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Abstract—Parallel discrete event simulation has been estab-
lished as a technique which has great potential to speed up the
execution of gate level circuit simulation. A fundamental problem
posed by a parallel environment is the decision of whether it
is best to simulate a particular circuit sequentially or on a
parallel platform.Furthermore, in the event that a circuit should
be simulated on a parallel platform, it is necessary to decide how
many computing nodes should be used on the given platform. In
this paper we propose a machine learning algorithm as an aid
in making these decisions. The algorithm is based on the well-
known K-Nearest Neighbor algorithm. After an extensive training
regime, it was shown to make a correct prediction 99% of the
time on whether to use a parallel or sequential simulator. The
predicted number of nodes to use on a parallel platform was
shown to produce an execution time which within 11% of the
smallest execution time. The configuration which resulted in the
minimal execution time was picked 61% of the time.

1 INTRODUCTION

The problems of deciding whether a given discrete event
simulation will benefit from a parallel execution and of de-
ciding how many nodes of a given parallel platform to use
in its execution is a problem of basic importance in parallel
simulation. It also has been paid scant (if any) attention to by
the parallel simulation community. In this paper, we present
an algorithm which may be used for both of these problems
in the domain of parallel gate level circuit simulation.
It has been established that parallel discrete event simula-

tion has the ability to speed up the execution of gate level
simulations [12] [13] [14] [4]. Due to different characteristics
of circuits, some circuits can benefit from parallel simulation,
while other circuits are best simulated sequentially. If parallel
simulation is appropriate for a circuit, it is important to
know how many nodes of the parallel platform on which
they are to be simulated should be used. It is common for
organizations devoted to computer aided design (CAD) of
VLSI circuitry to make use of a cluster of computers on which
to execute simulations. In this environment, simulation tasks
are submitted to a central scheduler and are queued by the
scheduler prior to their execution.
The algorithm presented in this paper makes use of machine

learning, and is illustrated in ( see Fig 1). A machine learn-
ing(ML) engine is built to use the characteristics of circuits
as input and to generate the decision on which software to

use(parallel or sequential simulator) and what hardware to
use(how many nodes should be used).
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Fig. 1. Generating Parallel Distributed Simulation Scheduling Options

While we confine ourselves to optimistic simulation in this
paper, the methodology which we describe can be used for any
flavor of parallel simulation. We make use of XTW [12] as our
parallel simulator. Our choice of hardware is between a single
Sun server and a cluster of workstations. The remainder of
this paper is organized as follows. Section 2 describes the K-
Nearest Neighbor algorithm and its use in pattern classification
problems. Section 3 describes our adaptation of this algorithm
to gate level simulation Section 4 describes the experiments
which we conducted. Finally, our conclusion is presented in
the final section 5.

2 THE K-NEAREST NEIGHBOR ALGORITHM
The K-NN algorithm is an instance based machine learning

algorithm. It is used to classify objects according to various
features which the objects possess and makes use of training
samples to do do the actual classification. The objects are
are represented in a so-called feature space as N dimensional
vectors whose entries consist of numerical values for the
features chosen to characterize the objects (hence the name
feature space). The dimension of the feature space is equal
to the number of features which are selected to represent an
object. The K-NN algorithm classifies objects as belonging
to a particular category by simply determining the majority
category among an objects’ K nearest neighbors. The metric
for determining the distance between objects is often the
Euclidean distance from the between the objects, although the
manhattan distance is also a popular metric. In the event that
K=1, an object is assigned to the class of its nearest neighbor,
and the algorithm is referred to as the nearest neighbor
algorithm. Fig 2 contains an illustration of the algorithm. The
query point is in the center of the two circles. If, for example,



K=3 then the query object is classified by the 3 objects in the
inner circle, while if K=5, it is classified by the objects in the
first two circles.

Fig. 2. Classify a Query Point using K-Nearest Neighbor

In order to classify and object it is necessary to start with a
collection of objects which are already classified. Creating this
set of objects is the training phase of the algorithm. It consists
of computing and storing the feature vectors of the collection
of objects which are chosen for training the algorithm as well
as the classes to which these vectors belong. This phase of
the algorithm is then followed by the classification phase, in
which objects are classified as belonging to the majority class
corresponding to a given distance.
An obvious drawback of the algorithm is the greedy nature

of the majority function used to classify objects. It is necessary
to provide a good training set to avoid classifying too many
objects in the same category. Another approach is to take the
distances of the training samples into account when classifying
objects. The quality of the algorithm is also dependent on
the choice and the number of features selected as well as
the method employed to scale the features. For example,
evolutionary algorithms are often employed for scaling the
features along with the use of mutual information, a technique
which is used to determine the correlation of the features.

3 THE K-NN ALGORITHM FOR PDES SCHEDULING
In this section we apply the K-NN algorithm to gate level

circuit simulation. Circuits are typically designed using a high
level language such as Verilog or VHDL. After creating a
register transfer level design, the circuit is synthesized to
produce a gate level netlist. Our algorithm makes use of this
netlist. The objective of the algorithm is to determine whether
a given circuit should be simulated serially or in parallel and
to determine the number of nodes of the parallel platform
to employ if it is to be simulated in parallel. We begin by
describing the attributes of a circuit which we have chosen to
employ as the features in our feature vector.

3.1 Circuit Attributes

It is certainly possible to chose many attributes in order
to define a feature vector. A partial list might include the
number of combinational gates, the number of registers, the
shortest path through circuit, , number of modules, the average
depth of hierarchy tree for a module, i.e. how many modules
are included in a bigger module, and the amount of analog
circuitry. The list can be extended to an arbitrary length.
However, it is well known that the accuracy of the K-NN
algorithm can be severely compromised by the presence of
irrelevant (or for that matter, noisy) data. It can also be severely
compromised if the features do not scale appropriately. Finally,
the computational load of the algorithm is greatly increased
by each new feature. With these limitations in mind we chose
the following attributes to describe our feature vector:

• The number of gates in a circuit. This attribute reflects
the size of a circuit

• The number of module instances in a circuit. Circuits are
normally designed in a top-down, hierarchical manner.
Each functional block of the circuit (e.g. ALU, RAM)
is described by a module in a high level language such
as Verilog. The same module can be repeated a number
of times throughout the design. Each such repetition
is termed an instance. Hence the number of module
instances is a rough indication of how complex a circuit
is. It is clear that the interconnection of the modules
which describe a circuit would also be an indicator of
the complexity of a design, but it is difficult to find a
one dimensional representation for the complexity of the
interconnection.

• The number of strings. In this paper, we make use of
a string partitioning algorithm in order to partition the
circuit and assign the partitions to processors. The string
partitioning algorithm starts with primary input gates
and descends through the circuit tree in a depth-first
search(DFS) manner. When the DFS hits a primary output
or a gate which has already been reached, it stops making
its way through the circuit and starts a new search. The
gates collected in one DFS search are grouped in a
string. The number of strings is defined as the number
of times the DFS was conducted in partitioning the
circuit. This attribute is intended to indicate how much
parallelism we can exploit in a circuit for the parallel
simulation of the circuit. It should be noted that there
are many partitioning algorithms available [8] [9] [2] [1]
[3] The objective in partitioning a circuit is to try to
find a balance between the load imposed on a node, the
communication load imposed on the parallel simulation,
and the amount of inherent parallelism in the circuit
which can be exploited in the simulation. The upshot of
all of this is that if different partitioning algorithms are
used, then it may well be necessary to define this feature
differently. String partitioning is known for being able to
expose the parallelism in a circuit.



3.2 The Feature Vector
As previously mentioned, the first part of the K-NN algo-

rithm consists of training. This training consists of simulating
every circuit in our training set on each possible hardware
configuration. For each circuit in our training set, the hardware
option that generated the smallest simulation time was used to
label a training data point. A training data point was labeled
with following features:

• Circuit ID
• The number of gates
• The number of module instances
• The number of partition strings
• Software option. This attribute indicate if a parallel
simulator or a sequential simulator was used to generate
this data point.

• Hardware option. This attribute indicate which computer
or computer cluster was used to generate this data point.

• Number of nodes. This attribute indicate how many
computer nodes were used to generate this data point.
For a sequential run this value is 1.

When we wish to classify a query (i.e. non-training) circuit,
we calculate the Euclidean distance to all of the training
points. Note, however that the distance is calculated only using
the following features- the number of gates, the number of
partition strings and the number of module instances. K is set
to 1 in our experiments, so the nearest training point is then
selected in order to classify the query circuit. It is labeled
with the same software option, hardware option and number
of nodes as the nearest training point. This classification is
employed o simulate the circuit.

4 THE EXPERIMENTS
The hardware which we we made use of in the course of

our experiments was a Sun server and a cluster of 20 Linux
machines. The Sun server was the Ultra-80 with 4x450MHz
Sparcv9 processors with 2G of memory. Each Linux machine
in the cluster is equipped with 2.4G-Hz P4 CPU and 1G of
memory. The Linux cluster is connected by a 1Gbyte Ethernet
switch.
We made use of 60 benchmark circuits in our experiments.

Of these circuits, 22 came from the ISCAS89 benchmark
suite.The other 38 circuits were artificially generated using
a method proposed by Hutton et al [5]. The largest circuit has
360K gates. The smallest circuit has 180 gates. The number
of module instances in the circuits varies from 1 to 24. The
number of partition strings in the circuits varies from 48 to
70K. Fig 3 contains a portrayal of the characteristics of these
circuits.
An optimistic gate level circuit simulator,XTW [11], was

used for our parallel simulations. XTW is an outgrowth of
Clustered Time Warp [4]. Two of its distinguishing features
are that (1)it makes use of a multi-level queueing mechanism
and (2) it uses one anti message for message cancellation
as opposed to, for example, aggressive message cancellation.
It also has a low cost GVT algorithm. XTW combines the
following techniques into a framework for parallel simulation.
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Fig. 3. Benchmark Circuits Feature Value Distributions

• Time Warp – a distributed optimistic synchronization
algorithm [6]

• Bounded Time Window – a mechanism that stabilizes
Time Warp during run time [15]

• Two color GVT – a low cost Global Snapshot mechanism
[10]

• Rollback Relaxation – a way to reduce state saving cost
[16]

• Skip List Event Queue – fast event scheduling algorithm
• Event Look Ahead – a mechanism to reduce the number
of output events [7]

• Clustered Time Warp – a hybrid distributed simulation
system [4]

A sequential version of XTW, SXTW, plays the role of
our sequential simulator. SXTW was derived from XTW by
removing all of the algorithms in XTW which were related
to parallel simulation. These algorithms include state saving,
GVT computation, rollback handling, anti-message handling,
etc. The event scheduling and the event handling routines are
the same as in XTW.
The 60 benchmark circuits were simulated sequentially on

the Sun server by SXTW and by XTW on the Linux cluster
using from 2 to 20 nodes. A total of 1200 data points were
collected in the course of these experiments. The 60 data points
which corresponded to the shortest simulation time for each
circuit were used as our training set.

4.1 Parallel or sequential

In this experiment we used our algorithm to classify a
circuit as to whether it should be simulated by a parallel or a
sequential simulator. Ten circuits were randomly picked from
the circuit pool to be used as query circuits while the remaining
50 circuits were used as training examples. We measure the
success of our classification by simply dividing the number
of correctly predicted circuits, num − correct by the total
number of circuits, num− total and call this ratio the parallel
sequential accuracy, psa i.e. psa = num − correct/num −
total.



This set of experiments was conducted 100 times resulting
in an average psa of 92%.
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Fig. 4. Parallel or Sequential Predicting Results Distributions

Fig 4 shows the distribution of the parallel-sequential
prediction results. From Fig 4, we can see K-NN gives almost
100% correct prediction result for large circuits. The points
which were not predicted are crowded in a small gate-number,
small string-number corner. To see why large size circuits
give better prediction results, we checked the training data set.
Fig 5 shows the number of nodes that are labeled for training
examples. From Fig 5, we can see that the parallel version of
XTW has consistently better performance than sequential ones
for circuits have large number of gates and large number of
strings. Thus, the K-NN engine generates almost 100% correct
results in using parallel or sequential simulator for large size
circuits.
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Fig. 5. Distribution of Number of Nodes Generating Best Performance

4.2 Predicting the Number of Nodes
The same experimental set up was used as in the first set

of experiments. Ten circuits were randomly picked from the
circuits to be used as verification samples and the rest of
the circuits were used as training examples. The Euclidean
distance based on 3 attributes (the number of gates, the number
of partition strings and the number of module instances) was
used to select the nearest neighbor.

A query circuit is labeled with the number of nodes that
the nearest training example used. If the number of nodes
exactly matches the number of node that generates the shortest
simulation time of the verification circuit, the predicted result
is true. The parallel node number predict accuracy is denoted
by pna, the number of correctly predicted values is denoted
by cpv, the number of total query circuits is denoted by tqc.
pna is defined as: pna = cpv/tqc . After 100 experiment runs,
the average parallel node number predict accuracy was 53%.
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Fig. 6. Distribution of Predicting Number of Nodes

Fig 6 shows the distribution on the results for predicting
the number of nodes. The correct result is marked 1 while the
incorrect result is marked as 0. From Fig 6, we can see that
K-NN gives better predicting rate for small size of circuits.
Compare Fig 6 and Fig 5, we can see there are more circuits
crowded in small gate-number, small string-number area, this
helps the K-NN to generate better results in predicting the best
number of nodes for circuit simulation.

4.3 Performance Evaluation
Fig 7 compares the number of nodes that predicted for each

query with the number of nodes that labeled to generate best
performance. Although K-NN generates a 53% exact match,
Fig 7 shows that most predicted number of nodes are close to
the best number of nodes. It is interesting to see how well the
simulation will use the K-NN predicted hardware option even
if it is not an exact match.
In this experiment, we compared the simulation time gen-

erated by using predicted hardware options with the best
simulation time. We made use of a metric, the performance-
prediction efficiency denoted as ppe. The best simulation time
is denoted as bst. The simulation time generated by using
predicted hardware option is denoted by pst. ppe is defined
by: ppe = bst/pst
Fig 8 depicts the distribution of ppe. The average perfor-

mance prediction efficiency was 83%.

4.4 Feature Scaling
The accuracy of the k-NN algorithm is sensitive to the

feature selecting and scaling. It can be severely degraded by
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Fig. 8. Performance Prediction Efficiency

the presence of irrelevant features or if the feature scales are
not consistent with their importance.
Much previous research effort has been contributed into

selecting or scaling features to improve K-NN classification,
such as using evolutionary algorithms. In this research, we
use a primitive method to explore if scaling features can help
in parallel circuit simulation scheduling. We pick a set of
weight as (1, 0.1,0.01,0.001,0.0001), then apply these weights
to 3 attributes one by one. Examining all of the possible 125
weight combinations, we found that the weight combination
which using 0.1 on the number of gates, 0.1 on the number of
partition strings and 0.001 on the number of modules resulted
a best psa at 99%. This result improves from 92% when no
features scaling applied. Fig 9 shows the Parallel-Sequential
Predict Accuracy changes as the weights on the number of
gates and the number of strings. In Fig 9, the weight of module
number is set as 0.001.
Examining all of the possible 125 weight combinations, we

found that the weight combination which using 0.01 on the
number of gates, 0.1 on the number of partition strings and
0.01 on the number of modules resulted a best Exact-Node-
Number-Match-Rate at 61%. This result improves from 53%
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Fig. 9. Scaling Features to improve Parallel Sequential Prediction

when no features scaling applied. Fig 10 shows the accuracy
on predicting exact match number of nodes exactly match
changes as the weights on the number of gates and the number
of strings. In Fig 10, the weight of module number is set as
0.01.
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Fig. 10. Scaling Features to improve Number of Nodes Prediction

Examining all of the possible 125 weight combinations, we
found that the weight combination which using 0.01 on the
number of gates, 0.001 on the number of partition strings and 1
on the number of modules resulted a best performance-predict-
efficiency at 89.2%. This result improves from 83% when
no features scaling applied. Fig 11 shows the performance-
predict-efficiency changes as the weights on the number of
gates and the number of strings. In Fig 10, the weight of
module number is set as 1.
From above results, we can see that feature-scaling has the

potential to improve K-NN classification accuracy in PDES.
A more sophisticated feature scaling mechanism , such as,
using evolutionary algorithms may further improve the K-NN
performance.

4.5 Two-Phase K-NN Optimization
In order to find the nearest neighbor, the K-NN algorithm

must compute the distances from the query circuit to all of
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Fig. 11. Scaling Features to improve performance-predict-efficiency

the (stored) training vectors. This is very computationally
intensive, especially when the size of the training set is large.
Much previous research has been done to reduce this cost
including the use of Kd-trees and locality sensitive hashing
(LSH). In this paper, a simple approach, 2-phase K-NN, is
proposed in order to reduce the computational cost of K-
NN for PDES scheduling. The 2-phase mechanism works as
follows: the algorithm starts by using only one feature , the
number of gates, to do a K-NN search. The K nearest data
points are selected in order to be used as training examples for
a second phase. In the second phase a normal K-NN iteration
is utilized in order to find 1 nearest neighbor among the K data
points. The motivation of the 2-phase approach is to use the
low cost one dimensional search (O(log(n))) in order to reduce
the size of search space. It then does a K-NN in the second
phase on a reduced search space. For example, if there are one
million training examples we can set K=1000 in the first phase.
Then in the second phase, K-NN only needs to search among
1000 data points. The 2-phase algorithm is certain to reduce
the computing cost, however it is necessary to (experimentally)
assess the accuracy of the classification. In these experiments,
K was set to 10 in the first phase and optimized feature weights
were applied. The average parallel-sequential accuracy using
2-phase K-NN was 92% (without the 2-phase optimization the
peak value was 99%). The average pna was 46% (without the
2-phase optimization the peak value was 61%) . The average
performance-predict-efficiency was 83% (without the 2-phase
optimization he peak value was 89.2%). From these results we
can see that the 2-phase K-NN algorithm reduced the K-NN
computing cost and produced a comparable accuracy.

4.6 Adding New Training Data
In the quick paced circuit design industry, it will constantly

be necessary to add new training points so that the training
accounts for new circuits. In a typical circuit design envi-
ronment, there could be hundreds or thousands of hardware
options available. Adding training data by utilizing all of the
hardware options is not practical. In this section, we propose
a new method, K-data-training, in order to reduce the cost of

adding new training data.
We first create a small training set. In the initial training

phase, a set of typical circuits are simulated on all of the
available hardware options in order to discover the best
performance points. After this initial training phase, when a
new circuit needs to be added to the training set, we use
a K-NN search to find K nearest neighbors. Then, the new
circuit is simulated with these K options one by one. The best
performance option among these K results is stored in the
training set.
Experiments were conducted to verify how well the k-

data-training method worked. The same experimental set up
was used as in our previous experiments. Ten circuits were
randomly picked from the circuits to be used as verification
samples and the rest of the circuits were used as training
examples. K was set to 5. The Euclidean distance based on 3
attributes (the number of gates, the number of partition strings
and the number of module instances) was used to select the 5
nearest neighbors.
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Fig. 12. K-data-training improves Prediction Accuracy on Number of Nodes

The experimental results show that using K-data-training
method, the average exact match node number predict accu-
racy was 75.5% , the average performance-predict-efficiency
was 93%. Fig 12 shows the prediction results for the number
of nodes. Comparing with Fig 6, the K-data-training method
greatly improved the accuracy of predicting the number of
nodes which generate the best performance. In a circuit design
environment, a circuit normally need to be simulated many
times. The K-data-training method may also apply for a circuit
whether it needs to be added to a training set or not.

5 CONCLUSION
We have presented, in this paper, a machine learning algo-

rithm for determining whether a gate level circuit simulation
should be run sequentially or on a parallel platform. In the
event that it is worthwhile running it on a parallel machine,
the algorithm determines the number of nodes on which to
execute the simulation. To our knowledge, this is the first
attempt to decide this issue. The algorithm is based on the
K Nearest Neighbor algorithm and relies on feature vectors to



classify the simulations as being either sequential or parallel
and as to how many nodes to employ if they fall in the parallel
category. A multi-path optimization technique was used to
decrease the complexity of the distance computations We used
60 benchmark circuits in our experiments. Of these circuits,
50 were used for training purposes and 10 were used for
classification. The hardware we used consisted of a Sun server
and a cluster of 20 Linux machines. Our algorithm made the
right choice between sequential and parallel simulation 97% of
the time. It chose the number of nodes corresponding to the
minimum simulation time 53% of the time, but was always
within 17% of the minimum simulation time. These results
were then greatly improved by a feature scaling algorithm
which picked the correct number of nodes 61% of the time and
was, on the average, within 11% of the minimum execution
time An 2-phase K-NN optimization technique was presented
which reduced the computing cost of the K-NN algorithm,
but still gave comparable results to those produced by our
algorithm. Finally a K-data-training algorithm for reducing
the computational cost of adding new training data. It did so
while improving the performance of the original algorithm.
While our results are promising, it is still desirable to explore
other attributes for feature classification and to explore other
techniques for scaling feature values and for determining
feature correlations.
The results obtained in this paper are certainly promis-

ing. Perhaps the most important point is that the general
methodology is applicable to virtually any problem in parallel
simulation.
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