
Conservative Synchronization of Large-Scale Network Simulations

 Alfred Park Richard M. Fujimoto Kalyan S. Perumalla

College of Computing, Georgia Institute of Technology

 Atlanta, Georgia, USA 30332-0280

 {park,fujimoto,kalyan}@cc.gatech.edu

Abstract

Parallel discrete event simulation techniques have enabled

the realization of large-scale models of communication
networks containing millions of end hosts and routers.

However, the performance of these parallel simulators

could be severely degraded if proper synchronization
algorithms are not utilized. In this paper, we compare the

performance and scalability of synchronous and

asynchronous algorithms for conservative parallel
network simulation. We develop an analytical model to

evaluate the efficiency and scalability of certain variations

of the well-known null message algorithm, and present
experimental data to verify the accuracy of this model.

This analysis and initial performance measurements on

parallel machines containing hundreds of processors
suggest that for scenarios simulating scaled network

models with constant number of input and output channels

per logical process, an optimized null message algorithm
offers better scalability than efficient global reduction

based synchronous protocols.

1. Introduction

In conservative parallel discrete event simulation (PDES),

an event cannot be processed unless it is safe to do so.

Since all logical processes (LPs) do not have a consistent

view of the state of the entire system, LPs must exchange

information to determine when events are safe to process.

This process of synchronizing LPs has been the subject of

much past research [1].

Conservative synchronization algorithms can be

broadly classified as asynchronous or synchronous.

Asynchronous algorithms do not require global

synchronizations. A well-known example is the null

message algorithm for deadlock avoidance originally

developed independently by Chandy and Misra [2] and

Bryant [3]. Variants to the original Chandy-Misra-Bryant

(CMB) null message algorithm to improve efficiency have

been devised and evaluated [4-7]. On the other hand,

synchronous algorithms use global synchronization and

reduction computations to compute a Lower Bound on

Timestamp (LBTS) of future messages that might be

received by each LP, in order to determine when events

are safe to process. A well-known example is the YAWNS

protocol described in [8]. Other algorithms use techniques

such as deadlock detection and recovery [9] and simulation

time windows [10].

Although previous studies have evaluated the

performance of conservative synchronization algorithms

for inefficiencies and overhead (e.g., see [11-13]), the

scale of these studies have been, for the most part, limited

to modest sized configurations, with most using fewer than

100 processors. As the number of LPs that participate in a

parallel and distributed simulation increase, performance

conclusions based on small-scale simulation studies may

not apply to a large-scale context and the appropriateness

of a particular synchronization method can shift from one

algorithm to another. Here, we address scalability

concerns in order to compare an asynchronous CMB null

message algorithm with a synchronous barrier algorithm

for large-scale network simulations.

The paper is organized as follows. Related work is

first discussed in the next section. A lazy null message

algorithm and an associated analytical model are presented

in section 3. Section 4 describes the simulation scenarios

used for the experimental study, and presents comparison

between analytical model predictions and measurements.

Section 5 presents empirical data comparing the

performance of CMB and global reduction algorithms for

regular and irregular networks. Future work and

conclusions follow in sections 6 and 7, respectively.

2. Related Work

While there has been much research comparing optimistic

and conservative synchronization protocols, there has been

comparatively little work devoted to comparing the

performance of asynchronous and synchronous

conservative synchronization algorithms for large numbers

of processors. Bagrodia and Takai provide extensive

performance comparisons of synchronous and

asynchronous synchronization algorithms, but do not

consider large numbers of processors [4]. Nicol describes

scalability through analysis of model characteristics,

partitioning, workload balance, and model complexity in a

broad PDES context [14]. However, our work specifically

analyzes the detailed costs associated with the operation of

a lazy null message algorithm. Further, we show that

better scalability can be achieved using CMB, compared to

global reduction algorithms, in scaled network models

with constant fan-in/fan-out. This is performed with an

emphasis on quantitative results supporting our findings.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

Nicol and Liu [15] combine asynchronous channel

scanning and synchronous global barrier algorithms with a

good amount of experimental data examining fan-in/fan-

out and lookahead up to 8 processors. We discuss

performance implications on larger configurations,

specifically comparing lazy null message-based and global

reduction-based algorithms. These algorithms are applied

to regular and irregular network models with varying load

distributions and asymmetric lookahead values, on up to

128 processors. Nicol also presents models to provide a

lower-bound on the performance of a synchronous global

reduction algorithm that can apply to large numbers of LPs

[16, 17]. Our analytic model differs from this work in its

focus on scalability concerns for the CMB algorithm.

While analyzers described in [18] illustrate speedup

differences between synchronous and asynchronous

algorithms, our focus lies in identifying detailed CMB

performance characteristics, such as null message send

frequency and overhead, and applied to analytical models

for large-scale network simulation. Synchronization

challenges are described by Naroska and Schwiegelshohn

[19] for large number of processes. While their work

focuses on VLSI design, we focus on network simulations.

The work presented in [20] contains models that exclude

lookahead values [21]. However, their approach requires

extensive knowledge of various metrics and has no means

to measure the effect of increasing scale.

3. Analytical Models for CMB

The impetus for utilizing an asynchronous rather than a

synchronous algorithm is to avoid the potentially large

amount of overhead in interrupting the simulation,

calculating and distributing new LBTS values, and

restarting the LPs. Synchronization based on the CMB

algorithm depends upon null messages exchanged only

between neighboring processors. The frequency and time

stamp of these null messages dictate the behavior and

performance of the simulation; this simple observation will

drive the formulation of the analytical CMB model. We

will iteratively build this model. The end result will be a

model for the CMB null message algorithms that can

approximate simulator performance in structured large-

scale network simulations. In the following we assume the

parallel simulator consists of a collection of LPs that

communicate by exchanging messages.

3.1. Effect of Null Messages on Simulation

 Behavior

Lookahead is one of the most important factors to

achieving good performance in conservative PDES. Each

LP is allowed to process events without re-synchronizing

with other LPs up to its LBTS value. In general,

conservative PDES performs well when the difference

between successive LBTS values is large relative to the

simulation time between successive events, because each

LP can process many events before it must re-synchronize

with other processors.

In a traditional CMB algorithm, after an event is

processed, null messages are sent to every output channel

to neighboring LPs. It is well known that overly eager null

message transmission schemes produce an excessive

number of null messages, leading to other algorithms that

improve CMB performance by sending null messages less

often. However, a sufficient number of null messages

must be sent in order to avoid deadlock. The frequency of

null message sends can have a large effect on performance.

As the number of null messages increases, the overhead to

synchronize increases proportionately, and less useful

work is accomplished each second of wallclock time.

Lookahead, null message frequency, time advance

conditions, and remote communication are all contributing

factors in the analytical model characterizing the

performance of algorithms based on null messages.

Here, we relax the constraints assumed in the original

null message algorithm. Specifically, a LP need not send

messages in time stamp order. We do assume that the

communication channel delivers messages in the same

order in which they were sent. These assumptions imply

that all simulation time information for computing new

LBTS values resides in the time stamps of null messages.

3.2. A Lazy CMB Null Message Algorithm

This variant of the CMB algorithm, which is traditionally

referred to as lazy CMB, attempts to minimize the number

of null messages by only sending them when absolutely

necessary. Specifically, null messages are only sent when

the LP reaches the end of its safe processing time, i.e.,

only when the LP must block. Failing to send null

messages while in this blocked state could lead to

deadlock situations.

Figure 1. Execution Timeline of a Lazy CMB Algorithm

Figure 1 shows the progression of the simulation

using the lazy CMB algorithm where each LP has the same

lookahead. Note that “LBTS” in the figure represents

when a new LBTS value is computed for time

management. This lazy null message execution resembles

that of a time-stepped simulation. With a minimal number

of null messages exchanged between LPs, this scheme

appears to be an efficient synchronization protocol. One

can calculate the number of null messages N sent as:

NullNullNull

LBTS

Parallel
Execution

Parallel
Execution

Parallel
Execution

LP A

LP B

LBTS LBTS

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

lookahead

s
nmN (1)

where m is the number of LPs, n is the number of output

channels per LP, and s is the length of the run in

simulation time. The number of execution windows (s

divided by lookahead), gives the number of rounds or

time-steps for which null messages are sent. Multiplying

this result by the number of output channels yields the

number of null messages sent each round. The product of

this result and the total number of LPs gives the total

number of null messages exchanged during the entire

simulation. It is important to emphasize that formula 1

pertains to a CMB algorithm applied to a regular,

structured network model. In other words, the lookahead

of each LP is assumed to be the same.

In our sample simulation, let m = 8, n = 2, s = 25, and

lookahead = 0.2 seconds. By formula 1, the total number

of null messages would be 2,000. We can modify equation

1 to approximate the number of synchronization messages

(N) sent when a butterfly barrier is used (assuming that m

is a multiple of 2):

lookahead

s
mmN 2log (2)

The same simulation under a synchronous algorithm

using global reductions through a butterfly barrier

mechanism results in 3,000 synchronization messages

from equation 2. More generally, if the number of output

channels does not increase with the number of LPs, the

number of null messages in CMB increases linearly with

the number of LPs, yielding lower overhead than the

approach using reductions.

Figure 2. Blocking in a Lazy CMB Algorithm

It is important to note, however, that minimizing the

number of null messages does not necessarily maximize

performance. In particular, a modest load imbalance may

lead to large waiting times that could be avoided by

sending additional null messages. To see this, consider the

example in figure 2, showing two LPs A & B with output

channels between them. Here, LP A determines that it can

no longer process events safely. LP A sends a null

message to LP B and blocks. However, LP B is busy

processing events within its own LBTS limit. Further,

when LP B completes processing these events, it can

process the null message from LP A, compute a new

LBTS value, and begin processing events based on this

new value, all without sending a null message to LP A.

Because no new null message is sent to LP A, LP A will

remain blocked. A null message will be sent to LP A only

after LP B has finished processing these new events and is

forced to block. Moreover, the delay to transmit this null

message from LP A to LP B further increases the amount

of time LP A remains blocked.

A solution to this problem is to have each LP send

null messages more frequently. One must generate more

null messages, but not so many that the system is burdened

with an excessive amount. This is discussed next.

3.3. An Optimized Lazy Null Message Algorithm

One approach to generating additional null messages is to

designate that each LP should send null messages every f
units of simulation time advance, where f is less than the

LP’s lookahead (continuing to assume, for the moment,

that all links have the same lookahead; we will relax this

assumption later). By increasing the frequency of null

messages sent to neighbors, potentially long blocking

times can be avoided.

A second optimization to this approach is to eliminate

null messages that carry no new useful information. For

example, if two successive null messages carry the same

time stamp it is clear there is no reason to send the second.

Thus, we can cancel (suppress) any superfluous null

messages that convey no new information, by not sending

those messages at all.

To include these two changes, we can modify

equation 1 to yield:

 c
f

s
nmN 1 (3)

where c is the proportion of null messages cancelled and f

is the frequency at which null messages are sent. Here, f is

used in place of the lookahead value in equation 1. Due to

the non-deterministic nature of the modified lazy null

message algorithm, equation 3 provides only a lower-

bound estimate on the number of null messages sent if

lookahead is used for f. The quantity c cannot equal 1 nor

can f equal 0 (which means all null messages are cancelled

or no null messages are sent, respectively). If either of

these conditions were true, then the deadlock avoidance

guarantee of the CMB algorithm would be violated.

We now turn to the more general case of non-uniform

lookahead on output channels. It is useful to construct an

analytical model for which the simulation models are

irregular. Here, we assume a lookahead value is assigned

to each link.

In the case of different lookahead values for different

LPs, formula 3 can be modified to yield:
m

j

n

k

jk

jk

c
f

s
N

1 1

1 (4)

 LP B Continues LP B Busy

LBTS

LBTS

LBTS

LP A Waiting

NullNull

LP A

LP B

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

where fjk represents either the minimum lookahead on the

outgoing channel to LP jk or the frequency of null message

sends. From a LP j, if there are multiple outgoing links to

a neighboring LP x, they are consolidated into a single

output channel with the lookahead assigned as the

minimum of all outgoing links to x. In figure 3, a sample

LP topology is constructed where the lookahead on all

output links between LPs is 10, with the exception of the

link between LP A and LP B. Although the lookahead is

10 between LPs A & E and LPs B & C, we can see that

both LP C and LP E receive null message updates from

LPs A & B at 1 time unit intervals. Therefore, the

“localized effect” of non-uniform lookahead must be

carefully considered before applying an estimate using

equation 4. Equation 4 is applicable even in the case

where all lookahead values are the same among all output

channels, in which case the equation would then be

equivalent to equation 3.

Equations 1-4 include lookahead and null message

frequency to give an approximation on the number of null

messages sent during the course of the simulation. As

mentioned earlier, the number of null messages is useful,

but it does not in itself offer an estimate on the efficiency

of the synchronization algorithm. In addition to blocking,

the type of communication (e.g. shared memory vs.

Ethernet) and other related factors provide a better

approximation on the overhead of a null message

algorithm.

a

i

m

j

n

k

jk

jk

ii c
f

s

m
wp

a 1 1 1

1
1

ln
1

 (5)

Equation 5 represents an overhead index for the lazy

null message algorithm. Here a represents the number of

different types of remote communication used in the

simulation, p is the percentage and w is the weight given to

a specific type of remote communication. The quantity w
is a normalization factor for different communication

media. For instance, if we had remote communication

over both shared memory (w1) and Ethernet (w2), a

possible normalization would be w1=1 and w2=10 to

represent shared memory being faster by an order of

magnitude compared to Ethernet. The natural logarithm is

applied to represent the index as a monotonically

increasing function of the product of the types of remote

communication used and the average amount of null

messages sent and received per LP.

Utilizing these equations, one could compute not only

the number of null messages that would be sent over all

LPs, but also the relative messaging overhead incurred

with a particular null message algorithm or simulation

scenario. This can be particularly useful when attempting

to predict performance of a new scenario against an

established baseline (e.g. scaled experiments).

3.4. Synchronizing Large-Scale Simulations

Equation 5 predicts that the overhead associated with these

variations of the null message algorithm will remain

relatively constant as a simulation scales, assuming the

number of output channels for each LP does not increase

with the number of LPs, and all other factors (such as

relative amount of remote communication and lookahead)

remain unchanged. On the other hand, synchronous time

management algorithms have larger overheads as the

simulation scales in the number of processors.

Notice that the only change from equation 1 to

equation 2 is the substitution of log2m for n. For a

synchronous time management algorithm, the number of

synchronization messages increases at a rate of mlog2m,

compared to a rate of m for CMB. In addition, this cost for

synchronous algorithms does not include the penalty of

jointly interrupting and restarting all LPs which increases

linearly as the number of LPs increases, contributing to the

overhead of time management for every LBTS

computation. This claim will be discussed further with

performance results in section 4.5.

4. Applying the Analytical Null Message

 Model to Predict Performance

Using the analytical model formulated in the previous

section, we can forecast null message activity and

overhead indices. These indicators can then be used to

predict behavior and performance for different simulation

models. We will first estimate null message activity and

overhead and then verify our numbers through

experimental measurements. For the following sections

regarding experimental results, one LP corresponds to one

physical processor (CPU).

4.1. Baseline Model

For our study, we used benchmarks developed at

Dartmouth College as a set of baseline models for the

network modeling and simulation community [22]. This

1

1010

1010

LP A

10

10

10

10

10

10

1

10

10

1

LP A

T = 0

2 2

1212

T = 1

3 3

1313

T = 2

Initial
Configuration

LP D

LP C

LP B

LP E LP E

LP D

LP C

LP B

LP A

LP E

LP D

LP C

LP B

LP E

LP D

LP C

LP B LP A

Figure 3. Example Illustrating the Operation of Null

Message Exchange with Non-Uniform Lookahead

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

baseline configuration was created to facilitate and

demonstrate network simulator scalability.

Each portion of the network is referred to as a Campus

Network (CN). Figure 4 shows the topology for the CN.

Each CN consists of 4 servers, 30 routers, and 504 end

hosts for a total of 538 nodes. The CN is comprised of 4

separate sub-networks. Net 0 consists of 3 routers, where

node 0:0 is the gateway router for the CN. Net 1 is

composed of 2 routers and 4 servers. Net 2 consists of 7

routers, 7 LAN routers, and 294 clients. Net 3 contains 4

routers, 5 LAN routers, and 210 clients.

Figure 4. A Campus Network

All non-end host links have a bandwidth of 2Gb/s and

have a propagation delay of 5ms with the exception of the

Net 0 to Net 1 links, which have a delay of 1ms. End hosts

are connected point-to-point with their respective LAN

router and have links with 100Mb/s in bandwidth and have

a delay of 1ms.

Multiple CNs may be instantiated and connected

together to form a ring topology. This aspect of the

network allows the baseline model to be easily scaled to

arbitrarily large sizes. Multiple CNs are interconnected

through a high latency 200ms “ring” link with 2Gb/s

bandwidth via their Net 0 gateway router (node 0:0). The

baseline model also contains chord links between CN i and

CN i + 4 where i mod 4 is zero. A second set of chord

links exist between CN i and CN i + 10 where i mod 2 is

zero and i is less than half of the length of the ring. For

our tests, we instantiated 7 CNs per LP, which is the

maximum number of CNs representable within the total

memory available per processor.

In our analysis and performance evaluation, we focus

on pure TCP traffic transferred to and requested by end

hosts from server nodes. We use a short transfer case of

the baseline model, in which clients request 500,000 bytes

from a Net 1 server. TCP sessions start at time selected

from a uniform distribution over the interval from 0 and 10

seconds of simulation time. The baseline model specifies

for TCP traffic to be requested from the neighboring CN

that is one ring link hop away. This traffic model

exercises only the ring links and no chord links,

consequently, we have modified the traffic scenarios for

some of our test cases to allow end hosts to request data

from any Net 1 server in the ring network at random.

4.2. Scenarios

The baseline model was enhanced to test the effects of

irregularity and asymmetry on time management

performance. The modifications are intended to exercise

irregularity of both traffic and topology. The five

scenarios (see Table 1) represent five contrasting

configurations, providing a range of benchmarks. Random

server selection and varying propagation delay on ring and

chord links were parameters that were modified to create

scenarios used in the performance study.
Table 1. Benchmark Scenarios

Scenario Traffic Chord? Special Properties

Baseline Std. No None

Baseline-R Rand. No None

Baseline-2ms Rand. No Single 2ms ring link

Chord-R Rand. Yes None

Chord-Asym Rand. Yes Asym. Chord delays

Three scenarios were drafted where no chord links

were used. The Baseline model consists of standard ring

link delays and standard server selection. Traffic

restrictions for Baseline-R are not limited to the next

neighbor but any server in the ring network. Baseline-2ms

is similar to the previous scenario, but has a single 2ms

ring link that spans two LPs.

The other two scenarios contain chord links to add

more paths to the network topology. Chord-R contains

standard 200ms ring and chord delays with random server

selection. Chord-Asym contains asymmetric, random

chord delays from 10-50ms.

4.3. Software and Hardware Platforms

The Parallel/Distributed ns (pdns) [23] network simulator

was used in the performance study. pdns is an HLA RTI-

based network simulator that works by federating [24]

sequential ns-2 simulators with additional syntax and

functionality that allows individual ns-2 instances to

communicate and send events to each other. libSynk [25,

26] was used as the underlying communications and time

management library to manage the pdns instances. libSynk

uses shared memory for communications within an SMP

and TCP/IP for communication across SMPs.

Optimizations to the RTI for efficient parallel simulation

of networks [27] were included. The CMB null message

algorithm was added to libSynk for the performance tests.

The five benchmark scenarios were tested on two different

hardware platforms:

Intel Pentium III Linux Cluster (P3) – Consists of 16

8-way 550MHz Pentium II Xeon SMP machines with 4GB

RAM connected via Gigabit Ethernet. The operating

0:1

0:2 1:0 1:2

1:3

1:4

1:54 5

2:0 2:1

2:2 2:3

2:4 2:5

2:6

3:0 3:1

3:2 3:3

Net 1

Net 2 Net 3

1:1

Net 0

To other CNs

0:0

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

system is Red Hat Linux 7.3 running a customized 2.4.18-

27.7.xsmp kernel. libSynk and pdns (based on ns-2.26)

were compiled using gcc-3.2.3 with compiler

optimizations for the Intel Pentium III architecture.

Intel Itanium 2 Linux Cluster (IA64) – Consists of 30

2-way 900MHz Itanium 2 SMP machines with 6GB RAM

connected via Gigabit Ethernet. The operating system is

Red Hat Advanced Workstation 2.1 running a 2.4.18-

e.31smp kernel. libSynk and pdns (based on ns-2.26) were

compiled using Intel’s ia-64 C/C++ compiler 7.1 (ecc).

Scalability tests for the Baseline model were

conducted on the Pittsburgh Supercomputing Center’s

“Lemieux” Compaq Alpha Tru64 Cluster (PSC). The

cluster has 750 4-way 1GHz Alpha ES45 SMP nodes with

4GB RAM connected via a Quadrics switch. libSynk and

pdns (based on ns-2.1b9) were compiled using gcc-3.0.

4.4. Approximating Null Message Transmissions

Using the analytical model for CMB algorithms, the

number of null messages sent can be estimated. Table 2

shows null message activity estimates for the Baseline
scenario along with measurements from the parallel

simulator. In this scenario, s=25, lookahead=0.2,

f=(0.2/3), n=2, and c=0.5.
Table 2. Null Message Send Estimations

Number of CPUs Approximation Measurement

4 1,500 1,424

8 3,000 2,974

16 6,000 6,064

32 12,000 11,890

64 24,000 23,586

128 48,000 48,628

256 96,000 96,034

512 192,000 193,862

Table 2 shows that our analytical model predicts the

null message counts quite accurately. The discrepancy

between the approximation and simulation numbers are

due to the estimation of the null frequency and null

message cancellation rate. It is nearly impossible to

predict the exact interaction between event processing and

the effects on null message frequency and cancellations,

yet the approximation is very close to the actual null

message activity from simulation.

4.5. Approximating Null Message Overhead

Utilizing the previous estimation results for the number of

null messages sent and equation 3 derived from the

analytical model, it is possible to estimate the

synchronization overhead incurred for each scenario.

Simply comparing the overhead index for a particular

scenario to its corresponding run time performance

(wallclock seconds) is inadequate. This is because the

elapsed time to run a simulation does not gauge the

amount of work performed by the network simulator.

Instead, a new metric is defined: Packet Transmissions per

Second of wallclock time (PTS). PTS is effectively the

number of “packet hops” processed in a second of

wallclock time where a “packet hop” represents the

transmission of a packet from one node (a router or end

node system) to another over a link in the network. The

PTS metric will be used to determine work performed by

the simulator, and is adequate to compare against the

overhead index as the PTS rate is dependent upon time

management overhead.

The overhead indices and PTS rates for 32 CPUs are

shown in Table 3. For each of the scenarios, it is known

that 28 CPUs (87.5%) send null messages through shared

memory buffers and the remaining 4 CPUs (12.5%)

communicate via TCP/IP over Ethernet. Using the values

m=32, p1=0.875, p2=0.125, w1=1, and w2=10, the overhead

index for the Baseline scenario is 6.25.
Table 3. Overhead Approximation

Scenario Overhead Index PTS

Baseline 6.25 1,512,410

Baseline-R 8.52 865,385

Baseline-2ms 10.54 621,008

Chord-R 9.43 699,848

Chord-Asym 12.21 684,630

Clearly, an inverse relationship between the overhead

index and PTS metric exists. The lower the overhead costs

for the null message algorithm, the higher the performance

of the particular scenario. However, the Baseline-2ms and

Chord-Asym models appear to exhibit conflicting results.

The Chord-Asym model has a higher overhead index and

still manages to have a higher PTS rate than the Baseline-

2ms model. This anomaly illustrates that the overhead

index measures only penalties associated with time

management, not for other performance degrading

parameters which are a result of the model itself.

Although the overhead index does capture lookahead, it

does not consider other factors such as load imbalance and

the amount of remote communication due to event

transmission. Nevertheless, the overhead index can be

used as an approximation tool to predict time management

efficiency and thus, simulator performance.

4.6. Scalability of the CMB Algorithm

In section 3.3, we stated that, provided all parameters for

the scenario remain constant, the overhead due to the null

message algorithm does not change as the simulation

model increases in scale. We verify the same

experimentally here for the Baseline scenario. Due to the

dynamic nature of the other scenarios, it was impossible to

keep other factors such as remote communication due to

events and lookahead constant between scalability runs.
Table 4. Run times for the Baseline Scenario

Number of CPUs Null Messages Reductions

16 784 736

32 783 747

128 787 892

The run time using a CMB null message algorithm

remains constant when the model is scaled from 16 to 128

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

processors as shown in Table 4. Execution times based on

global reductions steadily increase from the 16 CPU to the

128 CPU case while remaining relatively constant for null

messages. Figure 5 (“Red” denotes global reductions)

shows the PTS rate for the two synchronization protocols

used in the Baseline scenario.
Table 5. Large-Scale Run times for the Baseline Scenario

Number of CPUs Null Messages Reductions

64 420 508

128 414 523

256 420 563

512 436 620

Table 5 shows the runtimes of the Baseline scenario

on the Compaq Alpha Tru64 cluster. The corresponding

PTS rates are plotted in Figure 6. The run time

performance of the baseline scenario using global

reductions increases logarithmically as the model scales in

the number of processors. In contrast, the null message

algorithm performance exhibits a relatively constant run

time performance up to 512 processors. These simulation

results provide strong support to verify the overhead model

and proposition put forth in section 3.3.

0

1

2

3

4

5

6

7

0 32 64 96 128

Processors

M
ill
io

n
s
 o

f
P

T
S

Null-P3 Red-P3

`

Figure 5. Effect of Scale on PTS Rate

0

10

20

30

40

50

0 128 256 384 512

Processors

M
ill
io

n
s
 o

f
P

T
S

Null-PSC Red-PSC

Figure 6. Large-Scale PTS Rate

The experimental results presented in this section have

only investigated synchronization behavior of only a

structured, regular network (e.g. Baseline model). In the

next section, we will compare the performance of

asynchronous and synchronous algorithms for network

models of both regular and irregular structure.

5. Regular and Irregular Network

 Models

Due to the asynchronous nature of the null message

algorithm, synchronization happens “locally” and remains

constant even as the simulation model scales. This is the

reason why CMB algorithms tend to scale better than

schemes based on synchronous time management such as

global reductions, if all other factors remain constant.

5.1. Simulation Performance of Structured,

 Regular Networks

First we examine the performance of synchronous and

asynchronous time management in the context of relatively

regular network models. The performance of the Baseline
model on both the Intel Pentium III and Itanium 2 cluster

is shown in Figure 7, which was discussed in the previous

section.

0

1

2

3

4

5

6

7

0 32 64 96 128

Processors

M
il
li
o

n
s
 o

f
P

T
S

Null-P3 Red-P3 Null-IA64 Red-IA64

Figure 7. Performance of the Baseline Scenario

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 32 64 96 128

Processors

M
ill

io
n
s
 o

f
P

T
S

Null-P3 Red-P3 Null-IA64 Red-IA64

Figure 8. Performance of the Baseline-R Scenario

0.0

0.5

1.0

1.5

2.0

2.5

0 32 64 96 128

Processors

M
ill

io
n
s
 o

f
P

T
S

Null-P3 Red-P3 Null-IA64 Red-IA64

Figure 9. Performance of the Chord-R Scenario

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

The Baseline-R scenario is another network

considered as a regular model with random server

selection. Figure 8 illustrates that the trends of the

Baseline-R scenario do not differ significantly from that of

the Baseline model. The random Net 1 server selection

pushes the performance asynchronous null message time

management ahead of the global reduction algorithm at 16

CPUs for the P3 data and at 54 CPUs for the IA64 data.

The final regular network is the Chord-R scenario

which is shown in figure 9. Although the addition of

chords add asymmetry to the network, the structure and

regularity of the network model is preserved by identical

lookahead on all chord and ring links. Similar trends to

the first two scenarios re-emerge in Chord-R.

These scalability runs thus far show that there exist

only small gains in using one synchronization algorithm

over the other in small- to medium-scale regular networks.

However, simulation results suggest that the CMB

algorithm with a constant number of output channels is

more appropriate for large-scale simulations even in

scenarios composed of nearly all consistent structure.

5.2. Simulation Performance of Asymmetric,

 Irregular Networks

The two irregular network scenarios, Baseline-2ms and

Chord-Asym will highlight differences and deficiencies

between synchronous and asynchronous time management

algorithms.

0.0

0.5

1.0

1.5

2.0

2.5

0 32 64 96 128

Processors

M
ill

io
n
s
 o

f
P

T
S

Null-P3 Red-P3 Null-IA64 Red-IA64

Figure 10. Performance of the Baseline-2ms Scenario

0.0

0.5

1.0

1.5

2.0

2.5

0 32 64 96 128

Processors

M
ill

io
n
s
 o

f
P

T
S

Null-P3 Red-P3 Null-IA64 Red-IA64

Figure 11. Performance of the Chord-Asym Scenario

Figure 10 shows a significant difference in PTS rate

between the null message algorithm and global reductions

for the Baseline-2ms network model. Moreover, the null

message trends remain linear while the synchronous global

reductions have constant or less than linear increases in

PTS rates as the number of processors scale. This scenario

shows the pathological case for global reductions, as the

time management system must stop and synchronize the

simulation every 2ms.

The Chord-Asym scenario shown in Figure 11

demonstrates the benefits of a null message algorithm in a

typical irregular network. A null message algorithm can

take advantage of the varying lookahead values for each

output channel while a synchronous algorithm must

interrupt execution of the simulation at intervals dictated

by the global minimum lookahead.

6. Future Work

It is reasonable to assume that CMB allows simulations to

scale to arbitrarily large sizes (assuming parameters

discussed earlier are held constant), provided the software

infrastructure supports very large scale simulation.

Increasing the number of processors beyond 512 to test

this conjecture would be the logical next step in furthering

the scalability study. We have performed initial 1,024

CPU runs, which seem to indicate that CMB algorithm

performs at expected levels extrapolated from table 5.

Additional scenarios could be conceived to further test the

suitability and adaptability of each type of synchronization

algorithm, not only for network simulations, but for other

applications as well. Other network simulators, such as

GTNetS [28] could be used to gather additional data points

in order to ascertain if similar improvements in

performance is experienced across simulators.

Empirical data gathered on scalability tests over a

heterogeneous mix of hardware consisting of varying

network and platform (CPU, OS) components would be

useful for simulation environments across different

computational clusters. It would be interesting to see

whether synchronous or asynchronous time management

would prove to be the better option in these mixed

environment cases.

7. Conclusions

We presented an analytical model for an asynchronous

lazy null message algorithm for time management. The

proposed equations can be used to approximate null

message activity and a corresponding overhead index. In

particular, the overhead index predicts that the optimized

null message algorithm ensures no appreciable increase in

overhead if the fan-in/fan-out of channels is held constant

as the simulation scaled with the number of processors.

We also showed that a null message algorithm offers

more flexibility for irregular and asymmetric network

models. An optimized CMB algorithm can tailor

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

synchronization messages according to output channel

lookahead values to local neighbors only, in contrast to

global communication in a synchronous time management

system. These properties prove to be advantageous in

large-scale network simulation.

Acknowledgments

Funding for this research was provided by DARPA

Contract N66001-00-1-8934 and NSF Grant ANI-

0136939. Large-scale computations designated as “PSC”

were performed on the National Science Foundation

Terascale Computing System at the Pittsburgh

Supercomputing Center.

References

[1] R. M. Fujimoto, Parallel and Distributed Simulation

Systems. New York: Wiley-Interscience, 2000.

[2] K. M. Chandy and J. Misra, "Distributed Simulation: A

Case Study in Design and Verification of Distributed

Programs," IEEE Transactions on Software Engineering,

vol. 5, pp. 440-452, 1979.

[3] R. E. Bryant, "Simulation of Packet Communications

Architecture Computer Systems," Massachusetts Institute of

Technology. MIT-LCS-TR-188 MIT-LCS-TR-188, 1977.

[4] R. Bagrodia and M. Takai, "Performance evaluation of

conservative algorithms in parallel simulation languages,"

IEEE Transactions on Parallel and Distributed Systems,

vol. 11, pp. 395-411, 2000.

[5] W.-K. Su and C. L. Seitz, "Variants of the Chandy-Misra-

Bryant Distributed Discrete-Event Simulation Algorithm,"

presented at the SCS Multiconference on Distributed

Simulation '89, Miami, FL, 1989.

[6] J. Porras, V. Hara, J. Harju, and J. Ikonen, Improving the

Performance of the Chandy-Misra Parallel Simulation

Algorithm in a Distributed Workstation Environment.

Arlington, VA, 1997.

[7] W. Cai and S. J. Turner, "An Algorithm for Reducing Null-

Messages of the CMB Approach in Parallel Discrete Event

Simulation," University of Exeter, 1995.

[8] D. M. Nicol, "The Cost of Conservative Synchronization in

Parallel Discrete Event Simulations," Journal of the ACM,

vol. 40, pp. 304-333, 1993.

[9] K. M. Chandy and J. Misra, "Asynchronous Distributed

Simulation via a Sequence of Parallel Computations,"

Communications of the ACM, vol. 24, pp. 198-205, 1981.

[10] B. D. Lubachevsky, "Efficient Distributed Event-Drive

Simulations of Multiple-Loop Networks," Communications

of the ACM, vol. 32, pp. 111-123, 1989.

[11] Z. Xiao, B. Unger, R. Simmonds, and J. Cleary, "Scheduling

Critical Channels in Conservative Parallel Discrete Event

Simulation," presented at the 13th Workshop on Parallel and

Distributed Simulation, Atlanta, GA, 1999.

[12] H. Y. Song, R. A. Meyer, and R. Bagrodia, "An Empricial

Study of Conservative Scheduling," presented at the 14th

Workshop on Parallel and Distributed Simulation, Bologna,

Italy, 2000.

[13] M. L. Bailey and M. A. Pagels, "Measuring the Overhead in

Conservative Parallel Simulations of Multicomputer

Programs," presented at the 23rd Winter Simulation

Conference, Phoenix, AZ, 1991.

[14] D. M. Nicol, "Scalability, Locality, Partitioning and

Synchronization in PDES," presented at the 12th Workshop

on Parallel and Distributed Simulation, Banff, Alberta,

Canada, 1998.

[15] D. M. Nicol and J. Liu, "Composite Synchronization in

Parallel Discrete-Event Simulation," IEEE Transactions on

Parallel and Distributed Systems, vol. 13, pp. 433-446,

2002.

[16] D. M. Nicol, "Analysis of Synchronization in Massively

Parallel Discrete-Event Simulation," presented at the 2nd

ACM SIGPLAN, Seattle, WA, 1990.

[17] D. M. Nicol, C. Michael, and P. Inouye, "Efficient

Aggregation of Multiple LP's in Distributed Memory

Parallel Simulations," presented at the 21st Winter

Simulation Conference, Washington, D.C., 1989.

[18] C.-C. Lim, Y.-H. Low, B.-P. Gan, S. Jain, W. Cai, W. J.

Hsu, and S. Y. Huang, "Performance Prediction Tools for

Parallel Discrete-Event Simulation," presented at the 13th

Workshop on Parallel and Distributed Simulation, Atlanta,

GA, 1999.

[19] E. Naroska and U. Schwiegelshohn, "Conservative Parallel

Simulation of a Large Number of Processes," Simulation,

vol. 72, pp. 150-162, 1999.

[20] J. Lemeire and E. Dirkx, "Performance Factors in Parallel

Discrete Event Simulation," presented at the 15th European

Simulation Multiconference, Prague, 2001.

[21] V. Jha and R. Bagrodia, "A Performance Evaluation

Methodology for Parallel Simulation Protocols," presented

at the 10th Workshop on Parallel and Distributed

Simulation, Philadelphia, PA, 1996.

[22] "NMS Baseline Model.

http://www.cs.dartmouth.edu/~nicol/NMS/baseline/."

[23] "pdns.

http://www.cc.gatech.edu/computing/compass/pdns/."

[24] G. F. Riley, R. M. Fujimoto, and M. H. Ammar, "A Generic

Framework for Parallelization of Network Simulations,"

presented at the 7th MASCOTS, College Park, MD, 1999.

[25] "libSynk.

http://www.cc.gatech.edu/computing/pads/kalyan/libsynk.htm."

[26] R. M. Fujimoto, T. McLean, and K. S. Perumalla, "Design

of High Performance RTI Software," presented at the 4th

Workshop on Distributed Simulation and Real-Time

Applications, San Francisco, CA, 2000.

[27] K. S. Perumalla, A. Park, R. M. Fujimoto, and G. F. Riley,

"Scalable RTI-Based Parallel Simulation of Networks,"

presented at the 17th Workshop on Parallel and Distributed

Simulation, San Diego, CA, 2003.

[28] G. F. Riley, "The Georgia Tech Network Simulator,"

presented at the ACM SIGCOMM '03, Karlsruhe, Germany,

2003.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

