
A Distributed Graph Algorithm" 
Knot Detection 

J. MISRA and K. M. CHANDY 

University of Texas at Austin 

A knot in a directed graph is a useful concept in deadlock detection. A distributed algorithm for 
identifying a knot in a graph by using a network of processes is presented. The algorithm is based on 
the work of Dijkstra and Scholten. 

Categories and Subject Descriptors: C.2.4 [Computer-Communication Systems]: Distributed 
Systems--distributed applications, network operating systems; D.1.3 [Programming Tech- 
niques]: Concurrent Programming; F.2.2 [Analysis of Algori thms and Problem Complexity]: 
Nonnumerical Algorithms and Problems--sequencing and scheduling; G.2.2 [Discrete Mathemat- 
ics]: Graph Theory--graph algorithms, network problems 

General Terms: Algorithms 

Additional Key Words and Phrases: Distributed algorithms, message communication, knot 

1. INTRODUCTION 

A v e r t e x  vi in  a d i r e c t e d  g r a p h  is in  a k n o t  i f  for  e v e r y  v e r t e x  vj r e a c h a b l e  f r o m  vi, 
vi is r e a c h a b l e  f rom vj. C h a n g  [2] shows  t h a t  k n o t  is a use fu l  c o n c e p t  in  d e a d l o c k  
de tec t ion .  D i j k s t r a  [3] h a s  p r o p o s e d  a d i s t r i b u t e d  a l g o r i t h m  for  d e t e c t i n g  w h e t h e r  
a g iven  p roce s s  in a n e t w o r k  of  p r o c e s s e s  is in  a kno t .  H i s  a l g o r i t h m  is b a s e d  on  
his  p r e v i o u s  w o r k  w i t h  S c h o l t e n  [4] on  t e r m i n a t i o n  d e t e c t i o n  o f  d i f fus ing  com-  
pu t a t i ons .  W e  p r o p o s e  a n  a l g o r i t h m  for  k n o t  d e t e c t i o n  w h i c h  is a l so  b a s e d  on  [4] 
b u t  is c o n c e p t u a l l y  s imple r .  W e  also d i scuss  t h e  e x t e n s i o n s  o f  ou r  a l g o r i t h m  to  a 

m o r e  gene ra l  c lass  of  p r o b l e m s .  

2. MODEL OF A NETWORK OF COMMUNICATING PROCESSES 

A proces s  is a s e q u e n t i a l  p r o g r a m  w h i c h  can  c o m m u n i c a t e  w i t h  o t h e r  p r o c e s s e s  
b y  s e n d i n g / r e c e i v i n g  messages .  T w o  p r o c e s s e s  P a n d  Q a re  sa id  to  be  n e i g h b o r s  
if  t h e y  can  c o m m u n i c a t e  d i r e c t l y  w i t h  one  a n o t h e r  w i t h o u t  h a v i n g  m e s s a g e s  go 
t h r o u g h  i n t e r m e d i a t e  p rocesses .  W e  a s s u m e  t h a t  c o m m u n i c a t i o n  c h a n n e l s  a r e  
b id i r ec t iona l :  if  P can  s end  m e s s a g e s  to  Q,  t h e n  Q c a n  s e n d  m e s s a g e s  to  P .  A 
p roces s  k n o w s  i ts  n e i g h b o r s  b u t  is  o t h e r w i s e  i g n o r a n t  o f  t h e  g e n e r a l  c o m m u n i -  
c a t i on  s t r u c t u r e  of  t h e  n e t w o r k .  

Supported in part by the Air Force under grant AFOSR 81-0205. 
Authors' address: Department of Computer Sciences, University of Texas, Austin, TX 78712. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
© 1982 ACM 0164-0925/82/1000-0678 $00.75 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982, Pages 678-686. 



Knot Detection • 679 

We assume a very simple protocol for message communication; this protocol is 
equivalent to the one used by Dijkstra and Scholten [4]. Every process has an 
input buffer of unbounded length. If process P sends a message to a neighbor 
process Q, then the message gets appended at the end of the input buffer of Q 
after a finite, arbitrary delay. We assume that (1) messages are not lost or altered 
during transmission, (2) messages sent from P to Q arrive at Q's input buffer in 
the order sent, and (3) two messages arriving simultaneously at an input buffer 
are ordered arbitrarily and appended to the buffer. A process receives a message 
by removing it from its input buffer. 

The assumption of unbounded length buffers is for ease of exposition. We show 
in Section 5.1 that the input buffer length of process Q can be bounded by the 
number of neighbors of Q. 

3. A DISTRIBUTED ALGORITHM FOR KNOT DETECTION 

Consider a network of processes corresponding to a given directed graph G: there 
is a one-to-one correspondence between processes in the network and vertices in 
the graph; a process pi in the network represents vertex vi in G, for all i; and pi, 
pj are neighbors if edge (vi, vj) or (vj, vi) exists in G. Process pl  initiates a 
computation to determine if vl is in a knot. 

3.1 Local Variables of Processes 

Every process pi maintains the following variables. 

succeeding(i): This Boolean variable is set true when pi determines that  vi is 
reachable from vl. Initially this variable is false for all pi, i # 
1, and is true for pl. Eventually, succeeding(i) will be true if 
and only if vi is reachable from Vl. 

preceding(i): Same as above, except that preceding(i) represents whether 
vl is reachable from vi. 

subordinate(i): This is integer valued and will be set to 1 if and only if 
succeeding(i) and  notpreceding(i); else it will be set to 0. v~ 
is in a knot if and only if subordinate(i) is eventually zero for 
every process i. 

cs(i): This is an integer-valued variable which keeps the partial sum 
of some subordinate variables. A goal of the program is to 
establish the following at termination: 

cs(1) = ~ subordinate(i). 
i 

Therefore v~ is in a knot if and only if cs(1) -- 0 at termination. 

We discuss in Section 3.2 the different types of messages sent among processes. 
In short, a process pi may send a message to Pi, and pj sends an acknowledgment 
(ack) to pi for every message that pj receives from pi. We introduce the following 
variables related to message and ack transmission. 

num(i): This is the number of unacknowledged messages, that is, the number 
of messages sent by this process pi for which acks have not been 
received so far. 

ACM Transact ions  on Programming  Languages  and  Systems, Vol. 4, No. 4, October  1982. 



680 J. Misra and K. M. Chandy 

father(i): This  is a process f rom which pi,  i ~ 1, received a message when its 
num(i)  was last  zero. father(i) is undefined initially. 

Our goal is to mainta in  a rooted t ree s t ructure  a t  all t imes over  processes whose 
n u m >  0; father will denote  the  pa ren t  in this t ree structure,  and  p l  the root.  

3.2 Messages Sent Among Processes 

There  are two types  of messages  sent  be tween  neighbors  in this algori thm. 

(i) St ructure  message,  or message, has  two components ,  (type, p-), where type 
= suc or pre and p is the  ident i ty  of the sender  process. Process  pi sends (suc, pi) 
to pj if there is a pa th  f rom Vl to vj in which vi is the prefinal  vertex.  Process  pi  
sends (pre, pi) to pj  if there  is a pa th  f rom vj to vl in which vi follows vj in the  
path.  

(ii) Acknowledgment  message,  or ack, is of the fo rm (ack, c), where c is an  
integer. Acks are used to upda te  cs and num. T h e  entire computa t ion  t e rmina tes  
when process p l  receives acks for all messages  t ha t  it sent, t ha t  is, when  num(1) 
is decremented  to zero. Acks for all messages  are sent  back  as soon as the  
messages are received, except  for messages  received f rom father; an ack to a 
father is sent  only when num next  becomes  zero. 

Convention. I t  is convenient  for purposes  of proof  to define an atomic action 
within which invar iant  assert ions m a y  be temporar i ly  violated and outside of  
which the invar iants  mus t  hold. We write (A1; A2; . . .  ; A , )  to show tha t  
executions of s t a tements  A1, A2 . . . . .  An must  be considered as an a tomic  action. 
We use PASCAL-l ike nota t ion  with the added commands  send and receive to 
write our programs.  

3.3 Knot-Detection Algorithm 

Convention. We write succeeding, preceding, etc., for succeeding(i), preced- 
ing(i), etc., when the context  is clear. 

Overview of the Algorithm. As s ta ted  earlier, one goal of  the a lgor i thm is to 
mainta in  a rooted directed t ree s t ructure  over  the set  of  processes p~ whose 
num(i)  > 0. The  root  of the  t ree will be pl,  and  father(i) will be the  pa ren t  in the 
t ree for p~, i ~ 1. In  order to main ta in  the  t ree  structure,  we mus t  ensure t ha t  (1) 
a process p~, i ~ 1, acquires a father only if it does not  have  one currently:  this  is 
guaranteed,  since a process acquires a father only when  its num(i)  becomes  
nonzero; and (2) a process pi can be r emoved  f rom the t ree (i.e., set  its num(i)  
= 0) only if it is a leaf node: this will be guaran teed  by  every process sending its 
last  ack to its father. Computa t ion  t e rmina tes  when  the  t ree is empty .  

We will also main ta in  the invar iant  (1) given in L e m m a  4.2, which s ta tes  t ha t  
the sum of cs over  all processes plus the  c 's  in the  acks in t ransi t  equals the  sum 
of subordinates over all processes. T h e  a lgor i thm will ensure t ha t  if num(i)  = 0 
and i ~ 1, then  cs(i) = 0. Therefore ,  when  the  t ree  is empty ,  cs(i) = 0 for all i, i 

1, and hence 

cs(1) = ~ subordinate(i). 
i 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



Knot Detection 681 

Proces s  p l  is in a k n o t  i f  a n d  on ly  if  cs(1) -- O. 

Algorithm for Pl 

In i t ia l i za t ion  

b e g i n  
fa ther  is undefined; 
subordinate  := O; cs := O; n u m  :-- O; 
(succeeding :ffi true; 
n u m  := n u m +  number of successors of vl; 
send (suc, pi) to all successors} ; 
(preceding :ffi true; 
n u m  := n u m +  number of predecessors of Vl; 
send (pre, p~) to all predecessors} 

end 

Upon receiving a structure message  (type, p)  

send (ack, O) t o p  

Upon receiving an acknowledgmen t  (ack, c) 

b e g i n  
cs := cs + c; n u m  := nurn - 1; 
i f  nurn = 0 t h e n  terminate computat ion 

{vl is in a knot if cs = 0} 
end 

(M1) 

(M2) 

Algorithm for pi,  i # 1 

In i t ia l i za t ion  
b e g i n  

fa ther  is undefined; subordinate  := 0; cs := 0; n u m  := 0; 
succeeding :-- false; preced ing  := false 

end 

Upon receiving a message (type, p )  

b e g i n  
{update fa ther  or send an ack immediately} 

i f  n u m =  0 
then fa ther  := p 
else b e g i n  (send (ack, cs) t o p ;  cs := 0} end; (L1) 

{update succeeding and preceding  if  necessary} 
i f  type = suc a n d  n o t  succeeding {For the first t ime pi has determined that  vi is 

reachable from Vl} 
then 

b e g i n  (succeeding :-- true; 
n u m  := n u m +  number of successors of vi; 
send (suc, pi) to all successors) 

end; 
i f  type = p r e  a n d  n o t  preced ing  {For the first t ime p~ has determined that  vl is 

reachable from vi } 
then 

b e g i n  (preceding := true; 
n u m  := n u m +  number of predecessors of v~; 
send (pre, pi) to all predecessors) 

end; 
{update subordinate  if  necessary. Also update cs to maintain the invariant  in Lem- 
ma 4.2) 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



682 J. Misra and K. M. Chandy 

if  succeeding and not  preceding 
then  

begin ( cs := cs - subordinate + 1; subordinate := 1) end 
else 

begin (cs := cs - subordinate + 0; subordinate := O) end; 
{send ack to father if n u m =  0} 

if n u m =  0 
then  begin {send {ack, cs) to father; cs := O) end 

end 

Upon receiving an acknowledgment  ( ack, c) 

begin 
cs := cs + c; num := num - 1; 
if  num = 0 

then  
begin (send (ack, cs) to father; cs := O) end 

end 

(L2) 

(L3) 

(L4) 

(L5) 

(L6) 

4. PROOF OF CORRECTNESS 

LEMMA 4.1. A t  a n y  p o i n t  in  the  c o m p u t a t i o n ,  t he  se t  o f  p r o c e s s e s  w i t h  n u m  
> 0 f o r m  a roo ted  tree  w i t h  p l  as  the  roo t  a n d  the  p a r e n t  r e l a t i o n  spec i f i ed  by 

the  local  var iab l e  " fa ther . "  

PROOF. T h e  l e m m a  holds vacuously  initially, n u m ( i )  and f a t h e r ( i )  m a y  be 
changed only upon receipt  of a m e s s a g e  or an a c k  by process i. I f  a process  with 
n u m >  0 receives a m e s s a g e ,  then  it does not  a l ter  its f a ther ,  thus  preserving the  
tree property .  Similarly, if a process has  n u m  > 0 af ter  processing an ack ,  it does 
not  al ter  the t ree structure.  I f  a process P / c h a n g e s  n u m ( j )  f rom zero, then  it 
mus t  have  received a m e s s a g e  f rom some other  process pi on the  t ree and mus t  
have set f a t h e r ( j )  = i, thus preserving the t ree proper ty .  

We now show tha t  only a leaf  node can decrement  its n u m  to zero. I f  pi is on 
the tree and is not  a leaf, then  there  is a process p/  with n u m ( j )  > 0 and  f a t h e r ( j )  
= i; then  pj  will not  re turn  an a c k  to pi while p j  remains  on the  tree, and hence 
n u m ( i )  > 0 while pj remains  on the tree. There fore  only a leaf  node can dec remen t  
its n u m  to 0, which preserves  the t ree proper ty .  Th is  comple tes  the  proof. [] 

Le t  T, a t  any point  in computat ion,  denote  the set  of a c k  messages  which are 
in Transit ,  tha t  is, which have  been sent  but  have  not  ye t  been  received. 

LEMMA 4.2. T h e  f o l l o w i n g  is a n  i n v a r i a n t :  

c s ( i )  + ~ c = ~ s u b o r d i n a t e ( i ) .  (1) 
i (ack, c ) E T  i 

PROOF. The  l e m m a  holds initially, since all the  t e rms  in the  equat ion are zero. 
For pi,  i ~ 1, the t e rms  in the equat ions are modified only a t  p rog ram points  L1-  
L6, and for pl ,  these t e rms  can be modified only at  M1 or M2. T h e  reader  m a y  
easily convince himself  t ha t  the  equat ion is left invar iant  by  the  execution of the 
s ta tements  at  these p rogram points. [] 

THEOREM 4.3. A s s u m e  t h a t  p r o c e s s  p l  t e r m i n a t e s  c o m p u t a t i o n  (in s tep  M2). 
cs(1) = 0 i f  a n d  on ly  i f  vl is in  a kno t .  

ACM Transact ions on Programming  Languages  and  Systems, Vol. 4, No. 4, October  1982. 



Knot Detection 683 

PROOF. We first show that  when pl  terminates  computat ion (i) cs(i) = 0 for i 
# 1, (ii) subordinate(i)  is correctly set, and (iii) the set T is empty.  Th e  theorem 
follows directly from the invariant proved in Lemma 4.2. 

(i) When pl  terminates computat ion in step M2, num(1) = O. T h e n  the tree is 
empty, since pl  was the root  of the tree. Therefore  num( i )  = 0 for all i. If  num( i )  
= 0, then cs(i) = 0 for all i, i # 1, because every change to num( i )  is followed by 
the code to set cs(i) to 0 i f n u m ( i )  is 0 (steps IA and L6). 

(ii) If vi is reachable from Vl, it follows by induction on pa th  length to vi tha t  
pi will eventually receive a message which will result  in succeeding(i)  set true; 
succeeding(i) remains true thereafter.  Similarly for preceding(i) .  Therefore  
subordinate(i)  will eventually be set to its correct  value. When  assignment is 
made to succeeding(i) or preceding(i) ,  pi has not  re turned  an ack to its father, 
and hence the computat ion could not  be over. Therefore  these variables are 
assigned their  correct  values before the terminat ion of computation.  

(iii) Since the tree is empty,  every process must  have received acks correspond- 
ing to all messages sent. Therefore  there  can be no ack in transit,  tha t  is, set T 
is empty. [] 

LEMMA 4.4. pl  will terminate computation in finite time. 

PROOF. A processpi  sends at most  two messages (type, pi) to any other  process 
pj because (1) a message is sent only when succeeding or preceding is set to true, 
and (2) succeeding and preceding are never reset  to false. Because the graph is 
finite, the total number  of messages sent is bounded. Hence the total  number  of 
acks sent is also bounded. Observe tha t  every process must  send or receive ei ther  
a message or an ack every t ime it starts to execute. Therefore  a process can 
switch from idle to executing only a finite number  of times. There  are no loops in 
the program; therefore every executing process will become idle in finite time. 
Hence every process in the network will cease to execute in finite time, and no 
more messages or acks will be sent or received from then  on. 

We now show tha t  the tree must  be empty  at  this point. If not, let p~ be a leaf 
node of the tree; num(i )  > 0, since pi is on the tree. There  is no pj on the tree for 
which fa ther( j )  = pi, and hence pi must  have received all its outstanding acks; 
therefore num(i )  = 0, a contradiction! [] 

5. NOTES ON THE KNOT-DETECTION ALGORITHM 

5.1 Bounding the Buffer Size 

We assumed earlier for purposes of exposition tha t  buffers are of unbounded 
length. In the knot-detect ion algorithm a process sends at  most  two messages to 
any neighbor process, and therefore no process sends more than  two acks to any 
other  process. Hence the buffer length for any process need not  exceed four t imes 
the number  of neighbors of the process. 

5.2 Efficiency 

This algorithm is superior to the brute-force algori thm in which process p l  (1) 
computes successor*, the set of vertices reachable f rom vl; (2) computes  prede- 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



684 J. Misra and K. M. Chandy 

cessor*, the set of vertices that can reach vl; and (3) then declares that  vl is in a 
knot if and only if successor* C__ predecessor*. The computation of successor* 
(predecessor*) can be done by using an algorithm similar to the one proposed 
here--every ack carries with it a set of successors (predecessors). Therefore a 
successor at distance d from v~ will have its identity transmitted through d 
processes to reach vl. The total message length will be at least O(N  2) for an N- 
vertex graph, as opposed to O(E)  for our algorithm, where E is the number of 

edges. 

6. EXTENSIONS 

We show in this section that the ideas in the knot-detection algorithm can be 
extended to solve a very general class of problems. Consider a distributed 
computation which is initiated by process pl sending messages to some of its 
neighbors. Any other process can send messages only after receiving a message. 
The computation terminates when no process has any more messages to send 
and all messages that have been sent have been received. Dijkstra and Scholten 
[4] were the first to identify this class of computations, which they call diffusing 
computations. They proposed an algorithm, using the growing and shrinking tree, 
to detect termination of diffusing computations. Our contribution is to show how 
the same idea may be exploited to compute a networkwide function of locally 
computed results. 

Let local-result(i) denote some computed result at process pi, at termination 
of the entire computation. It is required to compute global-result at the termi- 
nation of computation, where 

global-result = f(local-result(i), for all i), (2) 

f being any arbitrary computable function. 
The knot-detection algorithm computed the global-result cs(1), with local- 

result(i) =- subordinate(i), and 

cs(1) = ~ subordinate(i), (3) 
i 

that is, f ~ ~. 
We propose two schemes for computing networkwide functions. Note that our 

algorithm can be used to develop distributed algorithms according to the following 
methodology. In order to compute some global-result, invent a function f and 

• local-result(i) satisfying (2) and then design a distributed algorithm to compute 
local-result(i) at processpi, for all i. Then superimpose our algorithm to compute 
the global-result. A variation of this idea appears in [1], where a number of other 
problems amenable to this approach are listed. 

One difficulty with a straightforward implementation is that  a process cannot 
know when network computation has terminated. Process pi knows that  network 
computation can terminate only when num(i) --- 0; however, pi cannot assert the 
converse, that is, that  network computation may not have terminated even if 
num(i) = 0. Hence pi must send back its current value of local-result(i) to its 
father every time that it decrements num(i) to zero. This causes a problem: pi 
may send back a local-result to its father and subsequently get another message 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



Knot Detection 685 

which causes it to compute a new local-result. Therefore pi must cancel the old 
local-result value. We propose two mechanisms for canceling out-of-date local 
results: bags and time stamps. 

To simplify exposition in our discussion of cancellation schemes, we will assume 
that there is no delay between sending and receiving a message, that is, that  there 
is never any message in transit. The reader can easily convince himself that the 
arguments also apply when the transmission delay is not zero. 

6.1 Bags 

Each process p/maintains two bags, all(i) and canceled(i). Each bag element is 
of the form (j, local-result(j)). If (j, x) is an element in canceled(i), then process 
pj has definitely canceled an out-of-date local-result x. If (j, x) is an element of 
all(i), then at some time pj posted a local-result x. The elements in all(i) are not 
necessarily current. Every local-result that P1 has posted appears in the union of 
bags all(i), for every i. Similarly, all local-results that pj has canceled appear in 
the union of canceled(i), for every i. Therefore pj's current local-result is in the 
difference of these two bag unions. In other words, the goal is to maintain the 
following invariant. Let r ( j )  denote the current local-result of process j, and let 
U denote the union operation over bags. Then 

U (j, r( j ) )  = U all(i) - U canceled(i). 
j i i 

Initially, all(i) holds the initial local-result ofpi, and canceled(i) is empty. To 
post a current local-result x and cancel the previous local-result y, process pi 
adds (i, x) to all(i) and (i, y) to canceled(i). 

Two bags a bag and c bag are returned with every ack in the form ( ack, a bag, 
c bag). When pj sends an ack, it takes the elements out of bag all( j)  and puts 
them into a bag, and similarly puts elements from canceled(j) into c bag, and 
then sends abag and cbag along with the ack. Ifpi  receives (ack, abag, cbag), 
it adds the contents of a bag to all(i) and c bag to canceled(i). 

At termination, all(i) and canceled(i) will be empty for i ~ 1, canceled(l) will 
contain tuples corresponding to all canceled local-results, and all(l) will contain 
tuples corresponding to all local-results, current and canceled. By removing the 
canceled results (i.e., elements of canceled(l)) from all(l), pl can determine the 
current local-results for all processes. The knot-detection algorithm of Section 3 
uses the bag idea; the information in the two bags has been condensed into a 
single integer cs. Adding an element (j, x) to all(i) is implemented by incre- 
menting cs(i) by x. Adding an element (j, y) to canceled(i) is achieved by 
decrementing cs (i) by y. 

Efficiency. The sizes of the bags returned with acks can be reduced by having 
each process pi remove all elements common to all(i) and canceled(i) from both 
all(i) and canceled(i). 

6.2 Time Stamps 

Each process Pi maintains a set S (i) of triples of the form (j, n (j),  local-result(j)), 
where n( j )  is a time stamp local to process pj. When a process pi wishes to post 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



686 J. Misra and K. M. Chandy 

a new local-result x (and cancel an out-of-date result), it increments n(i) and 
adds (i, n(i),  x) to S. 

Whenpi sends an ack, it sends (ack, S(i)) and then sets S(i) to empty. Upon 
receiving an ack, (ack, B), pi sets S(i) to / the union of S(i) and B. Upon 
termination, S(i) will be empty for all i ~ 1, and S(1) will contain all tuples 
(i, n(i), S(i)) that have been sent. pl can identify the current local-results 
because they will be associated with the latest time stamps. 

Efficiency. The sizes of the sets returned with acks can be reduced by having 
each process pi discard all elements in S(i) that it can identify as being out of 
date. 

ACKNOWLEDGMENTS 

We gratefully acknowledge the suggestions of E. W. Dijkstra and C. S. Scholten, 
on whose work this paper is based. We are also grateful to two anonymous 
referees for their valuable comments. 

REFERENCES 
1. CHANDY, K.M., AND MISRA, J. Distributed computation on graphs: Shortest path algorithms. 

Commun. ACM. 25, 11 (Nov. 1982). 
2. CHANG, E. Decentralized deadlock detection in distributed systems. Tech. Rep., Univ. of 

Victoria, Victoria, B.C., Canada. 
3. DIJKSTRA, E.W. In reaction to Ernest Chang's Deadlock Detection. EWD702, Plataanstraat  5, 

5671 AL Nuenen, The Netherlands, Feb. 21, 1979. 
4. DIJKSTRA, E.W., AND SCHOLTEN, C.S. Termination detection for diffusing computation. Inf. 

Process Left. 11, 1 (Aug..1980), 1-4. 

Received September 1981; revised May 1982; accepted May 1982 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 


