the Time Warp paradigm.

In an attempt, to accommodate the low level of cir-
cuit activity, a hybrid approach Clustered Time Warp
(CTW), 111, was developed. C?’W makes iise of Time
t’arp et.1vee.n cltisters of LPs and itses a seqiient.ial

algorithm within t.he clusters. In CTW, several clus-
ters can reside on the same processor, hiit a single chis-
ter cannot, he split. among different processors. Three
checkpointing algorithms were developed and repre-
sent. a different memory vs. execution time trade-off.

Empirical results [13], have shown that a very
stmng locality exists in digit.d circuits, siiggest.ing that
hishrical information can he iised t~o improve the map-
pine of t,he simiilatd model onto processors. In this
spint., we feel that the iise of a dpunic load balanc-
ing technique can substantially improve the perfor-
mance of logic simtlations. Fiirthermore, the fact t.hat
CTW groiips LPs i n h clusters makes the load balanc-
ing mechanism easier to implement since instead of
having to deal with individual LPs, only clusters are
considered.

Oar dynamic load balancing algorithm attempts to
evenly distribute t.he load among the processors. We
believe the most important factor in load balancing
of parallel VLSI simulations k keeping the proces-
sors as busy as possible, even at the expense of in-
creased inter-proces.sor commtinications and rollback..

provide evidence to support this contention later
in the paper.

The remainder of t.he paper proceeds as follow. Sec-
tion 2 discitsses related residts, while section 3 de-
scribes our algorithm in detail. Section 4 de,scrihes
our experiments, and the concluding sect.ion follows.

2 Related results
In 112, Sicol and Reynolds present a statistical ap-

to a set of processors. their approach, a work graph
is created to describe the precedence relations between
the nodes. Edges in the work gra h are weighted
depending on the communication de&s between the
nodes and their overlap. If over a clock cycle, the
time region of the activity of two nodes overlap, par-
allelism can he achieved by mapping these two nodes
on two different, processors. Given the work graph,

pmac f! to dynamically artit.ion a circuit and to map it

20
1087-4097/96 $5.00 Q 1996 IEEE

http://herveQcs.mcgill.cn

the authors partition the nodes into clusters by 11s-
ing a min-ciit. clustering algorithm based on Losen's
approach 110). The coiiiplexity of their algorit,hm is
O(E.y7 - K) . l q 1 y 7 - K)) where M is the number
of no es in the wor - graph, E is the niimher of edges
and K is t.he number of partit.ions. Their empirical re-
sults m ositive. Severtheless, the tests were done on
a single &-gate circuit and the authors assumed net-
works having no directed cycles. Because of the small
size of the model, the lack of other t.ests, and the re-
strictions piit on the connectivity graph of the circuit,
it is extremely difficult to extrapolate the results to
large sequential circuits.

Reiher and Jefferson introduce in 1141 a new metric
cded the eflectioe iLtifixntion which is "the proportion
of work that is effective". The authors define effective
work as the "work that will not he rolled hack". Based
on this metric, t.heir load balancing algorithm mm-es
logicrrl rocesses from processors which are doing a
lot of e8ect.h work t.o other processors which are do-
ing little effective work. The performance resilts pre-
sented in the paper were obtained from ninning two
typical benchmark simulations. One was a battlefield
simiilation, from which they obtained an improvement
of 25$% of the total simiilation time by iising their load
balancing algorithm. The other model was a simidic
tion of two-dimensional frictionless licks moving and
colliding on a table. Since the niimter of picks used
was quite high relatively to the number of processors,
the simulation was naturally balanced and very little
improvement was ob.wwed.

Burdorf and M&.i 41 present a dynamic load hd-
ancing algorithm whic 6 executes on their L i s p h w d
Time Warp system running on a network of work-
stations. Their approach was motivated by the fact
that users may load the workstations while a dmidn-
tion was taking place, hence the need to move objects
moimd to give the iiwrs a higher priorit,y on compiit-
in6 resources. They chow the simulation time (Local
Virtiid Time) as a metric based on the assumption
that rollbacks are extremely cost.ly since they iindo
work which must he redone aftem-ards. Therefore,
the main purpose of their algorithm is to reduce the
variance between the objects' simulation times. By
movinq on the same processor objects which are far
ahead in time and objects that are far behind, the ail-
thors believe that objects will synchronize with each
othew and less rollbacks will occur, hence speeding
iip the simulation. In their performance residts, they
find a five to ten times performance improvement mer
a simulation which does not use a dynamic I d hal-
mcing strategy.

Glazer [7] 81 presents a dynamic load balancing

ric proportional to the ratio of the amount of compii-
tation time required by a process over its simiilation
advance. Once the time slice length.. are derived, pro-
cesses are allocated to processors in an attempt to
eqiidixe the load on each processor. Three simulation
models wen? constnided to re resent different c1~'ses
of simidation: II pipeline mode[a hierarchical network
model and a distributed network model. These models
were ran on PARALLEX, a simulated multi- mces.wr
environment. and the experimental results slow that
speedups ranging from 12% for the pipeline model lip

strategy hse d on time slices. A time slice is a met-

to 49% for the distrihiit.ed network model were oh-
sewed. Rollbacks were &so decreawd during the 1 0 4
halandn process, iip to 50%.

In [I$, the authors present a method for dynamic
load-balancing for a simtilator whose: logical processes
act? groiiped into clusters and which rims on a network
of workstations. They introduce the Virtual Time
Progress (VTP) which reflects how fast a simiilat.ion
proce,ss continiies in virtiial time. Load imbalance is
t.ranslat.ed into a variation het.ween the VTPs of the
proces.wrs. By moving one or more cliisters diirin
the execution of the simiilat.ion, the load is balancefi
by trying to get dl of t.he VTPs to be approximately
t,he same value. Their resiilts are quite encouraging
since on a drcilit of aronn? 10,000 gates, they obtain
a simulation n i t i m e about 20% smaller than the time
needed for the same simulation without load balanc-
ing. Severtheless, only two workstations were used for
t.he simrdation and only one circilit was tested, so it
is difficult. to draw any general conclusion from these
performance results.

A number of the existing load balancing strategies
we have described above base their decision to invoke
the load balancing algorithm on the rogress of virtiial
time in real time. In the domain o!logic simulation,
the compiitational graniilarity is fine and is approxi-
mately the same at all of t.he LPs. Furthermore the
level of circuit activity is low. conseqiientlr, we have
decided to emphasize the role of the load in our dy-
namic load hiISancing algorithm and we have not used
any virtiial time metric.

3 The Algorithm
In this section? we describe our dynamic load hdanc-
ing algorithm in detail.

3.1 Workload distribution
Due to the fine computational granii1arit.y of logic .sim-
illation, we need a metric to memiire the load t,hat is
emy to compute and does not create too much over-
heiui. W e define the load of a cluater to he the mim-
her of evenks which were rocessd by its constititent
logical pmcesses since the fnst 1 0 4 balance in the sim-
idation. This includes the rolled back event.. as well
it9 the straqlers. Each processor dso computes its
load, which I.. the slim of the loads of all the clris-
ters hasted by that procemsor. The load balance is
improved by moving cliisters from overloaded to iin-
derloaded proces.sors. Given the load information of
the clusters and the processors, oiir algorithm itera-
tively chooses the most loaded and the least loaded

difference 6 Load of both procesors is then cAculated.
6Load 2 represents the load that must he trmtferred

sixme workload once the transfer has been performed.
Since we want to move as few clusters as ossible,
we will choose the cluster whose load is the cyosest t o
fiLood/2, and assign it to Pliylll. The load of
and P/iyhl ILT~? then ripdated and the same procedure
is execiited iteratively.

p r ~ c m ~ o r ~ (mspectiveJy P/,eaag ~tnd Z'liyrtl). The load

€rom d j,ar,vy to Pliyj,l M that h t h are likely to have the

21

In the current implementation of Clustered Time
Warp, a processor called the pilot is dedicated to col-
lecting statistics and other types of information from
the processors involved in the simiilation. In order to
simplify the implementation, we assigned the load hal-
mcing task to this processor. Processors periodically
send their load information to t.he pilot by piggyhack-
ing it on the GVT token.

3.2 Inter-Processor communication
Delays created by inter- rocessor communications

clition time of a parallel simulation. Conseqiient.ly, we
extend our algorithm to incor orate the commiinica-
tion factor. Instead of direct.$ picking tip the most
heavily loaded cluster C I ~ ~ ~ ~ ~ ~ in processor PlIsasJry, we
will consider all the clusters whose load is close to
that of C~Isll,,y. W e say that two clusters have approx-
imately the same load when their difference ds less
than a certain tolerance. In our implementation, a
tolerance of 105% was used. Then for each of these
clusters, we evaluate the change that woiild occur in
inter-processor commiinications if it is moved to any
of the lightly loaded processors. The move that mini-
mi7m commiinication is then chosen.

3 h i n a cliist.er Ck from processor Pi to proces-
sor Pj is fikely to alter the amount of commiinication
between these two processors. It may worsen the situ-
ation since other clusters in Pi which art? commiinicat-
ing with ck will have to send events mer the network.
On the other hand, the situation is also improved since
clusters in Pj which were commrinicating with Ck will
not need to send messa es over the network anymore.
Therefore the overall ctange in commiinication load
is:

may play an important. ro P e in determining the ex+

where ICC(C,, 9) is the number of messages ex-
changed between clusters C, and Cb. The number of
messages is calcillated over a certain period of time
which must he lon enough so that the measure can
he considered as r&able. In the casse of logic simiih
t.ion, this period of time must inchide the processing
of at least one inpiit vector so that d l parts of the
circuit have a chance to he activated. Since the load
hrtlancing algorithm is not activated until the whole
system becomes stable, several inpiit vectors which
woild have already been processed.

3.3 Pseudocode

Input: 11 is the set of all processors.

Output: C,,I,,, is the dilster to move.
Prleal is the destination processor of C,,,,,,.

3.4 Triggering the load-balancing

Once a move has been decided iipon, the loa& of the
t.wo processors involved in the transfer are reevalii-
ated. Then a decision process is started to find what
clilster to move nnd where to move it. This proce-
dure will converge to a hetker mapping of clusters, hiit
not necessarily to the opt.imal one. This procesq can
he repeated until the estimated workload distribution
cmnot he improved tigon. Severtheless, this pmce-
diire woiild not he very realist.ic for two main rea..ons.
First., there Ls no control over the number of move.
Second, even though the processors' l o a h are reed-
iiated each time a move has been decided iipon, the
newly evaliiated loa& do not necessnrily reflect the ac-
tual resulting load of the processors, mainly hcaiue
the l o a h of the other processors have changed. There-
fore, an iterative method was used. At each step of
the load-balmcing algorithm, only a certain number
of clusters will he Aumd to move. Then the system
waits until the following two conditions are satisfied
before triggering other moves:

The cost of moving the clixisters has been amor-

0 Sew i iptedate measures are available.

Oiir load-Mandn trifigering mechanism is based
on the thmo~~hptrt of &e tamillation system, defined as
the number of non mlled-back message events per unit
time. The t.hroiigh tit does not. inchide anti-messages.
In the domain of yogic: simulation, we feel that the
throughput is a better measure of the overall speed
of the simillation than the G\T advance. This is b e
cause the GVT advance h more dependant then the
throughput on the natiire of the model and its he-
havior. A large advance in G\T can ht! achieved by
pmcessing a small number of events.

Since the throiiqhpiit fliictiiates over time, a least-
sqiiare apprcatimation is used to obtain the general
trend of thro,tlghpiits, expressed by a first-degree eqw+
tion. The .system is considered stable when the coef8-
dents obtained from the ap roximat.ion do not vary by
more then 5%. In our irnpkmentation, a throiighptit

algorithm

t.i7~d by the resulting speed-up.

22

credirp ,

I I I

I ;L ;b,
Real T i m e

Figiire 1: Throiighput during a t.ransfer

point is cdcdated every 3 sw,onds, t,he 1eas.t-square
approximation spans 6 points.

When a move is init.iated at real t.ime t = tnla,.l, the
throughpiit of the system tends to decrease since pro-
cesom are s ending their time transferring clusters.
Then, once t t e operation is com leted, the throiigh-
put increases, reMhes its originaf~diie at. t = t,,,,
which is equivalent to the break-even time (as defined
in 115)). The throughput finally reaches a stable mliie
larger than that previous to the transfer. Figiire 1
depicts this sit,iiation.

Triggering the load balancing mechanism each time
the stability is detected might actudly decrease 'the
overall speed of the simulation, even if the find
throughpiit is higher than the previous one. A.. we
have seen, movin clusters aroiind has a cost in terms
of throiighpiit wkch is represented by the shaded
area in the in tend [tnl,lr.l,te.e,,] in figire 1. On
the other hand, the transfer has the benefit of ilti-
mately increasing the overall throiigh iit of the s p
tem by an amoiint equal to t.he area a t w e the inter-
v d [t,vtf,,ttf,,& If the next load balancing mechanism
h triggered hefore the gain in throughput is equal to
t.he cost of the trmqfer, the overall speed of the sim-
illation might wti i l ly decrease. A.$ a consqiience,
before launching the next load-bdanhnq mechnniqm,
we wait at lea& until the following condltion is satis-
fied:

where Tor,i(t) is the approximation of the throiigh-
put before the tramfer and T(t) is the wttid thmiigh-
put.

Observations have indicated that ILS the simulation
progresses, the improvements become less sipificmt
and the period between each balancing adjustment
grows longer. Once the cost of moving cliisters does
not improve the throiigh ut sa a.. to "pay hack" the
cost of the t.ransfers, the Lad balancing mechanism is
halted.

3.5 Metrics
To memiire the effect of the load balancing mecha-
nism, we define three metrics which depict different
characteristics of the simiilation system.

3.5.1 ,& Workload distribution
To measure the qiility of the load-bdance, we define ,tJ
ass the ratio of the standard deviation of t.he processor
loa& to t.he maximum load observed. The lower t.hat
,$ is, the more equally the load is distributed.

where n =I II I and 11 is the set of all processors,

3.5.2 7: Inter-processor communication
We define 7 as hdng the ratio of the number of events
exchanged between procemors (Ci1,,-) to the number of
events exchanged between cliisters (Cl,,i,,r). The lower
that 7 is, the lower is the inter-processor communica-
tion.

7 = ~ i , , c / C l o l a l

3.5.3 p: Cancelled computation
is defined as the ratio of the number of events rolled

tack (~ c a f L c e r r e r i) to the tot$ number of events pro-
ms..d (E,,,.<Krnxt,f). The lower that p is, the les.. com-
piit.ation is cancelled.

P = Ec,lr,esrrc,i/El,rce""~~
The three metrics ,3, 7, and p are measured over

the same period of time a.. the throiighpiit and only
their mean cAciilated over the six previoiis points is
considered.

4 Implement ation and

4.1 Implementation
In Clustered Time \\'arp, each gate of a digital dr-
ciiit is modelled by il Logical Proces.. . LPs me then
piiped into clusters which me in tiim mapped onto
processors. Several clit.ters may reside on the same
node, hut a single cltwter cannot be split among dif-
ferent proce.s.wrs.

Three checkpointing algorithms were developed for
CTW:

Experiments

23

CRC C Clustered Rollback, Clustered Check-

0 LRCC Local Rollback, Cliistered Checkpoint.

0 LRLC h c d Rollback, Local Checkpoint.

Each of these techniques offers a different memory
vs. execution time trade-off [l]. CRCC is the least
expensive in terms of memory, and LRLC is the least
expensive in terms of time. In our experiments, we
make exclnsive use of LRCC since it. offers an inter-
mediate choice for both of these characteristics.

Clilster sizes in the r a n p of 50 to 200 gates were ex-
perimented with. Since htt,le difference was observed
between these sizes, we present the results for 100
gates. W e used a string artitioning algorithm, be-

have shown that. it favors conciirrency over cone par-

point.

caiise of its simplicity an (f espedally becaiise res1lt.s

titioning 121.
The dynamic load balancing al orithm was imple-

mented on top of Clustered Time bar and run on a
BBS Biitterfly GPlOOO miiltiprocessorfi]. The imple-
mentation of message assing in the similation is in-
dependent of the r h w ~ m a m o r y of the Butte&. Con-
sGiiently oilr results will apply to distribiitd memory
architectures.

Moving a cliister from one processor to another is
a 2-pha.se operation. First, the sendinq proces.sor en-
codes the data stnictiire of the duster into a m e s a e
and then sends it to the receiving processor. Wh&
the transfer is taking place, events are still sent to
the original processor which stores them in a forward
list. Once the transfer is over, the second phase of
the transfer starts. The receiving processor sends an
acknowledgment to the sending one which then sends
it the forward list and broadcasts to all the other pro-
cessora the new location of the cliister. Even though
routing hbles are updated immediatelyz due tn vnri-
able commtinication delays it is still pomble for a pro-
cessor to receive messages for a duster that has heen
moved away. In this caw, the message is simply for-
warded to the correct processor.

4.2 Experiments
W e conducted a series of experiments in order to deter-
mine how well oiir dynamic load-ManAng d orithm
performs when compared to Time-Warp. &e also
tried to measiire the effects of load distribiition, inter-
processor communication and rollhacks on the over-
all performance of the simulation. The drciiits riwd
in our study are digital circitits selected from the IS-
CAS'89 benchmarks. For the sake of the clarity, we
only present the resilts obtained from simiilatioas of
two of the largest circuits table 1 since they are both

ot!er circuits and they have chamcteristics which re-
sult in two different behaviors.

First of all, we analyzed the effect of workload &is-
trihiition without considerin inter-processor commii-
nicxitioas and rollbacks. To tks end, a series of simida-
t.ions were ran on 20 processors with tire Time \V
(TW), with Clilstered Time \?'asp (ZTW), and ~3
CTW rising our load balancing techiqiie (BCTW).

re resentative of the res11 I ' ts which we obtained with

Table 1: Circuits C1 (~38417) and C2 (.s38584)

9000

2 8000

2 7000
4 6000

2 5000

$ 4000

r(3000
3 2000
4

1000
0 I I I I I
0 50 100 150 200 250 300 350

Real T i m e (seconds)

Figure 2: GVT Adtmce for C1

Each simidation consisted of the processing of about
300,000 events (cancelled events were not considered).
Figures 2 and 3 show t.he rogress of the Global Vir-
trial Time verzltis the Real t ime for C1 and C2 respec-
tively, using TW', CTU' and BCTW.

For both circuits, the figures dearly show that the
total simulation time has been substantially decreased
when load balancing was ised. CTW is about 10%
slower than pan! TW for both circuitrc1. This is due to
the intrinsic properties of the LRCC a l p i t h m used
for CTU'. LPs tend to roll hark further in time: when
a straggler is detected since their checkpoint intends
tend to be larger than in Time \ V q 111. On the other
hand, substantial memory savings are realized using

6000

4 5000

;;I 4000
a

3000

El

L,

4 >
;;I 2000

%
r(1000

0

c)

0 50 100 150 200 250 300 350
R e a l T i m e (s e c o n d s)

Figure 3: GVT Advance for C2

24

100

80

c 60

40

20

0

0

3

0 20 40 60 80 100 120 140 160 180
R e a l T i m e (s e c o n d s)

Figiire 4: j3, 7 and p for C2

LRCC.
When using Clustered Time War with our load

hitlancin algorithm, we observe for 81 a decrease of
about 15% of the simulation time compared to Time
U7mp and 25% compared to CTW without load hnl-
andng. For C2 the simulation was 40% shorter com-
pared to TW. +he reason why load balancing had a
more pronounced effect on circuit C2 may he found
in the locillity of its activity. The same partitioning
and the same ma ping algorithm were iised for both
circuits. Sewrt hefess, the workload distrihiition of C2
at the be 'nning of the simulation was not as good as
that of &, which is: caiied by a stronger locality of
the activity in C2. As a consqiience moving clusters
oiit of the overloaded processors ad a.s&pung them
to underloaded processors tends to speed lip the whole
simulation more effectively for C2.

rect conseqiience, rm-lerlded procemors have less to
do, and Bince overloaded processors are still busy, the
load imldance gets worst?, explaining the increme of
@. Once clusters of LPs have been transferred, p starts
to decrease to a valiie lower than that at the be 'n-
ning of the simulation, indicating that the load &-
ante is better. Biit this: improvement has a cast both
in inter-processor commiinications and rollbacks. We
can observe that abont 86% of the messnges exchanged
between dilsters ace sent over the commiinication net-
work, instead of 77% previous to transfer. This in-
crease was expected since loded clitsters have been
more evenly distrihiited over the rocessors. Roll-
backs also increase from about 10% fkfore the transfer
to ahout 20 to 30% after the transfer. Severtheless,

U e

t
C

.-I
U

N 4
.-I
4
U
3
cc
m
Q)

0

04

- 2500 I I I I I
0 "BCTW" -

W T W U --- -

0-
0 50 100 150 200 250 300

R e a l T i m e (s e c o n d s)

Figin! 5: Throughput for C2

80

70

60

50

40

30

20
10

0
20 40 60 80 100 120 140 160 180

R e a l T i m e (s e c o n d s)

Figwe 6: Mean and S.D. of the: CP'L's' activity for C2

despite the costa meat.ed by ext.ra rollback.. and inter-
pmcessor commiinications, the overdl throughpiit of
the system incn!as:es. Even thoiigh the effect was less
pmnotinced, we oben-ed the same phenomenon for
c1.

Fipue 5 shows the impact of the lod-balandng
algonthm on t.he throughput of the system during the
simidation of C2. W e can notice that soon after the
transfer of clusters initiated, the throii hpiit he-
comes smaller than that of Time Warp. %nce the
transfem cue over, it becomes twice as lcuge aa that of
Time %'twp.

For each processor, we meattiired the w,t.ivity, which
is the ercentage of time spent on computation diir-
ing a ked period of time. At different points in the
simulation, we cdcillated the mean and the standmi
deviation of the processor activities. The remllts are
given in figure 6 and the - show that as the load bal-
ancing mechanism trm&rs clusters from overloaded
to underloaded processors, the activity rises from 25%
ii to SO%, and the standard deviation decreases by
akmt 40%. This roves that the computation load
became more eve& distrihiited over the processors.

25

90

80
70
60
50
40
30
20

"BCTWtIPC" --- lo
0 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180
R e a l T i m e (seconds)

Fignre 7: Effect on 7 for C2 if IPC is minimized

30

25

20

15

10

5

0

"BCTW" -
"BCTWtIPC" --- -

0 20 40 60 80 100 120 140 160 180
R e a l T i m e (s e c o n d s)

Figure 8: Effect on p for c2 if IPC is minimislfid

Similar resilts were obtained with C1, except. for the
fact that the throughput of the . stem did not in-
crease im much as for C2. Inst.sJof an increase of
lW%, me ohserved an incre?.e in the throiighpiit of
40%. Sote that C2 has a stronger locality of wtivity,
which makes it easier for the load hnlmdng algori t hm
to improve the overall throiighpiit of the system.

If the load balancing mechanism tries to minimize
inter-processor commiinications, we ohsen-e in figiire
7 that 7 coiild only he slightly decreased by a h i t 5%.
Figure 8 also shows that, on the average, the m o u n t
of com litation crtncelled by rollback.. has dm been
r d u c d even though at some point.s, it i.. lar er. Fig-
tire 9 shows for C2 the advance of the G& versiis
red time for Cht&md Time Warp with load hnlanc-
in (BCTN'), and Cliistered Time Warp with loaid
danc ing considering inter- rocesmr cammiinication
(BCTWSIPC). Even thong! we obwwe a small im-
provement of the total simulation time, it h ohtiotts
siich an improvement is negligible when compared to
that obtained with workload distribiition done.

Figiire 10 shows t.he improvement. of the throiigh-
piit obtained by rising the lord balancing algorithm it4

QI 3 5000 -
E-4

2 4000 -
-2 U
U 3000 -
4
3 -

"BCTW" -
"BCTWtIPC" --- -

0 -
0 20 40 60 80 100 120 140 160 190

R e a l T i m e (s e c o n d s)

Figure 9: Effect on the GVT Advance for C2 if IPC
is minimized

a function of the number of processors. L17e observe
that as the niimher of proces.wrs increases, we obtain
better erformance. This is diia to the fact that when
a smalrniimber of processors are i~wd, the load on
the processors is mil& higher, bhiis leaving very litt.le
room to improve the loaid balancing. The improve-
ment eventiidly levels off when the load is distnhiited
among a large enough number of processors.

U

a

P
[

100
90
80
70
60
50
40
30
20
10

0
5 10 1s 20 25

Number of processors

Figure 10: Improvement of the Throiighpiit

5 Conclusion
We have described in thB paper a dynamic load-
balancing algorithm for Clustered Time Warp a dis-
tributed logc similator which makes use of Time
Warp between clitsters of LPs and a sqwntial
dgorithm within each climter. The advantage of the
ditstering approach to load balancing is that instead of
having to move indit-idtial LPs from one processor to
another, clitstem of LPs can be moved. W e have also
described a triggering t.echniqiie ha.wd on the through-
piit of t.he simiilation. Throughput. is the number of

26

non mlleA-back message events per unit. time.
Ft7e have shown that a substantial acceleration of

the simillation speed can he obtained. Two circuits of
more than 20 000 gates were tested and improvement
of 40 nnd 100% were oht.ained for the throughput.

Finally, we have shown that the improvement that
can he obtained by reducing rollbacks and inter-
processor commiinications is limited and that the fmris
should be on e i ~ t d y distributing the ti)orUod oiler the
promsaor.9 ,qo a.9 to keep them

[Xi] R. Sc.hlrgc&aft, M. Riiliwt~x~cll, C. Sporrcr, H. Btiiicr,
"Dyniunic: Lwtl B;llaxic:ing cb a hiillti-Clitstm S i w
idator oii 11 Network o f \%xkstnt,ioiis" , pp17S 180,
PADS95

busy a.9 paaible.

References
[l] Htrvi! Avril, Caul Ttoppcr, " Clnsttrcrl T h c \Vmp

[2] J.V. Brincr Jr., "Fast P;mdlcl Sixnillation of Digital
ruicl Logic Siruidiiticn", pp112-119, PADS'95

27

