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Abstract 
Time Warp is known for its ability to maximize the 

exploitation of the parallelism inherent in a simula- 
tion. However, this potential has been undermined 
by the cost of processing causality violations. Mini- 
mizing this cost has been one of the most challenging 
issues facing Time Warp. 

In this paper, we present dependence list cancella- 
tion, a direct cancellation technique for Time Warp 
which is intended for use in a distributed memory 
environment such as a network of workstations. This 
approach provides for the swift cancellation of erro- 
neous events, thereby preventing the propagation of 
their (erroneous) descendants. The dependence list 
also provides an event filtering function which detects 
erroneous future events, and also reduces the number 
of anti-messages used in the simulation. Our experi- 
mental work indicates that dependence list cancella- 
tion results in a dramatic reduction in the time re- 
quired to process causality violations in Time Warp. 

1 Introduction 
In the optimistic approach to distributed simulation 
[Jeff 851 (a.k.a. Time Warp) processors are allowed to 
proceed even though there is a possibility of a causal- 
ity violation. In this way it is easy to fully exploit the 
parallelism which is naturally present in a simulation 
model. The implicit tradeoff is that when a viola- 
tion does occur, the system must be able to recover 
from this violation. There can be a large processing 
overhead associated with this correction, which may 
sometimes be unbounded. This has been a major ob- 
stacle to the efficiency of the Time Warp, and also to 
its stability. Therefore, reducing this associated cost 
has been, and remains, a challenging issue for Time 
Warp scheme. 

We focus, in this paper, on reducing the process- 
ing time required for this correction. In doing so, we 
make use of the inherent dependence relationship be- 
tween the events in a discrete event simulation. By 
this we mean the parent-child relationship between 
events; the child event is brought into the world as a 
result of processing the parent event. 

We present algorithms for the swift cancellation of 
the children of erroneously processed events. These 
algorithms are oriented towards a distributed envi- 
ronment, e.g. a network of workstations. In the fol- 
lowing, we describe the algorithms and the manner in 
which they serve to efficiently cancel event,s (sections 
2 and 3) as well as experimental work intended to 
evaluate their efficiency (section 4). Our concluding 
remarks are contained in section 5. 

2 The Notion of the Depen- 
dence List 

The use of a distributed memory environment to host 
a distributed simulation poses a significant barrier to- 
wards the implementation of a cancellation system 
based on event dependence information. In a dis- 
tributed network, events are sent between processors 
inside of messages. These communications are gen- 
erally slow compared to the memory access time of 
a processor. In order to maintain network-wide de- 
pendence information for all of the events in a simu- 
lation, a large number of control.niessages would be 
needed, which could significantly burden communica- 
tion channels. In addition, the cancellation of events 
in other processors poses a problem because the t h e  
a control message takes to arrive at a processor is 
limited by the latency of the communication chan- 
nels. Furthermore, since an optimistic distributed 
simulation system runs asynchronously, it is almost 
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impossible to  have knowledge of an events’ complete 
dependence information at any given time. 

In order to avoid those difficulties, our dependence 
list only contains the dependence relationship be- 
tween events within a single processor. The list in- 
cludes those events which were sent from other pro- 
cessors but which are descendents of events originat- 
ing in the given processor. The dependence list is 
maintained in the form of a linked list. 

Certain applications such as VLSI simulation are 
convenient to simulate by making use of logical clus- 
ters of LPs. [Avril95] contains a description of Clus- 
tered Time Warp and its application to  VLSI simula- 
tion. A dependence list may be established either at 
the processor level or a t  the cluster level. If it is at 
the processor level, events can be linked or cancelled 
directly via dependence lists across different clusters, 
as long as their place of origin and their destination 
are within the same processor. If, on the other hand, 
the dependence list is at cluster level, events may 
be linked or cancelled directly within a cluster. In- 
ternal events are scheduled within a cluster, while 
external events are sent to different clusters. Our al- 
gorithmic descriptions are for clusters; to  facilitate 
these descriptions, we assume one cluster per proces- 
sor. Bemuse one or nioye children may be produced 
by processing a parent, the dependence lists are tree 
structures. 

There is, however, a limitation to the use of a de- 
pendence list - siniulation of events within a single 
processor environment must be sequential in nature. 

Figure 1 illustrates a dependence list. 

0 e2, e3, and e4 are children of e l .  e2 and e3 are 
internal events. They are directly linked to el in 
the dependence list. Like wise, e8 is an internal 
child of e3; e6 is an internal child of e4. So e8 is 
directly linked to e3, and e6 is directly linked to 
e4 to  form their dependence links. 

0 e4 is an external child of e l .  There is no link 
connecting between el and e4 , as dependence 
links do not extend across clusters. When the 
descendents of the external child come back to 
the same cluster, dependence links are formed by 
linking these external descendents and their orig- 
inal ancestors within the same cluster. In this 
example, both e5 and e7 are connected to  el in 
the dependence list. 

From the above example, it can be seen that inter- 
nal children are directly linked to  their parents, while 
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Figure 1: The Dependence List 

external descendents are directly linked to their an- 
cestors. If we define the length of a dependence list 
between ancestor and descendent as being the num- 
ber of generations separating them, then it can be 
easily concluded that a direct link to  an internal child 
has a length of 1; and a direct link to an external de- 
scendent has a length of a t  least 2. In this example, 
the link between el and e7 has length of 3, and the 
link between el and e5 has length of 2. All other links 
are length 1. 

2.1 The Construction of the Depen- 
dence List 

Before describing the algorithm which establishes the 
dependence list, we first present some iniplementa- 
tion details. 

Since the number of descendents connected to a 
parent varies, we implement our dependence list con- 
nections from a parent to its descendents as being 
a pointer from the parent pointing to the head of a 
linked list of the descendents. So in our implementa- 
tion a dependence list is associated with each event. 
There are three types of pointers: 

ancestor: A pointer to  an ancestor; 

descendents: A pointer to the list of its descen- 
dents; 

descendents-to-next: A pointer that links the de- 
scendents to form a linked list; 

36 



Besides those dependence list pointers, a 
branch-ID, an integer, is also added to  each 
event. It is used to relate a branch of the dependence 
list connecting the parent to the child. (The details 
of how a branchlD value is assigned to a branch of 
dependence list will be described in the next section. 
With this branchlD, individual branches of the 
dependence list are identified. The cancellation of 
events can therefore be targeted only to branches 
containing erroneous events.) 

In order to establish a link between an external 
descendent and its ancestor, we attach another data 
st,ructure, a vector table, to each event. When an 
external descendent arrives from another cluster, the 
processor which contains the cluster will be able to 
discover the events' original ancestor by looking at  
the vector table of t,he incoming event. 

The vector table contains A d  elements, where n/r 
is the number of processors or clusters in the system. 
Because the number of processors in an actual system 
is limited and usually is not, very big, the size of this 
attached vector table is hounded. 

Each element in a vector table contains: the c ~ u s -  
ter ID? which is used to indicate the cluster the ele- 
ment belongs to; the nieiiiory location of the ancestor 
that the event originated from; the dependence list 
branch-ID! which is used to provide branchlD infor- 
mation when the links of an external descendent are 
established, and other informatioii. To minimize the 
size of a vector table, the position of an element in the 
vector table can be used to implicitly indicate the ID 
value of the cluster that, element belongs to. provided 
that these ID values are consecutive and they begin 
with 0 or 1. The cluster ID in the vector table can 
be eliminated in this case. In our implementation, 
we employ this implicit cluster ID technique. Hence, 
each element of the vector table contains the follow- 
ing fields: the ineniory location of the ancestor, t,lie 
branchlD, and the timestamp of the ancestor, which 
is used to niiiiiniize the sending of anti-messages. (de- 
scribed later) 

The algorithm for establishing the dependence list 
is as follows: 

In the beginning of the simulation, the memory 
locations of ancestors in all vector tables of initial 
events are reset to 0'. 
When an internal child is generated, before it is 
scheduled to the event heap a link is created be- 
tween the parent and the child. The ancestor 

pointer from the child points to  the parent, the 
child is put at the head of descendents list for the 
parent, and is pointed to  by the parent's descen- 
dents pointer. At the same time, the content of 
the parent's vector table is copied to the child's 
vector table. In other words, this information is 
directly passed onto the child. 

When an external child is generated, before it is 
sent to another cluster, its vector table has to be 
updated. First, the content of the parent's vec- 
tor table is copied to the child's. Then, in the 
element that represents the current cluster in the 
vector table, the memory location is updated to 
be the location of the parent; the branch ID vari- 
able is also updated to the value appropriate for 
the child (see the next section); the timestamp 
variable is set to the timestamp of the parent. 

When an external descendent arrives at a cluster, 
the processor containing the cluster looks at  the 
element in the descendent's vector table which 
belongs to the current cluster. Based 011 the el- 
ement's memory location information, a link is 
established between the descendent and its an- 
cestor in this cluster. In our implementation, 
the ancestor pointer froin the descendent is set 
to the ancestor and the descendent is placed at 
the head of descendents list for the ancestor. It 
is pointed to by ancestor's descendents pointer. 

The following example illust,rated in Figure 2 de- 
picts how the dependence list is constructed: 

Assume there are only two clusters in the system, 
CSTI and CSTl.  The attached vector contains only 
two elements. The simulation begins with el: 

0 The vector of el is < 6,o' >. (Only the memory 
location of the ancestor is indicated.) 

0 e2 and e7 are internal children. They are directly 
linked to e l .  Their vectors are same as el's: < 
o',o'>. 

0 e3 is an external child of e2. When it leaves 
CSTI, its vector is updated to < e;, 6 >. 

0 e4 is an external child of e3. When it leaves 
CST2, its vector has become < e:,e< >. When 
e4 arrives at  CSTI, the processor finds its orig- 
inal ancestor by looking at the first element 
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Figure 2: The Construction of Dependence List 

(which corresponds to CSTl)  in its vector ta- 
ble, the location for e2. Hence e4 is connected to 
e2. 

e6 is an internal child of e4. e6 and e4 are directly 
linked. eg’s vector is same as e4’s: < e:, e; >. 

0 e5 is an external child of e4. When it leaves 
CSTl,  its vector has updated to < e<,e< >. 
When e5 arrives at CSTz, in the same way as 
for e4, the processor in CST2 looks at the sec- 
ond element in e5’s vector table, the location for 
e3 ,  and e3 and e5 are connected together. 

As illustrated by this example, a vector table of size 
M (see definition earlier in this section) is sufficient 
to create the dependence list. 

A dependence list may be traversed towards its bot- 
t o m  (or root) via the ancestor pointers, and may be 
traversed towards the t o p  (or leaf) via the descen- 
dent’s pointers. The bottom of a list is an event 
whose ancestor pointer is NULL. The top of a list 
is an event whose descendents list is also NULL. 

When the timestamp of an ancestor is older than 
the GVT, the corresponding element in an event’s 
attached table should be reset to 6, because the an- 
cestor’s information may no longer be valid. Any an- 
cestor older than GVT is subject to fossil collection. 

The dependence list is based on the intuition that 
if an event was created erroneously, all of its descen- 
dents are erroneous too, and all of them are to  be 

removed from the system. As we shall see, the tech- 
nique is quite fast conipared to  the traditional use of 
anti-messages. 

3 The Application of the De- 
pendence List 

3.1 Related Work 
Previous work has employed ”direct cancellation” 
techniques. 

[Das 941 [Fuji 891 employ direct cancellation tech- 
niques in Georgaa Tech Tame Warp ( G T W )  in a 
shared memory multaprocessor envaronment. Pointers 
are used to link the children and the parents prior to 
scheduling the children. thereby eliminating the need 
for anti-messages. This approach relies on the use 
of a shared memory environment in which a proces- 
sor may directly access another processor’s memory. 
In a clistributecl network environment, however, anti- 
messages are indispensable as a means of coniniuni- 
cation between LPs in different processors. 

[Deel 971 utilizes pointer links in a niultiproces- 
sor environment for the simulation of the spread of 
Lyme disease. Unlike our dependence list, the au- 
thors maintain dependence information on objects 
created only within a processor; i.e. no link is formed 
for an external event coining fioni outside the proces- 
sor. Their cancellation is not much faster than the 
traditional approaches. 

3.2 The Simulation System Using the 
Dependence List 

To utilize the dependence list, the basic simulation 
system is modified. The output event queue for the 
cluster level or LP level is no longer used. (See [Avril 
951 for a description of the output event queue at  the 
cluster level). Instead, each parent carries a copy of 
its children in its output event list. Placing the out- 
put event list in an individual parent facilitates the 
removal of erroneously created children, as they are 
connected to their cancelled parent. Other uses are 
for the sending of anti-messages to other processors 
and to support lazy cancellation. 

In our implementation, we add two pointers to  each 
event, which constitutes the output event list: 

output-event list A pointer from a parent, point- 
ing to the head of a linked list made up of its 
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children; 

output-to-next Pointers between children, so that 
the linked list is formed. 

In addition, we also add another integer, hasRun, 
to each event which is used to indicate whether or 
not the event has been previously processed. In de- 
pendence list cancellation the rolled back events are 
reprocessed in order to  determine if they have gen- 
erated erroneous events. We describe how this is ac- 
complished later. 

In the dependence list, the output event list of a 
parent is used to identify a particular branch of a de- 
pendence list. Initially, there is no particular order 
necessary in which to  place copies of the children in 
the output event list. Once the list has been gener- 
ated, the order of each member in the list becomes 
important: tlie position of a child in the list becomes 
the branchlD value of the dependence list. 

The algorithm for producing the output event list 
and assigning the branchlD values is as follows: 

0 When an event is processed, a counter containing 
the number of children in the output event list 
is set up and is created and initialized to 0. 

0 Whenever an internal child is generated, the 
counter is increased by 1.The child is linked to 
the parent via the dependence list: the branchlD 
of the child is set to the value of the counter; then 
the child is scheduled to the event heap. In ad- 
dition, a copy of the child is placed at  the head 
of the parent’s output event list. 

Whenever an external child is generated, the 
counter is increased by 1. The child’s vector ta- 
ble is updated. The branchlD variable of the 
element is set to the value of the counter and 
other fields are also renewed. Then, a copy of 
the child is placed at the head of the parent’s 
output event list. 

e When an external descendent arrives at  its des- 
tination, it is linked to  its ancestor via the de- 
pendence list. The branchlD of this descendent 
is set to the value of the branchlD variable in 
the element representing the destination cluster 
from the descendent’s vector table. 

Figure 3 shows an example of the relationship be- 
tween the position of members in the output event list 
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Figure 3: The Output Event List and the Branches 
of Dependence List 

and their corresponding branches of the dependence 
list: 

el has four children: e2, e3, e4, and e5. The copies 
of these events in the output event list have the posi- 
tions 1, 2 ,  3 ,  and 4. Based on that, e2’s branch ID is 
1, and e3’s branch ID is 2. e7 and eg are tlie descen- 
dents of e4, which has the position of 3 ,  so tlie braiich 
IDS of e7 and e9 are 3 .  This branch ID information 
is available since it is carried in the attached vector 
table of e4. 

We refer to the members in an output event list 
as leads. When there is at  least one branch of a de- 
pendence list belonging to a lead, we say the lead is 
connected. Otherwise the lead is open. In our exani- 
ple, leads e 2 ,  e3, and e4 in el are connected, while 
lead e5 is open. I t  can be easily seen that the leads 
of internal children are always connected. The leads 
of external children may either be connected] or be 
open. The significance of this is that when a lead is 
connected] the cluster is able to know that the corre- 
sponding external child has arrived at its destination, 
and has been processed by the other cluster; on the 
other hand, when the lead is open, no assumption can 
be drawn about either the arrival of the child, or its 
processing by the other cluster. A lead’s being open 
or connected may serve as a kind of acknowledgement 
for external children. In this example, the arrival and 
the processing of e4 is confirmed, while e5’s arrival is 
unknown by CSTl.  
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In summary, an event has following fields related 
to the dependence list mechanism: 

e <sender, receiver, send-time, receive-time, an- 
cestor, descendents, descendents-to-next, branch-ID, 
output-event-list, output-to-next, hasRun, vec- 
tor-table> 

3.3 Direct Cancellation 
The main objective of the dependence list is to pro- 
vide early detection and cancellation of erroneous 
events, while leaving “good” events intact. In the 
dependence list, the phase of rollback and the phase 
of cancellation are separated. The cancellation is de- 
layed until erroneous events are actually identified. 
Thus it is “lazy”, as in traditional lazy cancellation. 

When a straggler arrives, the LVT of the cor- 
responding LP is rolled back to  the timestamp of 
the straggler. Events in the input queue whose 
timestamps are larger than that of the straggler, are 
rescheduled to the event heap for reprocessing. The 
LP state is recovered by the state stack (Coasting 
forward may be necessary if the checkpoint interval 
is larger than 1). After the rollback, the simulation 
is resumed immediately. When an unprocessed event 
is to be simulated, normal processing is performed. 
New internal children are scheduled to the proces- 
sor heap and are linked to their parents by the de- 
pendence list; new external children are sent to  their 
destination. A copy of these children is saved in the 
output event list. 

When an already-processed event is to be simu- 
lated, the event is reprocessed. A copy of the new 
children is generated. This new copy is compared 
against the copy of the previously generated children. 
If they are identical, no cancellation is required. The 
simulation continues to the next event. 

If, however, there is a difference between the new 
and old copy, this means the previous event is erro- 
neous. The children of the previous event should be 
removed and be replaced by the new ones. Cancel- 
lation of the old children is then initiated; both the 
children and their descendents need to  be cancelled. 
The cancellation starts from the previous event, trav- 
eling along the dependence list to all of their descen- 
dents. At the same time, all of the copies of exter- 
nal events are changed into anti-messages and sent to 
other clusters to cancel their original positive coun- 
terparts. After the rollback, the simulation resumes 
immediately. 

When an anti-message arrives at an L P ,  the posi- 
tive counterpart is cancelled. The LP is rolled back if 
the simulation has passed the timestamp of the can- 
celled event. 

3.4 The Advantage of Dependence 
List Cancellation 

Traditional aggressive cancellation is fast, as it is ini- 
tiated as soon as a rollback occurs, but it is expen- 
sive. A tremendous overhead is incurred as a result 
of this correction; a large number of anti-messages 
are sent due to the indiscriminate nature of aggres- 
sive cancellation. This burdens the communication 
channels; further rollback and cancellations may also 
result (cascading rollbacks). 

As to lazy cancellation, since erroneous events are 
not cancelled quickly, the number of erroneous events 
can become large, resulting in a large cost for a single 
causality violation. 

Compared to both aggressive and lazy cancella- 
tion, dependence list cancellation is very fast and is 
not costly. It is also selective. For each discovery of 
an erroneous computation, the cancellation will comb 
through the simulation system, removing only erro- 
neous events, while leaving ’,good” ones intact. 

Dependence list cancellation can act to  prevent 
rollback explosions. If the computational granular- 
ity of the events in a simulation is small, we often see 
the phenomenon of rollback explosions, in which the 
number of anti-messages grows exponentially, block- 
ing the communication channels, and bringing the 
simulation to a standstill. This happens because the 
chance of these erroneous external events being pro- 
cessed before receiving their anti-messages is high. 

However, a rollback explosion will not happen us- 
ing dependence list cancellation, because the cancel- 
lation of erroneous external arrival events is done via 
the dependence list, not via anti-messages. Anti- 
messages are used to  spread the cancellation wave 
only. Consequently, the maximum cost of each roll- 
back and cancellation is bounded. 

3.5 Event Filtering Function 

Normally it is not easy to determine if an event will 
cause an erroneous computation before processing it. 
If this is possible, however, there is a tremendous 
benefit to the simulation system as it will avoid the 
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processing of these events. We call the ability to pre- 
dict the future behavior of an event the event filtering 
function. 

To provide t,his filtering, cancelled events are not 
removed immediately, but remain in the system until 
fossil collection removes them (details later). When 
an event forms a cycle by conling back to a cluster, 
the processor in the cluster looks a t  the stat,us of 
its ancestor. If the ancestor is a normally processed 
event, a dependence link is formed between the an- 
cestor and descendent. If, however, the ancestor is 
a cancelled event, the processor then concludes that 
this future descendent is erroneous. Hence the pro- 
cessor cancels t,hat descendent, preventing t,he prop- 
agation of potent,ially erroneous computation. The 
processor acquired an “immunity” over the passing 
of a cancellation wave such that it will reject the fu- 
ture coming of an erroneous computation wave which 
a cancellation wave has been trying to catch. 

The cancelled events serve as “anti-bodies” , provid- 
ing “immunity” for the processors. By this we mean 
that all descendents of erroneously computed events 
use themselves cancelled. As long as the cancelled 
events are allowed t,o remain in the system, the pro- 
cessor will be able to identify all of their descendents 
by looking at t,he att,ached vector tables. 

This cancellation and filtering ability eliminates 
the “dog  chasing its tail?‘ problem [Fuji 891 which ag- 
gressive cancellation has found hard to tackle. The 
“dog chasing its tail” problem can be briefly ex- 
plained as an erroneous comput,ation wave circling 
around among a few processors at a rapid rate. A 
cancellatmion wave is in some distance behind it, try- 
ing t,o outrun it. If the cancellation wave does not 
spread faster than the computation wave, the con- 
putation wave may not be caught. With t.he depen- 
dence list, however, the computation wave st,ops in 
the first round because the cancellation wave has “im- 
munized” the processors such that when an erroneous 
computation wave reaches one of these processors, it 
is stopped there and prevented from traveling any 
further. 

As mentioned before, the fossil collection of can- 
celled event,s ( “anti-bodies” ) is delayed. Otherwise, 
the event filtering function could “leak”, meaning 
that erroneous future events escape from cancella- 
tion by the filtering function. To avoid leaks, the 
cancelled events are left in the system. These events 
can be kept either in the input queue, or in a sepa- 
rate queue dedicated for this purpose. During fossil 

collections, only those older than GVT are discarded. 
In addition, during fossil collection, the collection 

of cancelled events should wait until all of the anti- 
messages resulting from their cancellation have ar- 
rived at their destinations. Otherwise, a leak may 
still be possible. 

3.6 Minimizing the Sending of Anti- 
messages 

We wish to minimize the sending of anti-messages, 
as doing so can have a significant impact on the per- 
formance of the simulation. Our current approach is 
for a cluster to refrain from sending an anti-messages 
back to the cluster which sent it. We rely on direct 
cancellation to eliminate the descendents of an incor- 
rectly processed event. This situation is illustrated 
in Figure 6. 

In the event that the ancestor information in the 
attached vector table is older than the GVT value 
the information may not be valid, and neither depen- 
dence list cancellation nor the filtering function will 
cause the event to be cancelled. An anti-message has 
to be sent in this case, even if the destination pro- 
cessor has been visited by a cancellation wave. With 
this precaution, correctness of the algorithm is guar- 
anteed. 

In our implementation, we also utilize vector tables 
in anti-messages. In each element of vector table. 
there is only one field, a flag, which is used to indicate 
whether or not the cluster has been visited by the 
cancellation wave. 

3.7 The Weakness of Dependence List 
Cancellation 

In this paper, our concentration has been on the 
speed of the siniulation. Less focus has been placed 
on another important aspect of simulation: memory 
usage. Because of the memory requirements to estab- 
lish the dependence list, more memory is used than 
in other method (see the experimental results in the 
subsequent section). This is the shortconiing of the 
dependence list. The following are the areas where 
extra memory is used: 

The pointers that make up the dependence list. 
This extra memory is indispensable for the depen- 
dence list. It has a cost of O(n),  where n is the num- 
ber of events in the simulation. 
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The attached vector table. Our current implemen- 
tation has assigned a vector table to  each event for 
convenience. But the number of vector tables can be 
reduced. There is no use for attached vector tables 
for internal events other than passing the contents of 
these tables to  external events. In this case, keeping 
vector tables in internal events is no longer necessary. 
If we assign vector tables only to external events, the 
cost will be O(n,) rather than O ( n ) .  where ne is the 
number of external events in the simulation. 

The cancelled events kept in the system for the 
purpose of event filtering. As we have suggested ear- 
lier, some kind of data structure may be used to re- 
place the actual events, which could save considerable 
memory. 

4 Experiments 

4.1 The Environment 

Our experimental platform consists of five dual pro- 
cessor Pentiuni 111 processors connected by a high 
speed network. Each of the processors has 256 
Megabytes of internal memory. The workload of 
the two processors inside each machine is automat- 
ically distributed by the operating system. Our net- 
work is a Myrinet (< http : //www.myri.com >), 
a fast network having a link capacity of one Gi- 
gabyte per second. We employ PVM (< h t t p  : 
//www.epm.ornl.gov/pvm/pvmhome.html >) as 
the software communication platform. A PVM sys- 
tem consists of a pvmd, a daemon process which han- 
dles message transmission, and a set of interface rou- 
tines. PVM provides a reliable mechanism for send- 
ing and receiving messages. 

We have implemented two dependence list meth- 
ods: DEP, a method that has dependence list can- 
cellation and event filtering functions and MIN, a 
method that, in addition to the functions contained 
in MIN also minimizes the sending of anti-messages. 
We compare these methods to  Time Warp. 

Our test environment is VLSI circuitry. The cir- 
cuits we make use of are from the ISCAS'89 Bench- 
marks. They are relative small; the largest of our 
circuits is ~38584,  which only has 20995 gates. Its 
simulation time is about 2 seconds in one machine, 
which is too short t o  demonstrate the performance of 
our algorithms. Therefore we created our own circuit 
~10000,  which consists of four ~38584 and nine s386 
circuits, having the total of 85681 gates. 
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Figure 4: Rollback Ratio 'us. Number of Machines 
(circuit ~10000,  number of vectors = 50) 

In our experiments we compare the rollback behav- 
ior, throughput, simulation time and memory utiliza- 
tion of the above three methods. We present results 
for an input vector of length 50. Each data point 
represents the average of simulation runs. 

4.2 Rollback Ratio 

We define the rollback ratio as the ratio of the number 
of events rolled back to the total number of events 
processed. 

Figure 7 shows the rollback ratio vs. the number 
of machines. As we can see, both of the proposed 
algorithms have a far smaller rollback ratio than Time 
Warp. 

In Figure 7, there is a general trend of increasing 
rollback ratios with an increase in the number of ma- 
chines for all methods. This phenomenon is expected 
since the chance of causality errors being introduced 
in the simulation is higher as the number of machines 
running asynchronously increases. However, the in- 
crease in the rollback ratio is sharper for Time Warp. 
When the number of machines is 3, the rollback ratio 
value reaches 29.7% for Time Warp, while the roll- 
back ratio values are 12.1% and 10.8% for DEP and 
MIN respectively, which is about 60% fewer rollbacks 
than Time Warp. The rollback ratio value for Time 
Warp is not recorded when the number of machines 
is 4 as a rollback explosion occurs and the simula- 
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tion cannot be sustained. In a rollback explosion, the 
number of anti-messages grows faster than the ma- 
chines’ ability to process them. Anti-messages are 
accumulated in the buffer of the pvmd process, and 
eventually uses up all of the available memory, caus- 
ing the simulation to die. In our experiments, DEP 
and MIN do not experience such a rollback explosion, 
just as our theoretical analysis has predicted. 

We credit these low rollback ratios for DEP and 
MIN to the dependence list, which provides early can- 
cellation of erroneous events and which prevents the 
propagation of “bad” events once the cancellation has 
started. 

4.3 Throughput and G.oodput 

We define throughput as the total number of events 
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processed per second and goodput as the number of 
non-rolled back (or committed) events processed per 
second. 

Figure 5:  Throughput vs. Number of Machines (cir- 
cuit ~10000,  number of vectors = 50) 

Figures 8 and 9 show the throughput and goodput 
respectively vs. the number of machines. We can 
see that both the throughput and goodput increase 
for DEP and MIN with an increase in the number of 
machines. The throughput values from 12, TOO and 
13,100 events per second for DEP and MIN in 1 ma- 
chine rise to 20,200 and 20,300 events per second in 4 
machines respectively. Similarly, the goodput values 
increase from 12,700 and 13,100 events per second 
in 1 machine to 18,900 and 19,000 events per second 
in 4 machines. These increases result from the ben- 
efit of workload being shared among machines. The 
,slight drop of throughput and goodput in 3 machines 
is due to the rollback ratio increase (see Figure 5.1). 
The benefit of sharing workload is cancelled by the 
cost of rollback. 

Also from Figure 8 and Figure 9, we can see that 
both throughput and goodput values for Time Warp 
are higher than those for DEP and MIN in 1 ma- 
chine. This is because dependence list methods have 
the overhead of establishing the dependence list, and 
take a longer time to process an event than Time 
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Warp Time Warp’s throughput and goodput Figure 6: Goodput Number of Machines (circuit 
drop significantly for 2 machines, the result of a large slOOOo, number of vectors = 
increase in the number of rollbacks. 

The throughput and goodput for Time Warp can- 
not be obtained in 4 machines as a rollback explosion 
prevents the simulation from terminating normally. 
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Figure 7: Simulation Time vs. Number of Machines 
(circuit ~10000, number of vectors = 50) 

4.4 simulation Time 

Figure 10 shows the simulation time vs. the number 
of machines. Both /bf DEP and /MIN experience a 
sharp decrease in the simulation time when two pro- 
cessors are employed, and an increase in simulation 
time going from 3 to 4 processors. We attribute the 
decrease in simulation time to the sharing of workload 
and the increase from 2 to 3 processors the result of 
an increase in the rollback ratio. Utilizing 4 proces- 
sors, there is a 30% savings in the simulation time 
compared to  1 processor. 

For the Tinie Warp method, the simulation time 
cannot be improved for both input vector values. 
This is because the goodput deteriorates with an in- 
crease in the number of machines, which, in turn, is 
the result of high rollback ratios. 

From the above figures, we can clearly see that 
rollback ratio plays a significant role in determining 
the performance of simulation. Minimizing the cost 
of rollback processing allows a simulation to bene- 
fit from sharing the workload, thus goodput (and/or 
throughput) increases and simulation time decreases. 
In our experiments, the dependence list methods, 
DEP and MIN, exhibit far fewer rollbacks than Time 
Warp. Hence they have a better performance in terms 
of goodput and simulation time. 
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Figure 8: Memory Usage vs. Number of hgachines 
(circuit ~10000,  number of vectors = 50) 

4.5 Memory Usage 

We define peak memory usage as the maximum of all 
of the machines’ maximal memory usage. Figure 11 
shows peak memory usage vs. the nuniber of ma- 
chines. As we can see, the proposed methods use 
more memory than Time Warp. In experiments with 
input vectors of length 15, we observed as high as 
80% more peak memory usage for DEP and MIN. 
As previously explained, the extra memory is used in 
three areas: the pointers which make up the depen- 
dence list, the attached vector table, and the storing 
of cancelled events. We also note that some high peak 
memory usage points correspond to  high rollback ra- 
tio values (see Figure 5.1), such as 2 and 3 machines 
for Time Warp. 

5 Conclusion 
The biggest facing Time Warp is that of containing 
the overhead of causality correction. For each occur- 
rence of a correction, the simulation system suffers a 
setback in terms of simulation progress. The cost of 
this correction is a!so unpredictable. It may explode 
in some situations. 

In this paper, we have proposed relating events to- 
gether as a way of attacking this problem, making 
use of a fundamental relationship of events, the event 
dependence relationship. We have attempted to sys- 
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tematically establish the concept of a dependence list, 
and have developed algorithms that makes use of the 
dependence list to efficiently correct causality errors. 
Our method is oriented towards a distributed meni- 
ory system, e.g. a network of workstations. 

Our experimental results establish the success of 
the dependence list in reducing the number of roll- 
backs to which Time Warp is prone. This leads to an 
improvement in the goodput and a decrease in the 
simulation time. However, the penalty for these im- 
provements is an increase in the amount of memory 
used by Time Warp. However, as we have seen from 
our experiments, the dependence list can also cause 
a simulation which could not terminate under Time 
Warp to run to conipletioii, rendering this disadvaii- 
tage moot. 

Our curielit work on the dependence list is very 
primitive. It has been mainly used to increase the 
efficiency of rollback and cancellation. However, us- 
ing the information in the dependence list may lead 
to iniproveinents in algorithm for GVT estimation, 
artificial rollback and checkpoint determination. 
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