
Addressing Blocking and Scalability in Critical Channel Traversing

Rob Simmonds, Cameron Kiddle and Brian Unger
fsimmonds,kiddlec,ungerg@cpsc.ucalgary.ca

Dept. Computer Science,
University of Calgary,

Alberta, Canada.

Abstract

This paper presents two new versions of the Critical
Channel Traversing (CCT) algorithm. CCT is a conserva-
tive parallel discrete event simulation algorithm that has
been shown to achieve very high performance when used
in a wide area computer network simulator. The first of
the new algorithms called simple sender side CCT is simi-
lar to the original, but busy waiting is eliminated. Results
presented show that simple sender side CCT avoids perfor-
mance problems that can be caused by busy waiting.

The second new algorithm called receive side CCT em-
ploys a different strategy for updating channel clocks and
determining which objects should be scheduled on critical
channels. Performance results show that this version pro-
vides better scaling with respect to the connectivity of the
model, at the expense of some added complexity.

Keywords: Parallel Discrete Event Simulation, Conser-
vative Algorithms, Performance.

1 Introduction

This paper presents two modified versions of the Criti-
cal Channel Traversing algorithm (CCT) [11]. The first is
a simplification of the original that avoids busy waiting that
could inhibit the performance of the original algorithm in
some situations [7]. The second uses different data struc-
tures to store safe-time and scheduling information to en-
able improved scalability with respect to the connectivity of
the model.

CCT is an extension of the Chandy-Misra-Bryant
(CMB) [1, 2] parallel discrete event simulation (PDES)
algorithm that incorporates scheduling decisions into the
causality correctness calculations. Systems are modeled as
a set of objects that only communicate by exchanging times-
tamped event messages. All messages sent from one object
to another must be passed along a uni-directional commu-
nication channel that will usually have been allocated prior

to the start of the simulation. Each channel has a delay as-
sociated with it representing the smallest difference in the
clock of the sending object and the timestamp given to any
event sent on the channel. Each channel also has a clock
representing a lower bound on the timestamp of any event
that could arrive on this channel in the future.

The main idea of CCT is to only schedule objects when
it is likely they will have work to do. In a system using the
CMB approach to guarantee the correct ordering of events,
an object can only do work when its minimum channel
clock increases. In CCT the input channel with the small-
est clock value is marked as critical when an object com-
pletes an execution session, having executed all events with
timestamps less than the clock of this channel. When the
source object to the channel completes its execution session,
it observes that the channel is marked critical and schedules
the destination object for execution by inserting it into a
scheduling queue. This avoids wasting processor time ex-
ecuting objects waiting for channel updates and also keeps
the scheduling queues short making them less expensive to
sort.

The original CCT algorithm along with the TasKit ker-
nel in which it was implemented, were developed to pro-
vide a very high performance simulation engine for the
Asynchronous Transfer Mode Traffic and Network Simula-
tor (ATM-TN) [10]. This work built on previous work with
similar aims [3]. While the original CCT performed well
for what it was designed, it was clear that some simplifica-
tion was possible and that greater scalability with respect
to the connectivity of the model could be achieved. Since
ATM network models are sparsely connected, scaling was
not an important issue in the original design.

The simple sender side (SSS) CCT algorithm is very sim-
ilar to the original CCT, but the use of busy waiting has
been eliminated. The original CCT used busy flags to in-
dicate when an object was processing events. Adjacent ob-
jects would wait for the candidate object’s busy flags to be
cleared before making scheduling decisions regarding the
candidate. This resulted in the favorable semantic property

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

that any object with one or more input channels would al-
ways be scheduled by an object connected to one of these
input channels. Unfortunately, the setting and clearing of
busy flags added overhead and could also lead to excessive
waiting. These properties resulted in poor performance for
certain classes of models as described in [7].

The receive side (RS) CCT algorithm changes the way
in which channel clocks are updated. This version adds
some additional overhead for sparsely connected models,
but greatly improves the way in which the performance of
CCT scales with the connectivity of the model. This version
aims to avoid accessing channels when they are not vital to
the current causality or scheduling decision calculation.

The original and updated versions of the CCT algorithm
have all been implemented in a new experimental simula-
tion kernel called CCTKit. CCTKit shares the same general
architecture as TasKit, but has been written from the ground
up to achieve favorable cache behavior on modern shared-
memory multiprocessor computers. Performance results are
presented in this paper for simulations using a synthetic
workload model. These results demonstrate the perfor-
mance of the algorithms with models of different connec-
tivities and different event densities. These results demon-
strate the scaling properties and operating overheads of the
new algorithms compared to the original.

The remainder of the paper is laid out as follows. Sec-
tion 2 explains some of the important algorithmic and im-
plementation concepts employed by the algorithms. Then,
section 3 outlines the original and describes the two new
versions of CCT. Section 4 describes experiments per-
formed to compare the performance of the three algorithms
and presents performance results. The paper is summarized
in section 5.

2 CCT Components

This section explains the major ideas used in the origi-
nal CCT algorithm. Similar ideas are used in the updated
algorithms which are explained in more detail in Section 3.

2.1 Critical Channels

Each channel has a clock, which is a lower bound on the
timestamp of any event that will be inserted into the channel
in the future. A critical channel is a channel that has to have
its clock advanced in order for the object at the receiving
end of the channel to make progress. In CCT, an object
which has one or more input channels sets the critical flag
in one of these channels at the end of its execution session.
The critical channel is a channel with the lowest clock. Only
one channel is set critical even if many channels share this
lowest clock value.

After setting a critical channel the object checks if any of
its output channels have their critical flag set. When an out-
put channel with its critical flag set is found, the channel’s
destination object is scheduled for execution. This is done
by inserting the object into a processor scheduling queue
ready to be executed when a processor becomes available.
In the experiments presented in Section 4 each processor
has its own scheduling queue. With this configuration in
CCTKit, a FIFO single reader/single writer queue is allo-
cated for each pair of processors that could communicate
during a simulation. To schedule an object allocated to a
different processor, a message is sent via the appropriate
FIFO queue to request the processor controlling the object
to be scheduled to place the object in its scheduling queue.
Each processor scans its input queues between object exe-
cution sessions.

2.2 Channel Event Sampling

Only one event is removed from an input channel each
time a channel is accessed. This event is then placed into the
local event queue of the receiving object. The next event to
be executed is always removed from the local event queue
which is a priority queue sorted into increasing event times-
tamp order. An event that arrived from a channel contains a
reference to the channel it was received on. After each event
is executed, if that event arrived via a channel, an attempt
is made to remove another event from that same channel. If
another event is recovered, this event is placed into the lo-
cal event queue as before. If no event is recovered from the
channel, the channel clock is noted and incorporated into
the safe-time calculation (see Section 2.3).

Always processing the lowest timestamped event from
the local priority queue ensures local event ordering. Plac-
ing at most one event from any input channel into the local
event queue at any time keeps the priority queue short. This
is important since the priority queue will have costs propor-
tional to its length for operations performed on it. All opera-
tions on the channels, which implement single reader/single
writer FIFO queues, are O(1).

2.3 Safe Time Calculation

The object’s safe-time is the time value that is known to
be the lower bound on the timestamp of any event that could
arrive from another object in the future. This is calculated as
the minimum input channel clock value. Rather than calcu-
lating the safe-time once at the start of an execution session,
an initial safe-time estimate determined and refined during
the session.

At the start of an execution session the safe-time estimate
is set to1. The input channels are then scanned and if they
are empty and don’t currently have a representative event in

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

CCLICQ

NULL

Object i

5.2

10.0

6.5OCVICV

Object i

Sender−side update: Receive−side update:

5.2

10.0

6.5

ba

6.2

6.2

Figure 1. Data structures used by sender-side (left) and receive-side (right) CCT.

the local event queue, the channel clock is included in the
safe-time calculation. If no empty channel is encountered it
is possible that an object could continue to execute until the
simulation end-time is reached. This is very unlikely to oc-
cur in practice since it would rely on all of the objects with
channels connected to this object advancing fast enough for
there always to be an event to remove from a channel when
the previous event from that channel has been executed.

Note that if an object does not have input channels the
safe-time would always be infinite using the rules above.
Allowing these source objects to execute until the end-time
could lead to buffer exhaustion if other objects are not ex-
ecuting fast enough to consume events being dispatched.
There are several solutions to this problem including sim-
ply eliminating source objects by adding extra channels or
by using a flow-control mechanism. This issue is addressed
in [9].

3 CCT Algorithms

This section explains three versions of the CCT algo-
rithm all of which are implemented in CCTKit. These are
blocking sender-side (BSS) CCT which is the original CCT
algorithm, simple sender-side (SSS) CCT and receive-side
(RS) CCT. A proof of correctness for BSS was presented
in [11] and the proof correctness of SSS and RS follow from
that.

The algorithms are explained assuming that all objects
have at least one input channel. If an object has no input
channels, a different mechanism is required to terminate
an execution session. The algorithms can be used as they
are presented with models containing objects with no in-
put channels by adding extra channels feeding back to the
source objects. Other mechanisms for dealing with source
objects are discussed in [9].

3.1 Sender-Side CCT

Blocking Sender Side CCT

This section gives a brief recap on the original CCT al-
gorithm which is described as blocking sender side (BSS)
CCT in this paper. Each object involved in the BSS calcula-
tions has an input channel vector (ICV) containing all of its
input channels, and an output channel vector (OCV) hold-
ing all its output channels (see Figure 1a). The actions per-
formed during each object execution sessions are outlined
in Figure 2.

1. Scan input channels setting busy flag on each
channel and calculating the initial safe-time
estimate.

2. Execute events up to safe-time getting events
from channels and revising the safe-time es-
timate as necessary.

3. Set critical channel.

4. Unset busy flag on each input channel.

5. Scan each output channel updating the chan-
nel clock. For each channel check the busy
flag and wait while this is set. Then schedule
the destination object if the critical flag is set.

Figure 2. Pseudo code for a blocking sender
side (BSS) CCT object’s execution session.

An execution session begins when the object is removed
from the scheduling queue by the simulation kernel. First,
all of the input channels are scanned and an initial esti-
mate of the safe-time (see Section 2.3) is calculated (line
1). During this scan the busy flag is set on each of the input
channels. Next a loop is entered where events are executed
and new events are recovered from the input channels un-

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

til all events have been executed with timestamps less than
the minimum clock of an empty channel (line 2). Then the
minimally clocked channel found in the previous step has
its critical flag set (line 3). Now each of the input channel
busy flags are cleared (line 4). Next each output channel is
accessed and it’s clock updated to be the minimum of ob-
ject’s clock plus the channel delay and the timestamp of the
last event sent on this channel. After updating the clock, the
busy flag is checked and if it is set, the object waits until it
is cleared. At this point the destination object is scheduled
if the critical channel is set (line 5).

In order to work correctly it is vital that each busy flag
is set before the channel clock is incorporated into the ini-
tial safe-time estimate calculation. If not, it is possible that
the object at the sending side of the channel could fail to
observe the critical flag and therefore fail to schedule this
object. It is also vital that the channel clock is updated be-
fore the critical channel flag is checked. For computers that
do not support a sequential consistent memory model [4],
memory ordering instructions are inserted between these
pairs of actions.

Simple Sender Side CCT

The chief difference between simple sender side (SSS) CCT
and the BSS CCT described above is that busy waiting is not
performed in SSS CCT. Eliminating busy waiting means
that it is now possible for an adjacent object to complete
its execution session without observing a critical channel
leading to this object. Therefore an additional check is re-
quired to determine if this has occurred so that the object
can schedule itself. The data structures used for SSS are the
same as those used for BSS (see Figure 1a). The actions
performed during an object’s execution session are outlined
in Figure 3.

An SSS object execution session starts in a similar way
as a BSS execution session. The input channels are scanned
to find the initial safe-time estimate (line 1). In this case no
busy flags are set. The execution of events is identical to
BSS (line 2). Next each output channel is visited, its clock
updated and the destination object scheduled if the critical
channel is set (line 3). Note that unlike the BSS case, the
critical channel has not yet been set. This is done in the
final step (line 4). In this case the critical channel is only
set if the channel clock on the candidate channel has not
been updated beyond what it was when the loop on line 2
was exited. If it has advanced, this is an indication that this
channel’s source object has just executed and would have
scheduled this destination object at the end of its execution
session if busy waiting had been used. Therefore, rather
than setting the critical channel this object schedules itself.
If the channel clock has not advanced, the critical channel
flag is set.

1. Scan input channels to discover initial safe-
time estimate.

2. Execute events up to safe-time, getting events
from channels and revising the safe-time es-
timate as necessary.

3. Scan each output channel updating the chan-
nel clock and scheduling the destination ob-
ject if the critical channel flag is set.

4. If time has not advanced on candidate chan-
nel set critical flag on this channel. If time
has advanced, schedule self.

Figure 3. Pseudo code for a simple sender
side (SSS) CCT object’s execution session.

Similar memory ordering considerations have to be
made for SSS as were made for BSS. An important point
in this case is in the setting of the critical channel. It is vital
that the source object does not miss the setting of the criti-
cal channel and the destination object miss the update of the
channel clock at line 4. To prevent this from occurring, the
critical channel flag is always set, then a memory ordering
instruction performed if running on a computer that does
not support sequentially consistent memory access. After
this the channel clock is checked. If the channel clock has
advanced the critical channel flag is cleared before the ob-
ject schedules itself. These actions insure that at least one of
the source and destination objects schedules the destination
object when required.

3.2 Receive-Side CCT

Receive-side (RS) CCT uses different data structures
than the BSS and SSS versions. For RS CCT, the input
channel vector is replaced with an input channel queue
(ICQ) and the output channel vector is replaced with a crit-
ical channel list (CCL) (see Figure 1b). The aim of the RS
CCT algorithm is to avoid checking channels that are not
currently relevant to safe-time or scheduling calculations.
The actions performed during an object’s execution session
are outlined in Figure 4.

The initial safe-time estimate is not calculated by scan-
ning the input channels. Instead, it is set to the clock of the
channel at the top of the ICQ if the queue is not empty and
set to1 otherwise (line 1).

Next all events in the local event queue with timestamps
less than the current safe-time estimate are executed (line
2). Each time an event is executed that arrived on an input

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

1. Set the initial safe-time estimate as either the clock of the channel at the top of the ICQ or1 if the ICQ
is empty.

2. Execute all events from local event queue with timestamps less than the safe-time. For each event
received from a channel, attempt to remove another event from the same channel and place it in the
local queue. If there is no event in the channel, place the channel in the ICQ and revise safe-time to the
clock of this channel if it is less than the current safe-time estimate.

3. Attempt to get event from queue at top of ICQ. If successful, update the channel clock using the event’s
timestamp and remove the channel from the ICQ. Otherwise attempt a receive-side clock update. If the
clock cannot be advanced move to stage 4. Otherwise resort the ICQ. If the new safe-time (clock of
channel at top of ICQ) is at least as great as the timestamp of the next event in the local event queue,
repeat stage 2. Otherwise repeat stage 3.

4. Schedule all objects held in the CCL.

5. Instigate placing self into the CCL of the source object to the channel at the top of this object’s ICQ

Figure 4. Pseudo code for a receive side (RS) CCT object’s execution session.

channel, an attempt is made to recover another event from
the same input channel. If an event is recovered, it is in-
serted into the local event queue. Otherwise, this channel
is inserted into the ICQ and the safe-time estimate set to
the clock of this channel if its clock is less than the current
safe-time estimate. This phase of execution continues, ex-
ecuting events and attempting to remove new events from
input channels until the safe-time is reached.

The next phase attempts to increase the safe-time by up-
dating the clock of the top channel in the ICQ. The channel
clock is advanced either by removing an event and setting
the clock to the event’s timestamp, or by performing a re-
ceive side update. A receive side update sets the channel
clock to the sum of the clock of the source object plus the
channel’s delay. This phase completes either by looping
back to the event execution phase (line 2) or by advancing
to the scheduling phase (line 4).

First an attempt is made to remove an event from the
channel at the top of the ICQ. If this is successful the event
is placed in the local event queue, the channel removed from
the ICQ and its clock updated. If there is no event in the
channel a receive side update is performed and if this results
in the channel clock increasing, the ICQ is resorted. If either
an event was recovered or the receive side update resulted in
the channel clock advancing, a new safe time is determined
as the clock of the channel now at the top of the ICQ, or1
if the ICQ is empty.

At this point the execution returns to the event execution
phase (line 2) if the safe-time is greater than or equal to the
timestamp of the event at the top of the local event queue,
or returns to the start of the current phase (line 3) otherwise.
If the attempt to increase the channel clock failed, the algo-

rithm moves to the scheduling phase (line 4). During the
scheduling phase all objects in the CCL are scheduled for
execution.

Finally the object moves to the critical schedule request
phase (line 5). In this phase a request is made to insert the
calling object into the CCL of the source object of its crit-
ical channel. The critical channel is the channel at the top
of the ICQ. If the source object is allocated to the same pro-
cessor as the calling object, the local processor inserts the
object immediately. If the source object is allocated to a
different thread, a message is sent to the thread controlling
the source object. When this message is received, a check is
performed to determine if the clock of the critical channel
has advanced since this channel became critical. If so the
destination object is scheduled immediately. Otherwise, the
destination object is inserted into the source objects CCL
ready to be scheduled during the source object’s next exe-
cution session.

One problem with RS CCT is that the channel clocks
are only updated using event timestamp and sender clock
plus channel delay information. As described here, RS CCT
cannot take advantage of sender-side channel clock updates
greater than the maximum of these two values that may be
required by a system performing lookahead optimization.
Ways in which lookahead optimizations can be supported
with the minimum of additional overhead are being investi-
gated.

4 Performance

This section describes the experiments performed to
evaluate the performance of the various CCT algorithms.

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

N0

N1

N2

N3

N4

N5

N6

N7

D = 100

H = 10
L = 1

N = 8
R = 2

P = 8

Figure 5. Ring model with N = 8 nodes (ob-
jects), a connectivity radius of R = 2 and
an initial event population on each node of
D = 100. Half of the channels have a delay of
L = 1, and half of the channels have a delay
of H = 10. The model is configured to run on
P = 8 processors (i.e., 1 node per processor).

It explains the workload model used, the experimental
methodology and presents results of the experiments.

4.1 Synthetic Ring Workload

A ring model similar to the model presented in [7] was
used for experiments for which results are presented in this
section. The model is parameterized with: N - the number
of nodes (objects), R - the connectivity radius, D - the event
population, L - the low channel delay, H - the high channel
delay and P - the number of processors (see figure 5).

Each node is connected toR nodes ahead in the ring with
low channel delay L and R nodes behind in the ring with
high channel delay H . A model has N�2R channels for
values of R from 1 to N

2
� 1 and N�2R � N channels

for the fully connected case where R =
N

2
. The difference

in the number of channels is explained by the same node
being both R steps ahead and R steps behind in the latter
case. Initially, each node is populated with D events having
exponentially distributed inter-arrival times with mean L

D
.

Upon receiving an event each node sends a new event on
a randomly selected output channel with a timestamp equal
to the timestamp of the event received plus the channel de-
lay. Once the initial D events per node have been generated
the number of events circulating in the system remains con-
stant at N�D. If D is zero then no events are generated
during the simulation run. The N nodes are statically allo-
cated to the P processors such that the ith node is allocated

to processor i�P
N

.

4.2 Results

This section presents results of experiments performed
to demonstrate the performance of the various CCT al-
gorithms. An 8-processor Compaq Prolient server with
700MHz Intel PIII Xeon processors was used for all tests.
The Prolient was running RedHat Linux with the v2.4.9 ker-
nel. The GNU g++ V2.95.3 was used with the -O2 opti-
mization flag. The Pthreads library [6] was used to provide
concurrent execution.

Each test was run for 60 seconds of wall-clock time. At
the end of each test the minimum simulation time reached
by all objects was recorded. Each test was run 10 times
and the mean of the recorded values and a 95% confidence
interval was calculated. Additional tests were performed
for the few cases where the 95% confidence interval was
greater than 10% around the sample mean. The relative per-
formance of the algorithms was set to 1 if the confidence
intervals of the corresponding results overlapped.

The two graphs in Figure 6 show the relative perfor-
mance of SSS CCT to BSS CCT for cases where the perfor-
mance of BSS is inhibited by busy waiting. In both cases
the tests were run on 8 processors with the number of nodes
(N) varied from 16 to 256. For these tests both the low (L)
and high (H) channel delays were set to 1. The graph on the
left shows the relative performance when an event popula-
tion (D) of 100 and three different values of the connection
radius (R) are used. The graph on the right shows the rel-
ative performance when the connection radius (R) was set
to 4, for values of the event population (D) of 10, 100 and
1000.

With BSS CCT, the larger the number of nodes, the lower
the chance of a processor being blocked by another proces-
sor working on an adjacent object. Therefore, for larger val-
ues of N, the closer the performance of the two algorithms.
For both sets of experiments, the performance of both algo-
rithms is identical when 128 or more nodes are used. With
BSS CCT, the greater the connection radius (R), the greater
the chance of blocking. Therefore, there is a greater differ-
ence between the performance of SSS CCT, which does not
use busy waiting and BSS CCT for smaller R values.

With BSS CCT, increasing the workload could result in
a processor being blocked for longer periods of time. The
graph on the right shows that the advantage gained by using
SSS CCT is greatest when the event population is high.

The graphs in Figure 7 compare the performance of RS
CCT to the performance of SSS CCT. These tests were per-
formed on 8 processors with connectivity radius (R) values
between 1 and 32. For these tests 1024 nodes (N) were used
and the low channel delay (L) was set to 1. The graph on
the left shows the relative performance with an event popu-

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

0.95

1

1.05

1.1

1.15

1.2

1.25

16 32 64 128 256

R
el

at
iv

e
P

er
fo

rm
an

ce

Number of Nodes

R=1
R=2
R=4

0.95

1

1.05

1.1

1.15

1.2

1.25

16 32 64 128 256

R
el

at
iv

e
P

er
fo

rm
an

ce

Number of Nodes

D=10
D=100

D=1000

Figure 6. Results showing the relative performance of SSS CCT to BSS CCT versus the number of
nodes (N) for L=H=1 and P=8. The left graph shows results for different values of R with D=100. The
right graph shows results for different values of D with R=4.

lation (D) of 0 and three different values of the high channel
delay (H). The graph on the right shows the relative perfor-
mance when the high channel delay (H) was set to 10, for
values of the event population (D) of 0, 10 and 100.

Increasing the high channel delay reduces the work done
by RS CCT since the channels that are given high clock val-
ues are accessed less often. For SSS CCT all the channels
have to be accessed in each execution session whatever their
delay and clock values. From the left graph it can be seen
that for greater values of H the advantage gained using RS
CCT increases.

From the right graph it is clear that at higher connectiv-
ities the advantage gained by using RS CCT is reduced at
higher event densities. This is due to a greater proportion
of work being done executing events than handling channel
state for larger values of D. This graph also shows that when
events are being received, there is some overhead using RS
CCT at low connectivities. This is most likely caused by
the cost of adding and removing channels from the ICQ.
This result suggests that some more experimentation may
be required to determine the best strategy for handling the
channels in the case when events are being handled.

Initial testing of these algorithms within a computer net-
work simulator suggests that RS CCT will perform at least
as well as SSS CCT for a large class of network models.
This is likely explained by the large differences in the chan-
nel delays in these models. For example, consider an object
representing a backbone router. This will have some links
connecting to other backbone routers and some links con-
necting to border routers. The channels used to represent
links between backbone routers have large delays, since the
distance between these routers is large. The channels used
to represent links to border routers have much smaller delay
values. Therefore, the set of channels that have small delays

and that will need to be accessed often using RS CCT will
be small at many of the simulation objects. As shown in
Figure 7 (left), this improves the performance of RS CCT
compared to SSS CCT.

5 Summary

This paper has presented two new versions of the Critical
Channel Traversing (CCT) algorithm [11]. Simple sender
side CCT is similar to the original CCT, but busy waiting
has been eliminated. Receive side CCT uses new methods
for finding the safe time and for scheduling objects con-
nected to critical channels.

Results presented show that simple sender side CCT per-
forms at least as well as the original algorithm in the ma-
jority of cases. They also show that it avoids performance
problems that the original algorithm encountered with cer-
tain classes of models. Receive side CCT is shown to scale
far better with respect to the connectivity of the system be-
ing modeled, than either of the other CCT versions dis-
cussed in this paper. It does this at the expense of some
additional overhead for low connectivity models. It is hoped
that further research refining both the algorithm and its im-
plementation will reduce these overheads.

The refinements presented in this paper improve the CCT
algorithm, an algorithm previously shown to be a good
choice for use in a wide area computer network simula-
tor. While these refinements make CCT more flexible, it
should still be noted that good performance from any chan-
nel based conservative simulator is dependent on models
with good lookahead and large event densities. Models that
do not have these properties could be better suited to sim-
ulators implementing synchronous conservative [8] or opti-

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32

R
el

at
iv

e
P

er
fo

rm
an

ce

Connectivity Radius

H=1
H=10

H=100

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 4 8 16 32

R
el

at
iv

e
P

er
fo

rm
an

ce

Connectivity Radius

D=0
D=10

D=100

Figure 7. Results showing the relative performance of RS CCT to SSS CCT versus the connectivity
radius (R) for N=1024, L=1 and P=8. The left graph shows results for different values of H with D=0.
The right graph shows results for different values of D with H=10.

mistic [5] algorithms.

6 Acknowledgments

The TeleSim group is funded by grants from the Cana-
dian Natural Sciences and Engineering Research Council
(NSERC) and the Alberta Science and Research Author-
ity (ASRA). TeleSim also receives funding from industrial
sponsors including Nortel Networks, Telus, Siemens and
Compaq. Experiments for which results are presented in
this paper were performed on computers purchased as part
of the MACI high performance computing project.

References

[1] R. Bryant. Simulation of Packet Communication
Architecture Computer Systems. Technical Report
MIT/LCS/TR-188, MIT, November 1977.

[2] K. M. Chandy and J. Misra. Distributed simulation :
A case study in design and verification of distributed
simulation. IEEE Transactions on Software Engineer-
ing, 5(5):440–452, September 1979.

[3] John G. Cleary and Jya-Jang Tsai. Performance of a
conservative simulator of ATM networks. In Proceed-
ings of the 11th Workshop on Parallel and Distributed
Simulation, pages 142–145. The Society for Computer
Simulation, 1997.

[4] David E. Culler, Jaswinder Pal Singh, and Anoop
Gupta. Parallel Computer Architecture : A Hard-
ware/Software Approach. Morgan Kaufmann, 1998.

[5] David R. Jefferson. Virtual time. ACM Transactions
on Programming Languages and Systems, pages 404–
425, July 1985.

[6] Bil Lewis and Daniel J. Berg. Multithreaded Program-
ming with Pthreads. Sun Microsystems, 1997.

[7] Jason Liu, David M. Nicol, and King Tan. Lock-free
scheduling of logical processes in parallel simulation.
In Proceedings of the 15th Workshop on Parallel and
Distributed Simulation, pages 22–31, May 2001.

[8] David M. Nicol. Principles of conservative parallel
simulation. In Proceedings of the 1996 Winter Sim-
ulation Conference, pages 128–135. The Society for
Computer Simulation, 1996.

[9] Rob Simmonds, Cameron Kiddle, Kitty Wong, and
Brian Unger. Controlling buffer usage in critical chan-
nel traversing. In 2002 Advanced Simulation Tech-
nologies Conference. ACM, April 2002.

[10] Brian W. Unger, Fabian Gomes, Xiao Zhonge,
Pawel Gburzynski añd Theodore Ono-Tesfaye,
Srinivasan Ramaswamy, Carey Williamson, and
Alan Covington. A High Fidelity ATM Traffic and
Network Simulator. In Proceedings of the 1995
Winter Simulation Conference, pages 996–1003. The
Society for Computer Simulation, 1995.

[11] Z Xiao, B Unger, R Simmonds, and J Cleary. Schedul-
ing Critical Channels in Conservative Parallel Discrete
Event Simulation. In Proceeding of the 13th Workshop
on Parallel and Distributed Simulation, May 1999.

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

