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Abstract

Parallel discrete event simulation techniques have enabled 

the realization of large-scale models of communication 
networks containing millions of end hosts and routers.  

However, the performance of these parallel simulators 

could be severely degraded if proper synchronization 
algorithms are not utilized.  In this paper, we compare the 

performance and scalability of synchronous and 

asynchronous algorithms for conservative parallel 
network simulation.  We develop an analytical model to 

evaluate the efficiency and scalability of certain variations 

of the well-known null message algorithm, and present 
experimental data to verify the accuracy of this model. 

This analysis and initial performance measurements on 

parallel machines containing hundreds of processors 
suggest that for scenarios simulating scaled network 

models with constant number of input and output channels 

per logical process, an optimized null message algorithm 
offers better scalability than efficient global reduction 

based synchronous protocols.

1.    Introduction 

In conservative parallel discrete event simulation (PDES), 

an event cannot be processed unless it is safe to do so.  

Since all logical processes (LPs) do not have a consistent 

view of the state of the entire system, LPs must exchange 

information to determine when events are safe to process.  

This process of synchronizing LPs has been the subject of 

much past research [1]. 

Conservative synchronization algorithms can be 

broadly classified as asynchronous or synchronous. 

Asynchronous algorithms do not require global 

synchronizations.  A well-known example is the null 

message algorithm for deadlock avoidance originally 

developed independently by Chandy and Misra [2] and 

Bryant [3].  Variants to the original Chandy-Misra-Bryant 

(CMB) null message algorithm to improve efficiency have 

been devised and evaluated [4-7].  On the other hand, 

synchronous algorithms use global synchronization and 

reduction computations to compute a Lower Bound on 

Timestamp (LBTS) of future messages that might be 

received by each LP, in order to determine when events 

are safe to process. A well-known example is the YAWNS 

protocol described in [8].  Other algorithms use techniques 

such as deadlock detection and recovery [9] and simulation 

time windows [10]. 

Although previous studies have evaluated the 

performance of conservative synchronization algorithms 

for inefficiencies and overhead (e.g., see [11-13]), the 

scale of these studies have been, for the most part, limited 

to modest sized configurations, with most using fewer than 

100 processors.  As the number of LPs that participate in a 

parallel and distributed simulation increase, performance 

conclusions based on small-scale simulation studies may 

not apply to a large-scale context and the appropriateness 

of a particular synchronization method can shift from one 

algorithm to another.  Here, we address scalability 

concerns in order to compare an asynchronous CMB null 

message algorithm with a synchronous barrier algorithm 

for large-scale network simulations. 

The paper is organized as follows.  Related work is 

first discussed in the next section.  A lazy null message 

algorithm and an associated analytical model are presented 

in section 3.  Section 4 describes the simulation scenarios 

used for the experimental study, and presents comparison 

between analytical model predictions and measurements.  

Section 5 presents empirical data comparing the 

performance of CMB and global reduction algorithms for 

regular and irregular networks.  Future work and 

conclusions follow in sections 6 and 7, respectively. 

2.    Related Work 

While there has been much research comparing optimistic 

and conservative synchronization protocols, there has been 

comparatively little work devoted to comparing the 

performance of asynchronous and synchronous 

conservative synchronization algorithms for large numbers 

of processors.  Bagrodia and Takai provide extensive 

performance comparisons of synchronous and 

asynchronous synchronization algorithms, but do not 

consider large numbers of processors [4].  Nicol describes 

scalability through analysis of model characteristics, 

partitioning, workload balance, and model complexity in a 

broad PDES context [14].  However, our work specifically 

analyzes the detailed costs associated with the operation of 

a lazy null message algorithm.  Further, we show that 

better scalability can be achieved using CMB, compared to 

global reduction algorithms, in scaled network models 

with constant fan-in/fan-out.  This is performed with an 

emphasis on quantitative results supporting our findings.  
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Nicol and Liu [15] combine asynchronous channel 

scanning and synchronous global barrier algorithms with a 

good amount of experimental data examining fan-in/fan-

out and lookahead up to 8 processors.  We discuss 

performance implications on larger configurations, 

specifically comparing lazy null message-based and global 

reduction-based algorithms.  These algorithms are applied 

to regular and irregular network models with varying load 

distributions and asymmetric lookahead values, on up to 

128 processors.  Nicol also presents models to provide a 

lower-bound on the performance of a synchronous global 

reduction algorithm that can apply to large numbers of LPs 

[16, 17]. Our analytic model differs from this work in its 

focus on scalability concerns for the CMB algorithm.  

While analyzers described in [18] illustrate speedup 

differences between synchronous and asynchronous 

algorithms, our focus lies in identifying detailed CMB 

performance characteristics, such as null message send 

frequency and overhead, and applied to analytical models 

for large-scale network simulation.  Synchronization 

challenges are described by Naroska and Schwiegelshohn 

[19] for large number of processes.  While their work 

focuses on VLSI design, we focus on network simulations.  

The work presented in [20] contains models that exclude 

lookahead values [21].  However, their approach requires 

extensive knowledge of various metrics and has no means 

to measure the effect of increasing scale. 

3.    Analytical Models for CMB

The impetus for utilizing an asynchronous rather than a 

synchronous algorithm is to avoid the potentially large 

amount of overhead in interrupting the simulation, 

calculating and distributing new LBTS values, and 

restarting the LPs.  Synchronization based on the CMB 

algorithm depends upon null messages exchanged only 

between neighboring processors.  The frequency and time 

stamp of these null messages dictate the behavior and 

performance of the simulation; this simple observation will 

drive the formulation of the analytical CMB model.  We 

will iteratively build this model.  The end result will be a 

model for the CMB null message algorithms that can 

approximate simulator performance in structured large-

scale network simulations.  In the following we assume the 

parallel simulator consists of a collection of LPs that 

communicate by exchanging messages.

3.1.   Effect of Null Messages on Simulation  

         Behavior 

Lookahead is one of the most important factors to 

achieving good performance in conservative PDES.  Each 

LP is allowed to process events without re-synchronizing 

with other LPs up to its LBTS value.  In general, 

conservative PDES performs well when the difference 

between successive LBTS values is large relative to the 

simulation time between successive events, because each 

LP can process many events before it must re-synchronize 

with other processors. 

In a traditional CMB algorithm, after an event is 

processed, null messages are sent to every output channel 

to neighboring LPs.  It is well known that overly eager null 

message transmission schemes produce an excessive 

number of null messages, leading to other algorithms that 

improve CMB performance by sending null messages less 

often.  However, a sufficient number of null messages 

must be sent in order to avoid deadlock.  The frequency of 

null message sends can have a large effect on performance.  

As the number of null messages increases, the overhead to 

synchronize increases proportionately, and less useful 

work is accomplished each second of wallclock time.  

Lookahead, null message frequency, time advance 

conditions, and remote communication are all contributing 

factors in the analytical model characterizing the 

performance of algorithms based on null messages. 

Here, we relax the constraints assumed in the original 

null message algorithm.  Specifically, a LP need not send 

messages in time stamp order.  We do assume that the 

communication channel delivers messages in the same 

order in which they were sent.  These assumptions imply 

that all simulation time information for computing new 

LBTS values resides in the time stamps of null messages. 

3.2.   A Lazy CMB Null Message Algorithm 

This variant of the CMB algorithm, which is traditionally 

referred to as lazy CMB, attempts to minimize the number 

of null messages by only sending them when absolutely 

necessary.  Specifically, null messages are only sent when 

the LP reaches the end of its safe processing time, i.e., 

only when the LP must block.  Failing to send null 

messages while in this blocked state could lead to 

deadlock situations.   

Figure 1. Execution Timeline of a Lazy CMB Algorithm

Figure 1 shows the progression of the simulation 

using the lazy CMB algorithm where each LP has the same 

lookahead.  Note that “LBTS” in the figure represents 

when a new LBTS value is computed for time 

management.  This lazy null message execution resembles 

that of a time-stepped simulation.  With a minimal number 

of null messages exchanged between LPs, this scheme 

appears to be an efficient synchronization protocol.  One 

can calculate the number of null messages N  sent as: 

NullNullNull
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lookahead

s
nmN                  (1) 

where m is the number of LPs, n is the number of output 

channels per LP, and s is the length of the run in 

simulation time. The number of execution windows (s

divided by lookahead), gives the number of rounds or 

time-steps for which null messages are sent.  Multiplying 

this result by the number of output channels yields the 

number of null messages sent each round.  The product of 

this result and the total number of LPs gives the total 

number of null messages exchanged during the entire 

simulation.  It is important to emphasize that formula 1 

pertains to a CMB algorithm applied to a regular, 

structured network model.  In other words, the lookahead 

of each LP is assumed to be the same.  

In our sample simulation, let m = 8, n = 2, s = 25, and 

lookahead = 0.2 seconds.  By formula 1, the total number 

of null messages would be 2,000.  We can modify equation 

1 to approximate the number of synchronization messages 

(N ) sent when a butterfly barrier is used (assuming that m

is a multiple of 2): 

lookahead

s
mmN 2log          (2) 

The same simulation under a synchronous algorithm 

using global reductions through a butterfly barrier 

mechanism results in 3,000 synchronization messages 

from equation 2.  More generally, if the number of output 

channels does not increase with the number of LPs, the 

number of null messages in CMB increases linearly with 

the number of LPs, yielding lower overhead than the 

approach using reductions. 

Figure 2. Blocking in a Lazy CMB Algorithm

It is important to note, however, that minimizing the 

number of null messages does not necessarily maximize 

performance. In particular, a modest load imbalance may 

lead to large waiting times that could be avoided by 

sending additional null messages.  To see this, consider the 

example in figure 2, showing two LPs A & B with output 

channels between them.  Here, LP A determines that it can 

no longer process events safely.  LP A sends a null 

message to LP B and blocks.  However, LP B is busy 

processing events within its own LBTS limit.  Further, 

when LP B completes processing these events, it can 

process the null message from LP A, compute a new 

LBTS value, and begin processing events based on this 

new value, all without sending a null message to LP A.  

Because no new null message is sent to LP A, LP A will 

remain blocked.  A null message will be sent to LP A only 

after LP B has finished processing these new events and is 

forced to block. Moreover, the delay to transmit this null 

message from LP A to LP B further increases the amount 

of time LP A remains blocked. 

A solution to this problem is to have each LP send 

null messages more frequently.  One must generate more 

null messages, but not so many that the system is burdened 

with an excessive amount.  This is discussed next. 

3.3.   An Optimized Lazy Null Message Algorithm 

One approach to generating additional null messages is to 

designate that each LP should send null messages every f
units of simulation time advance, where f is less than the 

LP’s lookahead (continuing to assume, for the moment, 

that all links have the same lookahead; we will relax this 

assumption later).  By increasing the frequency of null 

messages sent to neighbors, potentially long blocking 

times can be avoided. 

A second optimization to this approach is to eliminate 

null messages that carry no new useful information.  For 

example, if two successive null messages carry the same 

time stamp it is clear there is no reason to send the second.  

Thus, we can cancel (suppress) any superfluous null 

messages that convey no new information, by not sending 

those messages at all.   

To include these two changes, we can modify 

equation 1 to yield: 

       c
f

s
nmN 1                     (3) 

where c is the proportion of null messages cancelled and f

is the frequency at which null messages are sent.  Here, f is 

used in place of the lookahead value in equation 1.  Due to 

the non-deterministic nature of the modified lazy null 

message algorithm, equation 3 provides only a lower-

bound estimate on the number of null messages sent if 

lookahead is used for f.  The quantity c cannot equal 1 nor 

can f equal 0 (which means all null messages are cancelled 

or no null messages are sent, respectively).  If either of 

these conditions were true, then the deadlock avoidance 

guarantee of the CMB algorithm would be violated. 

We now turn to the more general case of non-uniform 

lookahead on output channels.  It is useful to construct an 

analytical model for which the simulation models are 

irregular.  Here, we assume a lookahead value is assigned 

to each link. 

In the case of different lookahead values for different 

LPs, formula 3 can be modified to yield: 
m

j

n

k

jk

jk

c
f

s
N

1 1

1                     (4) 
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where fjk represents either the minimum lookahead on the 

outgoing channel to LP jk or the frequency of null message 

sends.  From a LP j, if there are multiple outgoing links to 

a neighboring LP x, they are consolidated into a single 

output channel with the lookahead assigned as the 

minimum of all outgoing links to x.  In figure 3, a sample 

LP topology is constructed where the lookahead on all 

output links between LPs is 10, with the exception of the 

link between LP A and LP B.  Although the lookahead is 

10 between LPs A & E and LPs B & C, we can see that 

both LP C and LP E receive null message updates from 

LPs A & B at 1 time unit intervals.  Therefore, the 

“localized effect” of non-uniform lookahead must be 

carefully considered before applying an estimate using 

equation 4.  Equation 4 is applicable even in the case 

where all lookahead values are the same among all output 

channels, in which case the equation would then be 

equivalent to equation 3. 

Equations 1-4 include lookahead and null message 

frequency to give an approximation on the number of null 

messages sent during the course of the simulation.  As 

mentioned earlier, the number of null messages is useful, 

but it does not in itself offer an estimate on the efficiency 

of the synchronization algorithm.  In addition to blocking, 

the type of communication (e.g. shared memory vs. 

Ethernet) and other related factors provide a better 

approximation on the overhead of a null message 

algorithm. 

a

i

m

j

n

k

jk

jk

ii c
f

s

m
wp

a 1 1 1

1
1

ln
1

     (5) 

Equation 5 represents an overhead index for the lazy 

null message algorithm. Here a represents the number of 

different types of remote communication used in the 

simulation, p is the percentage and w is the weight given to 

a specific type of remote communication.  The quantity w
is a normalization factor for different communication 

media.  For instance, if we had remote communication 

over both shared memory (w1) and Ethernet (w2), a 

possible normalization would be w1=1 and w2=10 to 

represent shared memory being faster by an order of 

magnitude compared to Ethernet.  The natural logarithm is 

applied to represent the index as a monotonically 

increasing function of the product of the types of remote 

communication used and the average amount of null 

messages sent and received per LP. 

Utilizing these equations, one could compute not only 

the number of null messages that would be sent over all 

LPs, but also the relative messaging overhead incurred 

with a particular null message algorithm or simulation 

scenario.  This can be particularly useful when attempting 

to predict performance of a new scenario against an 

established baseline (e.g. scaled experiments). 

3.4.   Synchronizing Large-Scale Simulations 

Equation 5 predicts that the overhead associated with these 

variations of the null message algorithm will remain 

relatively constant as a simulation scales, assuming the 

number of output channels for each LP does not increase 

with the number of LPs, and all other factors (such as 

relative amount of remote communication and lookahead) 

remain unchanged.  On the other hand, synchronous time 

management algorithms have larger overheads as the 

simulation scales in the number of processors. 

Notice that the only change from equation 1 to 

equation 2 is the substitution of log2m for n.  For a 

synchronous time management algorithm, the number of 

synchronization messages increases at a rate of mlog2m,

compared to a rate of m for CMB.  In addition, this cost for 

synchronous algorithms does not include the penalty of 

jointly interrupting and restarting all LPs which increases 

linearly as the number of LPs increases, contributing to the 

overhead of time management for every LBTS 

computation.  This claim will be discussed further with 

performance results in section 4.5. 

4.    Applying the Analytical Null Message

 Model to Predict Performance 

Using the analytical model formulated in the previous 

section, we can forecast null message activity and 

overhead indices.  These indicators can then be used to 

predict behavior and performance for different simulation 

models.  We will first estimate null message activity and 

overhead and then verify our numbers through 

experimental measurements.  For the following sections 

regarding experimental results, one LP corresponds to one 

physical processor (CPU). 

4.1.   Baseline Model 

For our study, we used benchmarks developed at 

Dartmouth College as a set of baseline models for the 

network modeling and simulation community [22].  This 
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Figure 3. Example Illustrating the Operation of Null 

Message Exchange with Non-Uniform Lookahead
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baseline configuration was created to facilitate and 

demonstrate network simulator scalability. 

Each portion of the network is referred to as a Campus 

Network (CN).  Figure 4 shows the topology for the CN.  

Each CN consists of 4 servers, 30 routers, and 504 end 

hosts for a total of 538 nodes.  The CN is comprised of 4 

separate sub-networks.  Net 0 consists of 3 routers, where 

node 0:0 is the gateway router for the CN.  Net 1 is 

composed of 2 routers and 4 servers.  Net 2 consists of 7 

routers, 7 LAN routers, and 294 clients.  Net 3 contains 4 

routers, 5 LAN routers, and 210 clients. 

Figure 4. A Campus Network 

All non-end host links have a bandwidth of 2Gb/s and 

have a propagation delay of 5ms with the exception of the 

Net 0 to Net 1 links, which have a delay of 1ms.  End hosts 

are connected point-to-point with their respective LAN 

router and have links with 100Mb/s in bandwidth and have 

a delay of 1ms. 

Multiple CNs may be instantiated and connected 

together to form a ring topology.  This aspect of the 

network allows the baseline model to be easily scaled to 

arbitrarily large sizes.  Multiple CNs are interconnected 

through a high latency 200ms “ring” link with 2Gb/s 

bandwidth via their Net 0 gateway router (node 0:0).  The 

baseline model also contains chord links between CN i and

CN i + 4 where i mod 4 is zero.  A second set of chord 

links exist between CN i and CN i + 10 where i mod 2 is 

zero and i is less than half of the length of the ring.  For 

our tests, we instantiated 7 CNs per LP, which is the 

maximum number of CNs representable within the total 

memory available per processor. 

In our analysis and performance evaluation, we focus 

on pure TCP traffic transferred to and requested by end 

hosts from server nodes.  We use a short transfer case of 

the baseline model, in which clients request 500,000 bytes 

from a Net 1 server.  TCP sessions start at time selected 

from a uniform distribution over the interval from 0 and 10 

seconds of simulation time.  The baseline model specifies 

for TCP traffic to be requested from the neighboring CN 

that is one ring link hop away.  This traffic model 

exercises only the ring links and no chord links, 

consequently, we have modified the traffic scenarios for 

some of our test cases to allow end hosts to request data 

from any Net 1 server in the ring network at random.

4.2.   Scenarios 

The baseline model was enhanced to test the effects of 

irregularity and asymmetry on time management 

performance.  The modifications are intended to exercise 

irregularity of both traffic and topology.  The five 

scenarios (see Table 1) represent five contrasting 

configurations, providing a range of benchmarks.  Random 

server selection and varying propagation delay on ring and 

chord links were parameters that were modified to create 

scenarios used in the performance study. 
Table 1. Benchmark Scenarios 

Scenario Traffic Chord? Special Properties 

Baseline Std. No None 

Baseline-R Rand. No None 

Baseline-2ms Rand. No Single 2ms ring link 

Chord-R Rand. Yes None 

Chord-Asym Rand. Yes Asym. Chord delays 

Three scenarios were drafted where no chord links 

were used.  The Baseline model consists of standard ring 

link delays and standard server selection.  Traffic 

restrictions for Baseline-R are not limited to the next 

neighbor but any server in the ring network.  Baseline-2ms

is similar to the previous scenario, but has a single 2ms 

ring link that spans two LPs. 

The other two scenarios contain chord links to add 

more paths to the network topology.  Chord-R contains 

standard 200ms ring and chord delays with random server 

selection.  Chord-Asym contains asymmetric, random 

chord delays from 10-50ms.

4.3.   Software and Hardware Platforms 

The Parallel/Distributed ns (pdns) [23] network simulator 

was used in the performance study.  pdns is an HLA RTI-

based network simulator that works by federating [24] 

sequential ns-2 simulators with additional syntax and 

functionality that allows individual ns-2 instances to 

communicate and send events to each other.  libSynk [25, 

26] was used as the underlying communications and time 

management library to manage the pdns instances.  libSynk

uses shared memory for communications within an SMP 

and TCP/IP for communication across SMPs.  

Optimizations to the RTI for efficient parallel simulation 

of networks [27] were included.  The CMB null message 

algorithm was added to libSynk for the performance tests.  

The five benchmark scenarios were tested on two different 

hardware platforms: 

Intel Pentium III Linux Cluster (P3) – Consists of 16 

8-way 550MHz Pentium II Xeon SMP machines with 4GB 

RAM connected via Gigabit Ethernet.  The operating 
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system is Red Hat Linux 7.3 running a customized 2.4.18-

27.7.xsmp kernel.   libSynk and pdns (based on ns-2.26) 

were compiled using gcc-3.2.3 with compiler 

optimizations for the Intel Pentium III architecture. 

Intel Itanium 2 Linux Cluster (IA64) – Consists of 30 

2-way 900MHz Itanium 2 SMP machines with 6GB RAM 

connected via Gigabit Ethernet.  The operating system is 

Red Hat Advanced Workstation 2.1 running a 2.4.18-

e.31smp kernel.  libSynk and pdns (based on ns-2.26) were 

compiled using Intel’s ia-64 C/C++ compiler 7.1 (ecc). 

Scalability tests for the Baseline model were 

conducted on the Pittsburgh Supercomputing Center’s 

“Lemieux” Compaq Alpha Tru64 Cluster (PSC).  The 

cluster has 750 4-way 1GHz Alpha ES45 SMP nodes with 

4GB RAM connected via a Quadrics switch.  libSynk and

pdns (based on ns-2.1b9) were compiled using gcc-3.0.

4.4.   Approximating Null Message Transmissions 

Using the analytical model for CMB algorithms, the 

number of null messages sent can be estimated.  Table 2 

shows null message activity estimates for the Baseline
scenario along with measurements from the parallel 

simulator.  In this scenario, s=25, lookahead=0.2, 

f=(0.2/3), n=2, and c=0.5.
Table 2. Null Message Send Estimations 

Number of CPUs Approximation Measurement 

4 1,500 1,424 

8 3,000 2,974 

16 6,000 6,064 

32 12,000 11,890 

64 24,000 23,586 

128 48,000 48,628 

256 96,000 96,034 

512 192,000 193,862 

Table 2 shows that our analytical model predicts the 

null message counts quite accurately.  The discrepancy 

between the approximation and simulation numbers are 

due to the estimation of the null frequency and null 

message cancellation rate.  It is nearly impossible to 

predict the exact interaction between event processing and 

the effects on null message frequency and cancellations, 

yet the approximation is very close to the actual null 

message activity from simulation. 

4.5.   Approximating Null Message Overhead 

Utilizing the previous estimation results for the number of 

null messages sent and equation 3 derived from the 

analytical model, it is possible to estimate the 

synchronization overhead incurred for each scenario. 

Simply comparing the overhead index for a particular 

scenario to its corresponding run time performance 

(wallclock seconds) is inadequate.  This is because the 

elapsed time to run a simulation does not gauge the 

amount of work performed by the network simulator.  

Instead, a new metric is defined: Packet Transmissions per 

Second of wallclock time (PTS).  PTS is effectively the 

number of “packet hops” processed in a second of 

wallclock time where a “packet hop” represents the 

transmission of a packet from one node (a router or end 

node system) to another over a link in the network.  The 

PTS metric will be used to determine work performed by 

the simulator, and is adequate to compare against the 

overhead index as the PTS rate is dependent upon time 

management overhead. 

The overhead indices and PTS rates for 32 CPUs are 

shown in Table 3.  For each of the scenarios, it is known 

that 28 CPUs (87.5%) send null messages through shared 

memory buffers and the remaining 4 CPUs (12.5%) 

communicate via TCP/IP over Ethernet.  Using the values 

m=32, p1=0.875, p2=0.125, w1=1, and w2=10, the overhead 

index for the Baseline scenario is 6.25.   
Table 3. Overhead Approximation 

Scenario Overhead Index PTS 

Baseline 6.25 1,512,410 

Baseline-R 8.52 865,385 

Baseline-2ms 10.54 621,008 

Chord-R 9.43 699,848 

Chord-Asym 12.21 684,630 

Clearly, an inverse relationship between the overhead 

index and PTS metric exists.  The lower the overhead costs 

for the null message algorithm, the higher the performance 

of the particular scenario.  However, the Baseline-2ms and 

Chord-Asym models appear to exhibit conflicting results.  

The Chord-Asym model has a higher overhead index and 

still manages to have a higher PTS rate than the Baseline-

2ms model.  This anomaly illustrates that the overhead 

index measures only penalties associated with time 

management, not for other performance degrading 

parameters which are a result of the model itself.  

Although the overhead index does capture lookahead, it 

does not consider other factors such as load imbalance and 

the amount of remote communication due to event 

transmission.  Nevertheless, the overhead index can be 

used as an approximation tool to predict time management 

efficiency and thus, simulator performance.

4.6.   Scalability of the CMB Algorithm 

In section 3.3, we stated that, provided all parameters for 

the scenario remain constant, the overhead due to the null 

message algorithm does not change as the simulation 

model increases in scale.  We verify the same 

experimentally here for the Baseline scenario.  Due to the 

dynamic nature of the other scenarios, it was impossible to 

keep other factors such as remote communication due to 

events and lookahead constant between scalability runs. 
Table 4. Run times for the Baseline Scenario

Number of CPUs Null Messages Reductions 

16 784 736 

32 783 747 

128 787 892 

The run time using a CMB null message algorithm 

remains constant when the model is scaled from 16 to 128 
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processors as shown in Table 4.  Execution times based on 

global reductions steadily increase from the 16 CPU to the 

128 CPU case while remaining relatively constant for null 

messages.  Figure 5 (“Red” denotes global reductions) 

shows the PTS rate for the two synchronization protocols 

used in the Baseline scenario. 
Table 5. Large-Scale Run times for the Baseline Scenario

Number of CPUs Null Messages Reductions 

64 420 508 

128 414 523 

256 420 563 

512 436 620 

Table 5 shows the runtimes of the Baseline scenario 

on the Compaq Alpha Tru64 cluster.   The corresponding 

PTS rates are plotted in Figure 6.  The run time 

performance of the baseline scenario using global 

reductions increases logarithmically as the model scales in 

the number of processors.  In contrast, the null message 

algorithm performance exhibits a relatively constant run 

time performance up to 512 processors.  These simulation 

results provide strong support to verify the overhead model 

and proposition put forth in section 3.3. 
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Figure 6. Large-Scale PTS Rate

The experimental results presented in this section have 

only investigated synchronization behavior of only a 

structured, regular network (e.g. Baseline model).  In the 

next section, we will compare the performance of 

asynchronous and synchronous algorithms for network 

models of both regular and irregular structure. 

5.    Regular and Irregular Network 

       Models 

Due to the asynchronous nature of the null message 

algorithm, synchronization happens “locally” and remains 

constant even as the simulation model scales.  This is the 

reason why CMB algorithms tend to scale better than 

schemes based on synchronous time management such as 

global reductions, if all other factors remain constant.

5.1.   Simulation Performance of Structured,  

         Regular Networks

First we examine the performance of synchronous and 

asynchronous time management in the context of relatively 

regular network models.  The performance of the Baseline
model on both the Intel Pentium III and Itanium 2 cluster 

is shown in Figure 7, which was discussed in the previous 

section. 
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Figure 7. Performance of the Baseline Scenario
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Figure 8. Performance of the Baseline-R Scenario 
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Figure 9. Performance of the Chord-R Scenario 
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The Baseline-R scenario is another network 

considered as a regular model with random server 

selection.  Figure 8 illustrates that the trends of the 

Baseline-R scenario do not differ significantly from that of 

the Baseline model.  The random Net 1 server selection 

pushes the performance asynchronous null message time 

management ahead of the global reduction algorithm at 16 

CPUs for the P3 data and at 54 CPUs for the IA64 data. 

The final regular network is the Chord-R scenario 

which is shown in figure 9.  Although the addition of 

chords add asymmetry to the network, the structure and 

regularity of the network model is preserved by identical 

lookahead on all chord and ring links.  Similar trends to 

the first two scenarios re-emerge in Chord-R.

These scalability runs thus far show that there exist 

only small gains in using one synchronization algorithm 

over the other in small- to medium-scale regular networks.  

However, simulation results suggest that the CMB 

algorithm with a constant number of output channels is 

more appropriate for large-scale simulations even in 

scenarios composed of nearly all consistent structure. 

5.2.   Simulation Performance of Asymmetric,  

         Irregular Networks 

The two irregular network scenarios, Baseline-2ms and 

Chord-Asym will highlight differences and deficiencies 

between synchronous and asynchronous time management 

algorithms. 
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Figure 10. Performance of the Baseline-2ms Scenario 
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Figure 11. Performance of the Chord-Asym Scenario

Figure 10 shows a significant difference in PTS rate 

between the null message algorithm and global reductions 

for the Baseline-2ms network model.  Moreover, the null 

message trends remain linear while the synchronous global 

reductions have constant or less than linear increases in 

PTS rates as the number of processors scale.  This scenario 

shows the pathological case for global reductions, as the 

time management system must stop and synchronize the 

simulation every 2ms. 

The Chord-Asym scenario shown in Figure 11 

demonstrates the benefits of a null message algorithm in a 

typical irregular network.  A null message algorithm can 

take advantage of the varying lookahead values for each 

output channel while a synchronous algorithm must 

interrupt execution of the simulation at intervals dictated 

by the global minimum lookahead. 

6.    Future Work 

It is reasonable to assume that CMB allows simulations to 

scale to arbitrarily large sizes (assuming parameters 

discussed earlier are held constant), provided the software 

infrastructure supports very large scale simulation.  

Increasing the number of processors beyond 512 to test 

this conjecture would be the logical next step in furthering 

the scalability study.  We have performed initial 1,024 

CPU runs, which seem to indicate that CMB algorithm 

performs at expected levels extrapolated from table 5.  

Additional scenarios could be conceived to further test the 

suitability and adaptability of each type of synchronization 

algorithm, not only for network simulations, but for other 

applications as well.  Other network simulators, such as 

GTNetS [28] could be used to gather additional data points 

in order to ascertain if similar improvements in 

performance is experienced across simulators. 

Empirical data gathered on scalability tests over a 

heterogeneous mix of hardware consisting of varying 

network and platform (CPU, OS) components would be 

useful for simulation environments across different 

computational clusters.  It would be interesting to see 

whether synchronous or asynchronous time management 

would prove to be the better option in these mixed 

environment cases. 

7.    Conclusions 

We presented an analytical model for an asynchronous 

lazy null message algorithm for time management.  The 

proposed equations can be used to approximate null 

message activity and a corresponding overhead index.  In 

particular, the overhead index predicts that the optimized 

null message algorithm ensures no appreciable increase in 

overhead if the fan-in/fan-out of channels is held constant 

as the simulation scaled with the number of processors. 

We also showed that a null message algorithm offers 

more flexibility for irregular and asymmetric network 

models. An optimized CMB algorithm can tailor 
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synchronization messages according to output channel 

lookahead values to local neighbors only, in contrast to 

global communication in a synchronous time management 

system.  These properties prove to be advantageous in 

large-scale network simulation. 
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