
The Dependence List in Time Warp

Jing Lei Zhang and Carl Tropper
School of Computer Science
Mc Gill University, Montreal

February 28, 2001

Abstract
Time Warp is known for its ability to maximize the

exploitation of the parallelism inherent in a simula-
tion. However, this potential has been undermined
by the cost of processing causality violations. Mini-
mizing this cost has been one of the most challenging
issues facing Time Warp.

In this paper, we present dependence list cancella-
tion, a direct cancellation technique for Time Warp
which is intended for use in a distributed memory
environment such as a network of workstations. This
approach provides for the swift cancellation of erro-
neous events, thereby preventing the propagation of
their (erroneous) descendants. The dependence list
also provides an event filtering function which detects
erroneous future events, and also reduces the number
of anti-messages used in the simulation. Our experi-
mental work indicates that dependence list cancella-
tion results in a dramatic reduction in the time re-
quired to process causality violations in Time Warp.

1 Introduction
In the optimistic approach to distributed simulation
[Jeff 851 (a.k.a. Time Warp) processors are allowed to
proceed even though there is a possibility of a causal-
ity violation. In this way it is easy to fully exploit the
parallelism which is naturally present in a simulation
model. The implicit tradeoff is that when a viola-
tion does occur, the system must be able to recover
from this violation. There can be a large processing
overhead associated with this correction, which may
sometimes be unbounded. This has been a major ob-
stacle to the efficiency of the Time Warp, and also to
its stability. Therefore, reducing this associated cost
has been, and remains, a challenging issue for Time
Warp scheme.

We focus, in this paper, on reducing the process-
ing time required for this correction. In doing so, we
make use of the inherent dependence relationship be-
tween the events in a discrete event simulation. By
this we mean the parent-child relationship between
events; the child event is brought into the world as a
result of processing the parent event.

We present algorithms for the swift cancellation of
the children of erroneously processed events. These
algorithms are oriented towards a distributed envi-
ronment, e.g. a network of workstations. In the fol-
lowing, we describe the algorithms and the manner in
which they serve to efficiently cancel event,s (sections
2 and 3) as well as experimental work intended to
evaluate their efficiency (section 4). Our concluding
remarks are contained in section 5.

2 The Notion of the Depen-
dence List

The use of a distributed memory environment to host
a distributed simulation poses a significant barrier to-
wards the implementation of a cancellation system
based on event dependence information. In a dis-
tributed network, events are sent between processors
inside of messages. These communications are gen-
erally slow compared to the memory access time of
a processor. In order to maintain network-wide de-
pendence information for all of the events in a simu-
lation, a large number of control.niessages would be
needed, which could significantly burden communica-
tion channels. In addition, the cancellation of events
in other processors poses a problem because the t h e
a control message takes to arrive at a processor is
limited by the latency of the communication chan-
nels. Furthermore, since an optimistic distributed
simulation system runs asynchronously, it is almost

35
0-7695-1104-X/01$10.00 0 2001 IEEE

impossible to have knowledge of an events’ complete
dependence information at any given time.

In order to avoid those difficulties, our dependence
list only contains the dependence relationship be-
tween events within a single processor. The list in-
cludes those events which were sent from other pro-
cessors but which are descendents of events originat-
ing in the given processor. The dependence list is
maintained in the form of a linked list.

Certain applications such as VLSI simulation are
convenient to simulate by making use of logical clus-
ters of LPs. [Avril95] contains a description of Clus-
tered Time Warp and its application to VLSI simula-
tion. A dependence list may be established either at
the processor level or a t the cluster level. If it is at
the processor level, events can be linked or cancelled
directly via dependence lists across different clusters,
as long as their place of origin and their destination
are within the same processor. If, on the other hand,
the dependence list is at cluster level, events may
be linked or cancelled directly within a cluster. In-
ternal events are scheduled within a cluster, while
external events are sent to different clusters. Our al-
gorithmic descriptions are for clusters; to facilitate
these descriptions, we assume one cluster per proces-
sor. Bemuse one or nioye children may be produced
by processing a parent, the dependence lists are tree
structures.

There is, however, a limitation to the use of a de-
pendence list - siniulation of events within a single
processor environment must be sequential in nature.

Figure 1 illustrates a dependence list.

0 e2, e3, and e4 are children of e l . e2 and e3 are
internal events. They are directly linked to el in
the dependence list. Like wise, e8 is an internal
child of e3; e6 is an internal child of e4. So e8 is
directly linked to e3, and e6 is directly linked to
e4 to form their dependence links.

0 e4 is an external child of e l . There is no link
connecting between el and e4 , as dependence
links do not extend across clusters. When the
descendents of the external child come back to
the same cluster, dependence links are formed by
linking these external descendents and their orig-
inal ancestors within the same cluster. In this
example, both e5 and e7 are connected to el in
the dependence list.

From the above example, it can be seen that inter-
nal children are directly linked to their parents, while

LPI LP2

CSTl

LPI LP2

CST2

Figure 1: The Dependence List

external descendents are directly linked to their an-
cestors. If we define the length of a dependence list
between ancestor and descendent as being the num-
ber of generations separating them, then it can be
easily concluded that a direct link to an internal child
has a length of 1; and a direct link to an external de-
scendent has a length of a t least 2. In this example,
the link between el and e7 has length of 3, and the
link between el and e5 has length of 2. All other links
are length 1.

2.1 The Construction of the Depen-
dence List

Before describing the algorithm which establishes the
dependence list, we first present some iniplementa-
tion details.

Since the number of descendents connected to a
parent varies, we implement our dependence list con-
nections from a parent to its descendents as being
a pointer from the parent pointing to the head of a
linked list of the descendents. So in our implementa-
tion a dependence list is associated with each event.
There are three types of pointers:

ancestor: A pointer to an ancestor;

descendents: A pointer to the list of its descen-
dents;

descendents-to-next: A pointer that links the de-
scendents to form a linked list;

36

Besides those dependence list pointers, a
branch-ID, an integer, is also added to each
event. It is used to relate a branch of the dependence
list connecting the parent to the child. (The details
of how a branchlD value is assigned to a branch of
dependence list will be described in the next section.
With this branchlD, individual branches of the
dependence list are identified. The cancellation of
events can therefore be targeted only to branches
containing erroneous events.)

In order to establish a link between an external
descendent and its ancestor, we attach another data
st,ructure, a vector table, to each event. When an
external descendent arrives from another cluster, the
processor which contains the cluster will be able to
discover the events' original ancestor by looking at
the vector table of t,he incoming event.

The vector table contains A d elements, where n/r
is the number of processors or clusters in the system.
Because the number of processors in an actual system
is limited and usually is not, very big, the size of this
attached vector table is hounded.

Each element in a vector table contains: the c ~ u s -
ter ID? which is used to indicate the cluster the ele-
ment belongs to; the nieiiiory location of the ancestor
that the event originated from; the dependence list
branch-ID! which is used to provide branchlD infor-
mation when the links of an external descendent are
established, and other informatioii. To minimize the
size of a vector table, the position of an element in the
vector table can be used to implicitly indicate the ID
value of the cluster that, element belongs to. provided
that these ID values are consecutive and they begin
with 0 or 1. The cluster ID in the vector table can
be eliminated in this case. In our implementation,
we employ this implicit cluster ID technique. Hence,
each element of the vector table contains the follow-
ing fields: the ineniory location of the ancestor, t,lie
branchlD, and the timestamp of the ancestor, which
is used to niiiiiniize the sending of anti-messages. (de-
scribed later)

The algorithm for establishing the dependence list
is as follows:

In the beginning of the simulation, the memory
locations of ancestors in all vector tables of initial
events are reset to 0'.
When an internal child is generated, before it is
scheduled to the event heap a link is created be-
tween the parent and the child. The ancestor

pointer from the child points to the parent, the
child is put at the head of descendents list for the
parent, and is pointed to by the parent's descen-
dents pointer. At the same time, the content of
the parent's vector table is copied to the child's
vector table. In other words, this information is
directly passed onto the child.

When an external child is generated, before it is
sent to another cluster, its vector table has to be
updated. First, the content of the parent's vec-
tor table is copied to the child's. Then, in the
element that represents the current cluster in the
vector table, the memory location is updated to
be the location of the parent; the branch ID vari-
able is also updated to the value appropriate for
the child (see the next section); the timestamp
variable is set to the timestamp of the parent.

When an external descendent arrives at a cluster,
the processor containing the cluster looks at the
element in the descendent's vector table which
belongs to the current cluster. Based 011 the el-
ement's memory location information, a link is
established between the descendent and its an-
cestor in this cluster. In our implementation,
the ancestor pointer froin the descendent is set
to the ancestor and the descendent is placed at
the head of descendents list for the ancestor. It
is pointed to by ancestor's descendents pointer.

The following example illust,rated in Figure 2 de-
picts how the dependence list is constructed:

Assume there are only two clusters in the system,
CSTI and CSTl. The attached vector contains only
two elements. The simulation begins with el:

0 The vector of el is < 6,o' >. (Only the memory
location of the ancestor is indicated.)

0 e2 and e7 are internal children. They are directly
linked to e l . Their vectors are same as el's: <
o',o'>.

0 e3 is an external child of e2. When it leaves
CSTI, its vector is updated to < e;, 6 >.

0 e4 is an external child of e3. When it leaves
CST2, its vector has become < e:,e< >. When
e4 arrives at CSTI, the processor finds its orig-
inal ancestor by looking at the first element

37

LPI LP2

CSTl

LPI LP2

CSTZ

Figure 2: The Construction of Dependence List

(which corresponds to CSTl) in its vector ta-
ble, the location for e2. Hence e4 is connected to
e2.

e6 is an internal child of e4. e6 and e4 are directly
linked. eg’s vector is same as e4’s: < e:, e; >.

0 e5 is an external child of e4. When it leaves
CSTl, its vector has updated to < e<,e< >.
When e5 arrives at CSTz, in the same way as
for e4, the processor in CST2 looks at the sec-
ond element in e5’s vector table, the location for
e3 , and e3 and e5 are connected together.

As illustrated by this example, a vector table of size
M (see definition earlier in this section) is sufficient
to create the dependence list.

A dependence list may be traversed towards its bot-
t o m (or root) via the ancestor pointers, and may be
traversed towards the t o p (or leaf) via the descen-
dent’s pointers. The bottom of a list is an event
whose ancestor pointer is NULL. The top of a list
is an event whose descendents list is also NULL.

When the timestamp of an ancestor is older than
the GVT, the corresponding element in an event’s
attached table should be reset to 6, because the an-
cestor’s information may no longer be valid. Any an-
cestor older than GVT is subject to fossil collection.

The dependence list is based on the intuition that
if an event was created erroneously, all of its descen-
dents are erroneous too, and all of them are to be

removed from the system. As we shall see, the tech-
nique is quite fast conipared to the traditional use of
anti-messages.

3 The Application of the De-
pendence List

3.1 Related Work
Previous work has employed ”direct cancellation”
techniques.

[Das 941 [Fuji 891 employ direct cancellation tech-
niques in Georgaa Tech Tame Warp (G T W) in a
shared memory multaprocessor envaronment. Pointers
are used to link the children and the parents prior to
scheduling the children. thereby eliminating the need
for anti-messages. This approach relies on the use
of a shared memory environment in which a proces-
sor may directly access another processor’s memory.
In a clistributecl network environment, however, anti-
messages are indispensable as a means of coniniuni-
cation between LPs in different processors.

[Deel 971 utilizes pointer links in a niultiproces-
sor environment for the simulation of the spread of
Lyme disease. Unlike our dependence list, the au-
thors maintain dependence information on objects
created only within a processor; i.e. no link is formed
for an external event coining fioni outside the proces-
sor. Their cancellation is not much faster than the
traditional approaches.

3.2 The Simulation System Using the
Dependence List

To utilize the dependence list, the basic simulation
system is modified. The output event queue for the
cluster level or LP level is no longer used. (See [Avril
951 for a description of the output event queue at the
cluster level). Instead, each parent carries a copy of
its children in its output event list. Placing the out-
put event list in an individual parent facilitates the
removal of erroneously created children, as they are
connected to their cancelled parent. Other uses are
for the sending of anti-messages to other processors
and to support lazy cancellation.

In our implementation, we add two pointers to each
event, which constitutes the output event list:

output-event list A pointer from a parent, point-
ing to the head of a linked list made up of its

38

children;

output-to-next Pointers between children, so that
the linked list is formed.

In addition, we also add another integer, hasRun,
to each event which is used to indicate whether or
not the event has been previously processed. In de-
pendence list cancellation the rolled back events are
reprocessed in order to determine if they have gen-
erated erroneous events. We describe how this is ac-
complished later.

In the dependence list, the output event list of a
parent is used to identify a particular branch of a de-
pendence list. Initially, there is no particular order
necessary in which to place copies of the children in
the output event list. Once the list has been gener-
ated, the order of each member in the list becomes
important: tlie position of a child in the list becomes
the branchlD value of the dependence list.

The algorithm for producing the output event list
and assigning the branchlD values is as follows:

0 When an event is processed, a counter containing
the number of children in the output event list
is set up and is created and initialized to 0.

0 Whenever an internal child is generated, the
counter is increased by 1.The child is linked to
the parent via the dependence list: the branchlD
of the child is set to the value of the counter; then
the child is scheduled to the event heap. In ad-
dition, a copy of the child is placed at the head
of the parent’s output event list.

Whenever an external child is generated, the
counter is increased by 1. The child’s vector ta-
ble is updated. The branchlD variable of the
element is set to the value of the counter and
other fields are also renewed. Then, a copy of
the child is placed at the head of the parent’s
output event list.

e When an external descendent arrives at its des-
tination, it is linked to its ancestor via the de-
pendence list. The branchlD of this descendent
is set to the value of the branchlD variable in
the element representing the destination cluster
from the descendent’s vector table.

Figure 3 shows an example of the relationship be-
tween the position of members in the output event list

LPI LP2

CSTl
LPI LP!
CST2

Figure 3: The Output Event List and the Branches
of Dependence List

and their corresponding branches of the dependence
list:

el has four children: e2, e3, e4, and e5. The copies
of these events in the output event list have the posi-
tions 1, 2 , 3 , and 4. Based on that, e2’s branch ID is
1, and e3’s branch ID is 2. e7 and eg are tlie descen-
dents of e4, which has the position of 3 , so tlie braiich
IDS of e7 and e9 are 3 . This branch ID information
is available since it is carried in the attached vector
table of e4.

We refer to the members in an output event list
as leads. When there is at least one branch of a de-
pendence list belonging to a lead, we say the lead is
connected. Otherwise the lead is open. In our exani-
ple, leads e 2 , e3, and e4 in el are connected, while
lead e5 is open. I t can be easily seen that the leads
of internal children are always connected. The leads
of external children may either be connected] or be
open. The significance of this is that when a lead is
connected] the cluster is able to know that the corre-
sponding external child has arrived at its destination,
and has been processed by the other cluster; on the
other hand, when the lead is open, no assumption can
be drawn about either the arrival of the child, or its
processing by the other cluster. A lead’s being open
or connected may serve as a kind of acknowledgement
for external children. In this example, the arrival and
the processing of e4 is confirmed, while e5’s arrival is
unknown by CSTl.

39

In summary, an event has following fields related
to the dependence list mechanism:

e <sender, receiver, send-time, receive-time, an-
cestor, descendents, descendents-to-next, branch-ID,
output-event-list, output-to-next, hasRun, vec-
tor-table>

3.3 Direct Cancellation
The main objective of the dependence list is to pro-
vide early detection and cancellation of erroneous
events, while leaving “good” events intact. In the
dependence list, the phase of rollback and the phase
of cancellation are separated. The cancellation is de-
layed until erroneous events are actually identified.
Thus it is “lazy”, as in traditional lazy cancellation.

When a straggler arrives, the LVT of the cor-
responding LP is rolled back to the timestamp of
the straggler. Events in the input queue whose
timestamps are larger than that of the straggler, are
rescheduled to the event heap for reprocessing. The
LP state is recovered by the state stack (Coasting
forward may be necessary if the checkpoint interval
is larger than 1). After the rollback, the simulation
is resumed immediately. When an unprocessed event
is to be simulated, normal processing is performed.
New internal children are scheduled to the proces-
sor heap and are linked to their parents by the de-
pendence list; new external children are sent to their
destination. A copy of these children is saved in the
output event list.

When an already-processed event is to be simu-
lated, the event is reprocessed. A copy of the new
children is generated. This new copy is compared
against the copy of the previously generated children.
If they are identical, no cancellation is required. The
simulation continues to the next event.

If, however, there is a difference between the new
and old copy, this means the previous event is erro-
neous. The children of the previous event should be
removed and be replaced by the new ones. Cancel-
lation of the old children is then initiated; both the
children and their descendents need to be cancelled.
The cancellation starts from the previous event, trav-
eling along the dependence list to all of their descen-
dents. At the same time, all of the copies of exter-
nal events are changed into anti-messages and sent to
other clusters to cancel their original positive coun-
terparts. After the rollback, the simulation resumes
immediately.

When an anti-message arrives at an L P , the posi-
tive counterpart is cancelled. The LP is rolled back if
the simulation has passed the timestamp of the can-
celled event.

3.4 The Advantage of Dependence
List Cancellation

Traditional aggressive cancellation is fast, as it is ini-
tiated as soon as a rollback occurs, but it is expen-
sive. A tremendous overhead is incurred as a result
of this correction; a large number of anti-messages
are sent due to the indiscriminate nature of aggres-
sive cancellation. This burdens the communication
channels; further rollback and cancellations may also
result (cascading rollbacks).

As to lazy cancellation, since erroneous events are
not cancelled quickly, the number of erroneous events
can become large, resulting in a large cost for a single
causality violation.

Compared to both aggressive and lazy cancella-
tion, dependence list cancellation is very fast and is
not costly. It is also selective. For each discovery of
an erroneous computation, the cancellation will comb
through the simulation system, removing only erro-
neous events, while leaving ’,good” ones intact.

Dependence list cancellation can act to prevent
rollback explosions. If the computational granular-
ity of the events in a simulation is small, we often see
the phenomenon of rollback explosions, in which the
number of anti-messages grows exponentially, block-
ing the communication channels, and bringing the
simulation to a standstill. This happens because the
chance of these erroneous external events being pro-
cessed before receiving their anti-messages is high.

However, a rollback explosion will not happen us-
ing dependence list cancellation, because the cancel-
lation of erroneous external arrival events is done via
the dependence list, not via anti-messages. Anti-
messages are used to spread the cancellation wave
only. Consequently, the maximum cost of each roll-
back and cancellation is bounded.

3.5 Event Filtering Function

Normally it is not easy to determine if an event will
cause an erroneous computation before processing it.
If this is possible, however, there is a tremendous
benefit to the simulation system as it will avoid the

40

processing of these events. We call the ability to pre-
dict the future behavior of an event the event filtering
function.

To provide t,his filtering, cancelled events are not
removed immediately, but remain in the system until
fossil collection removes them (details later). When
an event forms a cycle by conling back to a cluster,
the processor in the cluster looks a t the stat,us of
its ancestor. If the ancestor is a normally processed
event, a dependence link is formed between the an-
cestor and descendent. If, however, the ancestor is
a cancelled event, the processor then concludes that
this future descendent is erroneous. Hence the pro-
cessor cancels t,hat descendent, preventing t,he prop-
agation of potent,ially erroneous computation. The
processor acquired an “immunity” over the passing
of a cancellation wave such that it will reject the fu-
ture coming of an erroneous computation wave which
a cancellation wave has been trying to catch.

The cancelled events serve as “anti-bodies” , provid-
ing “immunity” for the processors. By this we mean
that all descendents of erroneously computed events
use themselves cancelled. As long as the cancelled
events are allowed t,o remain in the system, the pro-
cessor will be able to identify all of their descendents
by looking at t,he att,ached vector tables.

This cancellation and filtering ability eliminates
the “dog chasing its tail?‘ problem [Fuji 891 which ag-
gressive cancellation has found hard to tackle. The
“dog chasing its tail” problem can be briefly ex-
plained as an erroneous comput,ation wave circling
around among a few processors at a rapid rate. A
cancellatmion wave is in some distance behind it, try-
ing t,o outrun it. If the cancellation wave does not
spread faster than the computation wave, the con-
putation wave may not be caught. With t.he depen-
dence list, however, the computation wave st,ops in
the first round because the cancellation wave has “im-
munized” the processors such that when an erroneous
computation wave reaches one of these processors, it
is stopped there and prevented from traveling any
further.

As mentioned before, the fossil collection of can-
celled event,s (“anti-bodies”) is delayed. Otherwise,
the event filtering function could “leak”, meaning
that erroneous future events escape from cancella-
tion by the filtering function. To avoid leaks, the
cancelled events are left in the system. These events
can be kept either in the input queue, or in a sepa-
rate queue dedicated for this purpose. During fossil

collections, only those older than GVT are discarded.
In addition, during fossil collection, the collection

of cancelled events should wait until all of the anti-
messages resulting from their cancellation have ar-
rived at their destinations. Otherwise, a leak may
still be possible.

3.6 Minimizing the Sending of Anti-
messages

We wish to minimize the sending of anti-messages,
as doing so can have a significant impact on the per-
formance of the simulation. Our current approach is
for a cluster to refrain from sending an anti-messages
back to the cluster which sent it. We rely on direct
cancellation to eliminate the descendents of an incor-
rectly processed event. This situation is illustrated
in Figure 6.

In the event that the ancestor information in the
attached vector table is older than the GVT value
the information may not be valid, and neither depen-
dence list cancellation nor the filtering function will
cause the event to be cancelled. An anti-message has
to be sent in this case, even if the destination pro-
cessor has been visited by a cancellation wave. With
this precaution, correctness of the algorithm is guar-
anteed.

In our implementation, we also utilize vector tables
in anti-messages. In each element of vector table.
there is only one field, a flag, which is used to indicate
whether or not the cluster has been visited by the
cancellation wave.

3.7 The Weakness of Dependence List
Cancellation

In this paper, our concentration has been on the
speed of the siniulation. Less focus has been placed
on another important aspect of simulation: memory
usage. Because of the memory requirements to estab-
lish the dependence list, more memory is used than
in other method (see the experimental results in the
subsequent section). This is the shortconiing of the
dependence list. The following are the areas where
extra memory is used:

The pointers that make up the dependence list.
This extra memory is indispensable for the depen-
dence list. It has a cost of O(n), where n is the num-
ber of events in the simulation.

41

The attached vector table. Our current implemen-
tation has assigned a vector table to each event for
convenience. But the number of vector tables can be
reduced. There is no use for attached vector tables
for internal events other than passing the contents of
these tables to external events. In this case, keeping
vector tables in internal events is no longer necessary.
If we assign vector tables only to external events, the
cost will be O(n,) rather than O (n) . where ne is the
number of external events in the simulation.

The cancelled events kept in the system for the
purpose of event filtering. As we have suggested ear-
lier, some kind of data structure may be used to re-
place the actual events, which could save considerable
memory.

4 Experiments

4.1 The Environment

Our experimental platform consists of five dual pro-
cessor Pentiuni 111 processors connected by a high
speed network. Each of the processors has 256
Megabytes of internal memory. The workload of
the two processors inside each machine is automat-
ically distributed by the operating system. Our net-
work is a Myrinet (< http : //www.myri.com >),
a fast network having a link capacity of one Gi-
gabyte per second. We employ PVM (< h t t p :
//www.epm.ornl.gov/pvm/pvmhome.html >) as
the software communication platform. A PVM sys-
tem consists of a pvmd, a daemon process which han-
dles message transmission, and a set of interface rou-
tines. PVM provides a reliable mechanism for send-
ing and receiving messages.

We have implemented two dependence list meth-
ods: DEP, a method that has dependence list can-
cellation and event filtering functions and MIN, a
method that, in addition to the functions contained
in MIN also minimizes the sending of anti-messages.
We compare these methods to Time Warp.

Our test environment is VLSI circuitry. The cir-
cuits we make use of are from the ISCAS'89 Bench-
marks. They are relative small; the largest of our
circuits is ~38584, which only has 20995 gates. Its
simulation time is about 2 seconds in one machine,
which is too short t o demonstrate the performance of
our algorithms. Therefore we created our own circuit
~10000, which consists of four ~38584 and nine s386
circuits, having the total of 85681 gates.

h

5
2 20

i
d

0
*

P

10

0

t DEP
0 MIN
O W

i-
El-.... t

-a - - - - _ _ _ _

11,'

_.--
I I

1 2 3 4

Number of Machines

Figure 4: Rollback Ratio 'us. Number of Machines
(circuit ~10000, number of vectors = 50)

In our experiments we compare the rollback behav-
ior, throughput, simulation time and memory utiliza-
tion of the above three methods. We present results
for an input vector of length 50. Each data point
represents the average of simulation runs.

4.2 Rollback Ratio

We define the rollback ratio as the ratio of the number
of events rolled back to the total number of events
processed.

Figure 7 shows the rollback ratio vs. the number
of machines. As we can see, both of the proposed
algorithms have a far smaller rollback ratio than Time
Warp.

In Figure 7, there is a general trend of increasing
rollback ratios with an increase in the number of ma-
chines for all methods. This phenomenon is expected
since the chance of causality errors being introduced
in the simulation is higher as the number of machines
running asynchronously increases. However, the in-
crease in the rollback ratio is sharper for Time Warp.
When the number of machines is 3, the rollback ratio
value reaches 29.7% for Time Warp, while the roll-
back ratio values are 12.1% and 10.8% for DEP and
MIN respectively, which is about 60% fewer rollbacks
than Time Warp. The rollback ratio value for Time
Warp is not recorded when the number of machines
is 4 as a rollback explosion occurs and the simula-

42

http://www.myri.com

tion cannot be sustained. In a rollback explosion, the
number of anti-messages grows faster than the ma-
chines’ ability to process them. Anti-messages are
accumulated in the buffer of the pvmd process, and
eventually uses up all of the available memory, caus-
ing the simulation to die. In our experiments, DEP
and MIN do not experience such a rollback explosion,
just as our theoretical analysis has predicted.

We credit these low rollback ratios for DEP and
MIN to the dependence list, which provides early can-
cellation of erroneous events and which prevents the
propagation of “bad” events once the cancellation has
started.

4.3 Throughput and G.oodput

We define throughput as the total number of events

p m
Y

U

+ DFP

O W
0 MIN

I I I

1 2 3 4

Number of Machines

processed per second and goodput as the number of
non-rolled back (or committed) events processed per
second.

Figure 5: Throughput vs. Number of Machines (cir-
cuit ~10000, number of vectors = 50)

Figures 8 and 9 show the throughput and goodput
respectively vs. the number of machines. We can
see that both the throughput and goodput increase
for DEP and MIN with an increase in the number of
machines. The throughput values from 12, TOO and
13,100 events per second for DEP and MIN in 1 ma-
chine rise to 20,200 and 20,300 events per second in 4
machines respectively. Similarly, the goodput values
increase from 12,700 and 13,100 events per second
in 1 machine to 18,900 and 19,000 events per second
in 4 machines. These increases result from the ben-
efit of workload being shared among machines. The
,slight drop of throughput and goodput in 3 machines
is due to the rollback ratio increase (see Figure 5.1).
The benefit of sharing workload is cancelled by the
cost of rollback.

Also from Figure 8 and Figure 9, we can see that
both throughput and goodput values for Time Warp
are higher than those for DEP and MIN in 1 ma-
chine. This is because dependence list methods have
the overhead of establishing the dependence list, and
take a longer time to process an event than Time

+ DtP
0 MIN
O W

1 2 3 4

Number of Machines

Warp Time Warp’s throughput and goodput Figure 6: Goodput Number of Machines (circuit
drop significantly for 2 machines, the result of a large slOOOo, number of vectors =
increase in the number of rollbacks.

The throughput and goodput for Time Warp can-
not be obtained in 4 machines as a rollback explosion
prevents the simulation from terminating normally.

43

O W

0 1 I I I

1 2 3 4

Number of Machina

Figure 7: Simulation Time vs. Number of Machines
(circuit ~10000, number of vectors = 50)

4.4 simulation Time

Figure 10 shows the simulation time vs. the number
of machines. Both /bf DEP and /MIN experience a
sharp decrease in the simulation time when two pro-
cessors are employed, and an increase in simulation
time going from 3 to 4 processors. We attribute the
decrease in simulation time to the sharing of workload
and the increase from 2 to 3 processors the result of
an increase in the rollback ratio. Utilizing 4 proces-
sors, there is a 30% savings in the simulation time
compared to 1 processor.

For the Tinie Warp method, the simulation time
cannot be improved for both input vector values.
This is because the goodput deteriorates with an in-
crease in the number of machines, which, in turn, is
the result of high rollback ratios.

From the above figures, we can clearly see that
rollback ratio plays a significant role in determining
the performance of simulation. Minimizing the cost
of rollback processing allows a simulation to bene-
fit from sharing the workload, thus goodput (and/or
throughput) increases and simulation time decreases.
In our experiments, the dependence list methods,
DEP and MIN, exhibit far fewer rollbacks than Time
Warp. Hence they have a better performance in terms
of goodput and simulation time.

3o r

f D E p

O W
MIN

1 2 3 4

Number of Machines

Figure 8: Memory Usage vs. Number of hgachines
(circuit ~10000, number of vectors = 50)

4.5 Memory Usage

We define peak memory usage as the maximum of all
of the machines’ maximal memory usage. Figure 11
shows peak memory usage vs. the nuniber of ma-
chines. As we can see, the proposed methods use
more memory than Time Warp. In experiments with
input vectors of length 15, we observed as high as
80% more peak memory usage for DEP and MIN.
As previously explained, the extra memory is used in
three areas: the pointers which make up the depen-
dence list, the attached vector table, and the storing
of cancelled events. We also note that some high peak
memory usage points correspond to high rollback ra-
tio values (see Figure 5.1), such as 2 and 3 machines
for Time Warp.

5 Conclusion
The biggest facing Time Warp is that of containing
the overhead of causality correction. For each occur-
rence of a correction, the simulation system suffers a
setback in terms of simulation progress. The cost of
this correction is a!so unpredictable. It may explode
in some situations.

In this paper, we have proposed relating events to-
gether as a way of attacking this problem, making
use of a fundamental relationship of events, the event
dependence relationship. We have attempted to sys-

44

tematically establish the concept of a dependence list,
and have developed algorithms that makes use of the
dependence list to efficiently correct causality errors.
Our method is oriented towards a distributed meni-
ory system, e.g. a network of workstations.

Our experimental results establish the success of
the dependence list in reducing the number of roll-
backs to which Time Warp is prone. This leads to an
improvement in the goodput and a decrease in the
simulation time. However, the penalty for these im-
provements is an increase in the amount of memory
used by Time Warp. However, as we have seen from
our experiments, the dependence list can also cause
a simulation which could not terminate under Time
Warp to run to conipletioii, rendering this disadvaii-
tage moot.

Our curielit work on the dependence list is very
primitive. It has been mainly used to increase the
efficiency of rollback and cancellation. However, us-
ing the information in the dependence list may lead
to iniproveinents in algorithm for GVT estimation,
artificial rollback and checkpoint determination.

References
[Avril 951 H . Avril, C. Tropper, “Clustered Time Warp”. Pro-

ceedings of t h e Workshop on Parallel and Dis-
tr ibuted Simulatioii, pp. , I E E E Computer Society
Press, Lake Placid, New York, 1995

[Das 941 S. Das. R. Fujinioto, K . Panesar, D. Allison, and
h.1. Hybinette. “ C T W : A Time Warp System for
Shared Meniory Multiprocessors”. Proceedings of
the 1954 Winter Simulation Conference, 1994.

E. Deelman and B.K. Szyinanski. “Breadth-First Roll-
back iii Spatially Explicit Simulations”. Proceed-
ings of the 11”’ Workshop 011 Parallel and Dis-
tr ibuted Simulatioii, pp . 124-131, I E E E Coniputer
Society Press, 1994.

R. Fujimoto. “Time Warp 011 a Shared blemory blul-
tiprocessor”. Transactions of t h e Society for Coin-
puter Simulation. Vol. 6, No. 3, pp. 211-239, Ju ly
1989.

D.A. Jefferson. “Virtual Tinie”. ACM Transactioiis 011

Programming Languages and systems, Vol. 5 , No.
3 , pp. 404-425, July 198.5.

F. Wieland, L. Hawley, A. Feinherg, M. Di Loreto. L.
Bluine, P . Reilier, B. Beckniaii, P. Hontalas; S . Bel-
lenot, D. Jefferson, “Distrihuted Combat Simula-
tion and Time Warp: T h e Model and its Perfor-
iiiaiice”. Proceedings of the 3 ’ ” Workshop on Par -
allel and Distributed Simulation, pp. 14-20, I E E E
Computer Society Press, 1989.

[Deel 971

[Fuji 891

[Jeff 85a]

[Wiel 891

45

