
A design-driven partitioning algorithm for distributed Verilog simulation

Lijun Li and Carl Tropper
School of Computer Science

McGill University
Montreal, Canada

lli22, carl@cs.mcgill.ca

Abstract

Many partitioning algorithms have been proposed for
distributed VLSI simulation. Typically, they make use of a
gate level netlist, and attempt to achieve a minimal cut size
subject to a load balance constraint. The algorithm exe-
cutes on a hypergraph which represents the netlist.

In this paper we propose a design-driven iterative par-
titioning algorithm for Verilog based on module instances
instead of gates. We do this in order to take advantage of
the design hierarchy information contained in the modules
and their instances. A Verilog instance represents one ver-
tex in the circuit hypergraph. The vertex can be flattened
into multiple vertices in the event that a load balance is not
achieved by instance based partitioning. In this case the
algorithm flattens the largest instance and moves gates be-
tween the partitions in order to improve the load balance.

Our experiments show that this partitioning algorithm
produces a smaller cutsize than is produced by hmetis on a
gate-level netlist. It produces better speedup for the simu-
lation because it takes advantage of the design hierarchy.

1 Introduction

Modern VLSI systems are becoming increasingly com-
plex, posing a never-ending challenge to sequential simu-
lation. In order to accommodate the growing need for in-
creased memory as well as the need for decreased simula-
tion time, it is becoming increasingly necessary to make use
of distributed simulation[24].

Time Warp[12] is an appealing technique for the dis-
tributed logic simulation of VLSI circuitry because it can
potentially uncover a high degree of parallelism in the VLSI
system being simulated.

However, getting satisfactory simulation performance
in a distributed environment is challenging since we need
to overcome the huge cost of inter-processor communica-
tion which is exacerbated in a distributed environment by

netlists comprised of millions of gates. It is widely known
that partitioning is an NP-complete problem, the result of
which is that partitioning algorithms provide heuristic solu-
tions and can be trapped in local minima.

Most of the partitioning algorithms [21, 9, 1, 18, 22, 15,
20, 11, 14] for distributed/parallel VLSI simulation partition
gate level netlists. These algorithms are typically used for
floorplanning and placement, not for simulation. They can
produce a big cutsize which is intolerable in a distributed
VLSI simulation environment because of the communica-
tion costs which are a consequence of a large cutsize. More-
over, few partitioning algorithms take load balancing into
account.

The ASIC design community has a well-established hi-
erarchical design methodology. Every design is partitioned
into blocks by functionality. The design hierarchy is re-
flected in modules and their instances in Verilog[23]. In
this paper we take advantage of the design hierarchy in-
formation present in Verilog and combine it with a move-
based partitioning algorithm. In our algorithm, the mod-
ule/instance is the basic partitioning element instead of the
gate.

The rest of this paper is organized as follows. Section 2
is devoted to related research. In section 3, we introduce hi-
erarchy in Verilog. Our distributed simulation environment
DVS[16] is briefly described in section 4. In section 5, we
present the details of our design-driven partitioning algo-
rithm. A comparison of the cutsize and of the execution
time of our design-driven partitioning algorithm and htmis
partitioning based on netlists is presented in section 6. The
last section contains our conclusions and thoughts about fu-
ture work.

2 Related work

[5] proposes an architecture driven partitioning algo-
rithm for netlists with multiterminal nets. The target archi-
tecture was a multifield-programmable gate array (FPGA).

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

The goals of the algorithm are to minimize the number of
FPGA chips used and to maximize routability.

[17] uses a module-based simulation mapping method.
Although the details of the algorithm are not described in
the paper, the author states that it reduces the communica-
tion cost and achieves a better load balancing.

[4] uses the module tree as the data structure instead of
the circuit hypergraph. Modules are not moved by the algo-
rithm. Nor does it use an iterative improvement technique.
The author does not mention the cutsize achieved by the
algorithm and concludes that the algorithm achieves better
performance then a sequential simulation and is efficient.

[6] proposes a module migration based partitioning al-
gorithm which tends to keep the cluster intact in order to
reduce the net cut size. The algorithm implicitly promotes
the move of clusters of modules during the module migra-
tion process by paying more attention to the neighbours of
moved modules, relaxing the size constraints temporarily
during the migration process, and controlling the module
migration direction. Load balancing was not considered in
this algorithm.

Iterative algorithms start from an initial partitioning and
try to improve it. The well-known iterative algorithms for
circuit partitioning are CLIP/CDIP[20], Metis/hMetis[13]
and F-M[9]. It is worthwhile noting that the CLIP[20] al-
gorithm tries to detect and restore the cluster destroyed by
the iterative partitioning algorithm based on the flattened
netlist.

[13] introduces a coarsening phase in a multilevel hyper-
graph partitioning algorithm. During the coarsening phase,
a sequence of successively smaller hypergraphs is con-
structed. The purpose of coarsening is to create a smaller
hypergraph while preserving the partitioning quality ob-
tained from the original hypergraph. The authors claim that
hmetis produces partitions that are consistently better than
other widely used algorithms and is one to two orders of
magnitude faster than other algorithms.

[20] and [13] try to reduce the size of the hypergraph
from the bottom up, i.e. they extract clusters from the flat-
tened netlist without worsening the quality of the partition-
ing of the original netlist. Our algorithm works from top-
to-bottom-it flattens the design hierarchy step by step and
compromises between the load balancing constraint and the
minimum cutsize.

Iterative algorithms generally work on any hypergraph
while our algorithm specifically targets distributed Verilog
simulation. The main purpose of our algorithm is to try to
keep the Verilog instance (actually the design hierarchy) in-
tact from the beginning. It is much easier than restoring
it from the debris produced by first flattening the netlist.
Moreover, the quality of the resulting partition should be
better than the cluster restoration and hypergraph coarsen-
ing.

3 Hierarchy in Verilog

The module is the basic unit of code in the Verilog lan-
guage. Both behavioral and structural code can be con-
tained within a module. The encapsulation property of the
module gives designers the ability to reuse the module in
a VLSI design. Moreover, the module provides an inter-
face to the program while hiding the complexity inside of it.
Therefore the module and its instance are natural candidates
for partitioning. We introduce the concept of a super-gate
in this paper in order to describe the module instance in a
circuit hypergraph.

Modules can reference lower level modules and describe
the interconnections between them as part of the hierarchy.
Each module instance is an independent, concurrently ac-
tive copy of a module. It contains the name of the original
module, an instance name that is unique to that instance
(within the current module) and a port connection list.

Usually Verilog module instances communicate with
other instances through ports. The encapsulation prop-
erty of Verilog modules helps to achieve a smaller cutsize
when we partition the circuit. Although Verilog supports
cross module reference, standard design practice discour-
ages such usage.

Figure 1 shows a design hierarchy described by Verilog.
The left side of the figure is the Verilog source code while
the right side displays the design hierarchy and its inter-
connection. Coupling is usually loose between Verilog in-
stances and is tight inside a Verilog instance (at least for
a good VLSI design). Therefore, if the circuit is cut at
instance boundaries, the cutsize will be smaller and inter-
processor communication will be reduced.

Module m1(p1, p2, p3);
 m2 m2a(…...);
 m3 m3a(…...);
endmodule

Module m2(p1, p2, p3);
 …...
endmodule

Module m3(p1, p2, p3);
 m4 m4a(…...);
 m5 m5a(…...);
endmodule

module m4(p1, p2, p3)
 …...
endmodule

module m5(p1, p2, p3);
 …...
endmodule

m2a

m4a

m5a

m1

m3a

Figure 1. Verilog module/instances and inter-
connection

We should note that not only does RTL(Register Transfer

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

Level) Verilog source code contain design hierarchy infor-
mation, but the synthesized gate level design also contains
exactly the same design information. The design informa-
tion is lost after elaboration, a process to flatten the design
hierarchy. However, if partitioning is done before elabora-
tion we are able to take advantage of the design information.

4 DVS[16]: A framework for distributed
Verilog[23] simulation

Before we present the implementation of our algorithm
we present a brief description of DVS, a framework for dis-
tributed Verilog simulation. Several kinds of partitioning
algorithms are implemented in DVS.

Figure 2 portrays the architecture of DVS. The 3 layers
of DVS are shown on the right side of figure 2. The bottom
layer is the communication layer, which provides a common
message passing interface to the upper layer. Inside this
layer, the software communication platform can be PVM
or MPI. Users can chose one of them without affecting the
code of upper layers.

The middle layer is a parallel discrete event simulation
kernel, OOCTW, which is an object-oriented version of
Clustered Time Warp (CTW)[2]. It provides services such
as rollback, state saving and restoration, GVT computation
and fossil collection to the top layer.

The top layer is the distributed simulation engine, which
includes an event handler and an interpreter which executes
instructions in the code space of a virtual thread.

vvp Parser

Partitioner

vvp Assembly Code

Functor List
Vthread List

Simulation Results

Distributed
Simulation Engine

OOCTW

MPI / PVM

Figure 2. Architecture of DVS

Several partitioning algorithms are included in DVS:
RANDOM[3], BFS(Breath-First-Search)[3], DFS(Depth-
First-Search)[3] and the design-driven partitioning algo-
rithm.

5 Algorithm and Implementation

In this section, we will explain the implementation of our
algorithm in detail.

5.1 hypergraph and data structure

Partitioning algorithms operate on hypergraphs which
model a circuit. The gates and wires of the circuit are
mapped to the vertices and edges of the hypergraph. In a
hypergraph edges may connect two or more vertices and as
such it provides a more realistic model of a circuit.

In the circuit hypergraph, we make use of two kinds
of vertices. One is an ordinary gate, such as AND, OR,
NAND, XOR.The other kind of vertex is a Verilog instance.
Actually we can treat it as a super-gate with more complex
logic than ordinary gates. We associate the number of gates
with each vertex in the hypergraph in order to get an even
load distribution. The introduction of super-gates reduces
the number of vertices thereby making the algorithm more
efficient. This load metric does not work for behavioral Ver-
ilog code since we cannot measure the complexity of the
behavioral code. This algorithm targets Verilog code at the
gate level, i.e. after synthesizing the RTL code.

Figure 3 contains a hypergraph which is composed of
two kinds of vertices, gates and super-gates (Verilog in-
stances).

u1

y
1x

2

x
1

f(x1...xn)33 MHz

u2

y1

x2

x1

f(x1...xn)

&
0

0

0

&0

0

0

u
1

Figure 3. Hypergraph represented by Verilog

In figure 3, there are two Verilog instances, u1 and u2
which are represented by two vertices in the hypergraph.
However, in the zoom-out eclipse we see that both u1 and u2
have their own sub-graphs, each of which include multiple
gates or Verilog instances.

Before we introduce the data structure used in the algo-
rithm, we define two properties of a vertex. We say that
a vertex is not visible if it is inside of a Verilog instance ,
otherwise it is visible. We say that a vertex is primitive if it
cannot be decomposed into multiple vertices, otherwise it is
not primitive. Consequently there are four kinds of vertices,
as shown in table 1.

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

Kind visibility primitive example
A Yes Yes Gate outside Vlog instance
B Yes No Top level Vlog instance
C No Yes Gate inside Vlog instance
D No No Sub-level Vlog instance

Table 1. Logic values and their purposes

For example, in figure 3, all of the nodes inside the
zoomout ellipse are of kind C, while the node zoomed out
is of kind B. The properties of the vertex can change dur-
ing the partitioning process. For example, the vertex inside
of a Verilog instance will become visible after flattening.
Any invisible vertex will have the same partition id as its
parent. Therefore, only visible vertices will appear in the
hypergraph.

The complexity of any partitioning algorithm is propor-
tional to the number of vertices, either O(n) or O(n*n). A
reduction in the number of vertices in a hypergraph results
in simpler hypergraph and a more efficient partitioning al-
gorithm.

Figure 4 shows the data structure used in the partitioning
algorithm. The hypergraph is represented as a vertex vector
and an edge vector. Each vertex contains the load, a pointer
to its parent, the partition id, the neighbouring vertices list,
the Behring edges list and the input ports list. The input
ports list contains all of the input ports of the vertex and the
internal vertices connected to the input ports while the out-
put ports list contains all of the vertices to which it connects.
The ports can be used to flatten a vertex. All of the invisible
vertices are expanded into visible vertices when a vertex is
flattened. Details of flattening are explained in subsection
5.6.

Neighboring
vertices of vertex

ports
Neighboring

vertices of ports

Vertex vector

Figure 4. Data structure of the partitioning al-
gorithm

5.2 Verilog parser and hypergraph builder

The Verilog parser reads in the Verilog source code and
builds the hypergraph. In the hypergraph, the Verilog in-

stances are treated as super-gates and are therefore repre-
sented as one vertex.

5.3 Load balancing constraint

A successful partitioning of a distributed Verilog simu-
lation depends on three factors: communication, load and
concurrency. Since it is not possible to optimize each of
these factors in isolation from one another, a compromise
must be sought. We attempt to minimize the communica-
tion between the processors while balancing their computa-
tional load.

We define the load on a (processor) node as the number
of gates in the partition corresponding to the node. We also
define a quantity which measures the relative difference in
the load on two (processor) nodes as follows:

(load[p1] − load[p2])/(load[p1] + load[p2]) (1)

In the formula 1, load[p1] is the gate number in partition
1 while load[p2] is the gate number in partition 2. The algo-
rithm attempts to balance load by requiring that (load[p1] -
load[p2]) / (load[p1] + load[p2]) is less than or equal to k.

We have experimented with different values of k, and
portray the effect of different choices of k in 6.

5.4 Initial partitioning

Primary input

Cone 1 Cone 2 Cone 3

Figure 5. Initial partitioning with cone parti-
tioning algorithm

We use a cone partitioning algorithm [19] as the initial
partitioning algorithm. The cones for each primary input are

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

shown in figure 5. The algorithm traverses the hypergraph
from the primary inputs and adds vertices into a partition. If
the algorithm detects the vertices that are already added into
one partition because of a loop in the circuit, it will traverse
from its parent or choose another primary input to continue.
The initial partitioning terminates when all of the primary
input ports are visited.

The cone partitioning algorithm is known to preserve
concurrency in the circuit since it distributes the primary
inputs into different partitions.

5.5 Iterative moving

The iterative moving of hypergraph nodes is the same
as in the Fiduccia-Mattheyses (FM) [9] algorithm. It mod-
ifies the initial partition by a sequence of moves which are
organized into passes. At the beginning of a pass, all of
the vertices are free to move (they are unlocked), and each
possible move is labelled with the immediate change in the
total cost which it would cause; this is called the gain of the
move (positive gains reduce solution cost, while negative
gains increase the cost). The move with the highest gain
is executed, and the moved vertex is then locked, i.e. it is
not allowed to move again during that pass. Since moving
a vertex can change the gains of adjacent vertices, after a
move is executed all of the gains of adjacent vertices are
updated. The selection and execution of a best-gain move,
followed by a gain update, are repeated until every vertex
is locked. Then, the best solution seen during the pass is
adopted as the starting solution for the next pass. Iterative
moving terminates when a pass fails to improve the quality
of the solution.

5.6 Flattening

As it turns out, the result obtained using first level super-
gates is not always satisfying. For example, if the super-
gate is too large, it will destroy the load balance constraint.
At this time we need to flatten the super-gate in order to
break it into more gates and smaller super-gates. The new
hypergraph will be generated after this flattening and the al-
gorithm will continue the iterative moving based on the new
hypergraph. The worse case of the algorithm is when all of
the super-gates are broken into gates and the hypergraph is
exactly same as the hypergraph of the gate-level netlist.

Figure 6 shows the original hypergraph and the result
of the flattening. The gates inside the dashed rectangle are
flattened from Verilog instance u2.

Currently we choose the super-gate with the maximum
gate number in the partitioning. After the flattening, we
need to distribute some of the visible nodes from the flat-
tened modules in order to achieve a load balance.

u1

u1

x2

x1

f(x1...xn)33 MHz

u2

u
1

x2

x
1

f(x
1
...x

n
)

&0

0

0

u1

u1

x2

x1

f(x1...xn)33 MHz

Figure 6. Flattening of the circuit hypergraph

There are two approaches to re-distribute the load after
the flattening.

The first is to restart the algorithm from the beginning.
After the flattening, a new hypergraph is generated. The
algorithm will do the initial partitioning on the new hyper-
graph, then begin the iterative movement of the hypergraph
nodes. It is obvious that this approach will take longer time
to finish the partitioning. Hopefully it will generate an im-
proved cutsize and load balanced partition.

We use the second approach to reduce the partitioning
time. This approach redistributes the load between two par-
titioning based on the previous partitioning result. We de-
fine this approach as the incremental load distribution. Af-
ter partitioning, the lightly loaded partition will pull some
nodes from the heavily loaded partition. The pulled nodes
are in the cones along the hyperedge between the two par-
titions. All nodes in the cone are pulled from the heavily
loaded partition to the light load partition. The hyperedge
which defines the cone is chosen by random.

We observe that cutsize will increase if we try to achieve
a more balanced partition. However, we need to compro-
mise between the cutsize and load balancing in order to
achieve a better simulation speedup. The minimum cutsize
with a load imbalance will trigger a rollback explosion. De-
tails are presented in section 6.

When the iterative moving terminates and the partition-
ing result satisfies the load balance constraint the partition-
ing algorithm terminates.

5.7 Putting it all together

Figure 7 contains a flowchart of the algorithm. After the
initial cone partitioning, the algorithm will try moving the
free vertices between two partitions iteratively until there is
no free vertex in the partition. The algorithm then checks
whether the load of two partitioning meets the load balanc-
ing constraint. If the load balancing constrained is not met,
the algorithm will continue to do incremental flattening as
discussed in section 5.6. The flattening process and itera-

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

tive movement process will repeat until minimum cutsize is
achieved and load balancing constraint is met.

Initial partitioning

Iterative moving

No free vertex
or no gain?

Meets load
balancing
constraint Terminate

Yes

No

Flattening

Yes

No

Figure 7. Flowchart of the design-driven par-
titioning algorithm

6 Experiments

All of our experiments were conducted on a network of
4 computers, each of which has AMD Athlon (CPU 1G)
processors and 512M RAM. They are interconnected by
a 1Gbit Ethernet network. All of the machines run the
Linux operating system while MPICH[10] is used for mes-
sage passing between different processors. MPICH is a
freely available, portable implementation of MPI(Message
Passing Interface), a standard for message-passing for
distributed-memory applications used in parallel/distributed
computing.

We used the synthesized netlist of a Viterbi decoder,
which has 388 modules and about 1.2M gates. 1000 ran-
dom vectors are fed into the circuit. We got the synthesized
netlist from Rensselaer Polytechnic Institute. They’re con-
ducting the parallel logic simulation on the same circuit[8].
Due to the difficulty of obtaining a large synthesizable in-

k Flattening Hyperedge cut Partitioning time
0.05 209 2428 76.2
0.10 176 1827 54.9
0.15 96 905 35.6
0.20 31 633 31.1
0.25 3 598 25.3
0.30 0 513 21.5

Table 2. cutsize with design-driven partition-
ing algorithm

dustry Verilog design, we only conduct experiment on this
circuit for now.

We assume a unit gate delay and zero transmission delay
on the wires. Each data point collected in the experiments
is an average of five simulation runs. The number of ma-
chines in the figure doesn’t include machine 0, which only
contains vthreads[16]. The vthreads generate the events for
the simulation. The simulation time for 1 machine is the
running time of the DVS without partitioning.

In the experiments, we compare the performance of DVS
with the design-driven partitioning algorithm with that of
DVS using htmis[13] as the partitioner.

6.1 Cutsize

We use different values of k to generate different cut-
sizes. The hyperedge cutsize is defined as the number of
hyperedges that span multiple partitions. Table 2 shows
the hyperedge cutsize produced by our design driven iter-
ative partitioning algorithm while table 3 lists the cutsize
produced by hMetis partitioning algorithm. Parameter k is
the load balancing factor defined in formula 1. The Flatten-
ing parameter is defined as the number of times flattening is
invoked in the partitioning process.

The partitioning time is the average of 5 consecutive ex-
ecutions of the partitioning algorithm. Currently this algo-
rithm is a two way iterative partitioning algorithm. We plan
to extend the algorithm to a multi-way partitioning algo-
rithm.

From table 2 and table 3, we know our algorithm reduced
cutsize significantly compared to hMetis partitioning algo-
rithm.

6.2 Simulation time

In our preliminary experiments the simulation took an
extremely long time to terminate since DVS consumes a lot
of memory and the operating system kept swapping. Swap-
ping makes the performance of DVS even worse than that
of a sequential simulation. The reason for this is that DVS

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

k Hyperedge cut Partitioning time(Seconds)
0.05 2675 87
0.10 2673 91
0.15 2673 93
0.20 2669 90
0.25 2668 90
0.30 2665 87

Table 3. cutsize with hmetis partitioning algo-
rithm

k Cutsize Simulation time (Seconds) Speedup
0.05 2428 5834.29 0.62
0.10 1827 3907.90 0.93
0.15 905 2876.13 1.27
0.20 633 2405.87 1.51
0.25 598 2201.98 1.65
0.30 513 2786.54 1.31

Table 4. Simulation time with design-driven
partitioning algorithm

treats each gate as an independent LP and each LP needs to
save its state, input events and output events. If the GVT is
not calculated promptly, the memory overhead for state and
event saving can be huge.

In order to attack the problem of memory consumption,
we update DVS and only treat the visible nodes in the cir-
cuit hypergraph as LPs. For a Verilog module, the states
and input events will be saved for each input port while the
output events will be saved for each output port. An invisi-
ble node without memory inside a Verilog module will not
save its state and events. However, the invisible nodes with
memory (e.g. a register) will still save their state. If a roll-
back happens in a Verilog module, every child inside of the
Verilog module rolls back along with its parent.

Table 4 shows the simulation times and speedups with
different combinations of the load balancing factor and
cutsize. The sequential simulation time of the circuit is
3639.70.

From table 4, we know that the minimum cutsize does
not always result in the best performance since the perfor-
mance is also dependent on load balancing. We got the best
performance with the combination of a cutsize of 598 and a
static load balancing factor of 0.25.

Without a good partitioning algorithm, the distributed
simulation is slower than the sequential simulation, as
shown in the first two rows in table 4.

7 Conclusion

A partitioning algorithm plays an important role in dis-
tributed VLSI simulation. Unfortunately, most partitioning
algorithms are very costly and do not always yield a good
cut size because they operate on a flattened netlist. Our
design-driven partitioning algorithm yields a significant re-
duction in cutsize compared to such algorithms by taking
advantage of hierarchical design information. Moreover,
it preserves the locality expressed in Verilog modules and
instances. The algorithm produces a 4.5 fold reduction in
cutsize compared to the hmetis [13] partitioning algorithm.
The reduction in cut size and the preservation of locality
lead to a 40% faster execution time on two machines than
the sequential simulation.

There are many possible ways to improve the algorithm.
It can readily be extended to multiway partitioning by ap-
plying the design-driven algorithm to the new partition.
Currently the algorithm only works for a structural circuit
description. We plan to extend it to RTL and mixed mode
(RTL + gate) designs.

An interesting extension of the algorithm would be to
make is responsive to changes in processor loads. Currently
our load metric is the number of gates, which is not ade-
quate for this task. A first step in this direction is to make
use of pre-simulation [7]. Re-partitioning could then be
done during the course of the simulation.

Due to the difficulty of obtaining a large synthesizable
industry Verilog design, we only conduct experiment on this
circuit for now. We are exploring the possibility of con-
ducting more experiments on more industry level Verilog
design.

References

[1] A. B. Kahng A. E. Caldwell and I. L. Markov. De-
sign and implementation of the fiduccia-mattheyses
heuristic for vlsi netlist partitioning. In Proc. Work-
shop on Algorithm Engineering and Experimentation
(ALENEX), Baltimore, pages 177–193, Jan. 1999.

[2] Herve Avril and Carl Tropper. Scalable clustered time
warp and logic simulation. VLSI design, 00:1–23,
1998.

[3] M. Bailey, J. Briner, and R. Chamberlain. Parallel
logic simulation of vlsi systems. ACM Computing Sur-
veys, 26(03):255–295, Sept. 1994.

[4] K.-H. Chang, H.-W. Wang, Y.-J. Yeh, and S.-Y. Kuo.
Automatic partitioner for distributed parallel logic
simulation. In Modelling, Simulation, and Optimiza-
tion, volume 429, Aug 2004.

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

[5] Chau-Shen Chen, Ting Ting Hwang, and C. L. Liu.
Architecture driven circuit partitioning. In IEEE
TRANSACTIONS ON VERY LARGE SCALE INTE-
GRATION (VLSI) SYSTEMS, volume 9, pages 383–
389, April 2001.

[6] Jong-Sheng Cherng, Sao-Jie Chen, Chia-Chun Tsai,
and Jan-Ming Ho. An efficient two-level partitioning
algorithm for vlsi circuits. In Asia and South Pacific
Design Automation Conference 1999 (ASP-DAC’99),
pages 69–72, 1999.

[7] Chamberlain R. D. and Henderson C. Evaluating
the use of presimulation in vlsi circuit partitioning.
In Proc. 1994 Workshop on Parallel and Distributed
Simulation, pages 139–146. Institute of Electrical and
Electronics Engineers, 1994.

[8] L. Zhu et.al. Parallel logic simulation of million-
gate vlsi circuits. In 13th IEEE International Sym-
posium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MAS-
COTS’05), 2005.

[9] C. Fiduccia and R. Matheyses. A linear-time heuristic
for improving network partitions. ACM/IEEE Design
Automation Conference, pages 175–181, 1982.

[10] Freeware. MPICH. http://www-
unix.mcs.anl.gov/mpi/mpich.

[11] Vipin Kumar George Karypis, Rajat Aggarwal and
Shashi Shekhar. Multilevel hypergraph partitioning:
Applications in vlsi domain. In ACM/IEEE Design
Automation Conference, pages 526–529, 1997.

[12] D. Jefferson. Virtual time. ACM Transactions on
Programming Lauguages and Systems, 7(3):405–425,
1985.

[13] George Karypis, Rajat Aggarwal, Vipin Kumar, and
Shashi Shekhar. Multilevel hypergraph partitioning:
Applications in vlsi domain. IEEE Transactions on
VLSI Systems, 7(1):69–79, 1999.

[14] George Karypis and Vipin Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. Technical Report TR 95-035, Department
of Computer Science, University of Minnesota, Min-
neapolis, MN, 1995.

[15] H. K. Kim and J. Jean. Concurrency preserving
partitioning(cpp) for parallel logic simulation. In
10th Workshop on parallel and distributed simula-
tion(PADS’95), pages 98–105, May 1996.

[16] Lijun Li, Hai Huang, and Carl Tropper. Dvs: an
object-oriented framework for distributed verilog sim-
ulation. In Parallel and Distributed Simulation, 2003.
(PADS 2003), pages 173–180, June 2003.

[17] Tun Li, Yang Guo, and Si-Kun Li. Design and imple-
mentation of a parallel verilog simulator: Pvsim. In
Proceedings of the 17th International Conference on
VLSI Design (VLSID’04), pages 173–180, 2004.

[18] R.Chamberlain and C.Henderson. Evaluating the
use of pre-simulation in vlsi circuit partitioning. In
PADS94, pages 139–146, 1994.

[19] G. Saucier, D. Brasen, and J.P. Hiol. Partitioning with
cone structures. IEEE/ACM International Conference
on CAD, pages 236–239, 1993.

[20] Wenyong Deng Shantanu Dutt. Cluster-aware itera-
tive improvement techniques for partitioning large vlsi
circuits. ACM Transactions on Design Automation of
Electronic Systems(TODAES), 7(1):91–121, Jan 2002.

[21] S. Smith, M. Mercer, and B. Underwood. An anal-
ysis of several approaches to circuit partitioning for
parallel logic simulation. In Proc. Int. Conference on
Computer Design, IEEE, pages 664–667, 1987.

[22] Swaminathan Subramanian, Dhananjai M. Rao, and
Philip A. Wilsey. Applying multilevel partitioning to
parallel logic simulation. In Parallel and Distributed
Computing Practices, volume 4, pages 37–59, March
2001.

[23] Donald E. Thomas and Philip R. Moorby. The Ver-
ilog Hardware Description Language Fourth Edition.
KLUWER Academic Publisher, 1992.

[24] Carl Tropper. Parallel Discrete-Event Simulation Ap-
plications. Journal of Parallel and Distributed Com-
puting, 62:327–335, 2002.

21st International Workshop on
Principles of Advanced and Distributed Simulation (PADS'07)
0-7695-2898-8/07 $20.00 © 2007

