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Abstract 

We present in this paper, a hybrid algorithm which 
makes use of h n e  Warp between clusters of LPs and 
a se uential algorithm within the cluster. Time Warp 
is 3 course, traditionally implemented between in- 
dividual LPs. The algonthm was implemented in a 
digital lo 'c simulator, and its performance compared 
to that ofTime Warp. 

Restin U on this platform we develo a family 
of three &e&pointing alporithms, each ofwhich oc- 
cupies a different point m the spectrum of possible 
trade-offs between memo usage and execution time. 
The algorithms were imzemented on several digital 
logic circuits and their speed, number of states saved 
and maximal memory consum tion were compared to 
those of Time Warp. One of tge algorithms saved be- 
tween 35 and 50% of the maximal memory consumed 
by Time Warp (depending upon the number of proces- 
sors used), while the other two decreased the maximal 
usage up to 30%. The latter two algorithms exhib- 
ited a speed comparable to Time Warp, while the first 
algorithm was 30-60% slower. 

These al orithms are also sim ler to implement 
than optima checkpointing algoritEms. 

1 Introduction 
Two diametrically opposed classes of algorithms have 
been developed for the synchronization of paral- 
lel simulations-the conservative ap roach ins ired by 
Chandy, Misra [5], and Bryant b], and tge opti- 
mistic a proach pioneered by Jefferson (12 The two 
approa&es differ fundamentally in how t k ey main- 
tam causality in the simulations. The conservative 
method relies U on a process to block until such time 
that it knows tiat events may be executed in strict 
timestamp order. In the optimlstic approach processes 
are under no such restriction. A process is free to ex- 
ecute events as they arrive at the process. The con- 
sequence of making use of blocking in the consem 
tive ap roach is the possible formation of deadlocks 
[ll, l6f In the optimistic approach messages may 
arrive which are not in strict timestamp order (i.e. 
stragglers). The process is then obliged to roll back 
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to a state before the str er arrived, and to can- 

sent. This cancellation is accomplished by the use 
of so-called antimessages, which "annihiite" the in- 
correctly sent messages upon meeting them in input 
queues. The interested reader may wish to consult [7] 

cel the effect of messages T? w ch should not have been 

ime Warp paradigm-that of memory management 
resulting from the necessity to save states [7] and of 
unstable behavior [15]. A closely related problem is 
that of Time Warp running out of memory. In this 
case fossil collection can simply not liberate enough 
s e for the simulation to continue. Approaches to 
t cp rob lem include the cancelback protocol and the 
use of arti6cial rollback. 

Time Warp's unstable behavior is a consequence 
of low computational granularity; antimessages are 
not capable of annihilating prevlously sent messaps 
quickly enou h. This can lead to a series of cascading 
rollbacks, a levastating effect. 

An application area such as logic simulation poses 
a severe challenge to Time W for precisely these 
reasons. In a logic simulationTe number of LPs is 
extremely large-a small circuit wil l  have several tens 
of thousands of gates. This cannot help but have an in- 
fluence on the problem of memory mana ement. The 
computational granularity of a lo 'c simufation is low, 
bringing with it the posrnbility oflong rollbacks. The 
presence of feedback loop  in circuits brings with it 
an increased possibility for rollbacks. Nevertheless a 
good deal of effort has one into parallel logic simuis 
tion because reducing &e time of uniprocessor simu- 
lators can have a significant impact on the design of 
VLSI systems. The interested reader misht wish to 
consult (11 for a survey of attem ts in thls area. [3] 
describes an optimistic protocol for logic simulation, 
in which an upper bound on the simulator's time ad- 
vance was added to Time Warp. Promising results 
were obtained. 

With these difliculties in mind, we feel that a hybrid 
algorithm would be appropriate for lo 'c simulation. 
In this ap roach we make use of Time%arp between 
clusters ofLPs belonging to different rocessors and 
we a sequential algonthm within the cyusters. In our 
a roach, a process known as the cluster environment 
(&J is associated with each cluster. A motivation for 
its evelopment was the notion that a circuit could 
be partitioned prior to the simulation so that different 
functional units would reside on different processors. 
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We describe several checkpointing algorithms which 
are a natural consequence of this a proach, in that 
they a ply to all of the LPs in a cruster instead of 
indlvi&al LPs. Each of these algorithms occupies a 
different spot in the space-time continuum of trade- 
offs inherent in checkpointing [l 

We feel that the clusterin of Ps has the potential 
to reduce the number of ro%backs inherent in Time 
W . This is the subject of on-going research and is 
n o x c u s s e d  in this paper. 

In what follows, section 2 contains a description 
of results related to those in our paper section 3 con- 
tains a description of our clustering and checkpointin 
algorithms, section 4 describes our experiments a n t  
results, and the conclusion follows. 

2 

2 Related results 
A number of attempts have been made to combine the 
optimistic and conservative approaches. [21] allows a 
process to proceed optimistically but avoids sending 
potentially erroneous messages to other LPs. [15] em- 
ploys a wmdow protocol to prevent LPs from getting 
too far a art in simulated time. 

In [l!fthe authors present an algorithm in which 
LPs are grouped into clusters, Time Warp is used 
within the clusters and a conservative algorithm is 
used between clusters. By wa of comparison, our 
algorithms make use of Time \K..g between clusters 
and a sequential algorithm within t e cluster. We feel 
that Clustered Time Warp (CTW) is more appro ri- 
ate for massive fine grained simulations such as &g- 
ital logic simulation than Local Time Warp for two 
reasons: first, CTW takes advantage of the fact that 
LPs in a cluster share the same address space, thereby 
makin their s nchronization and scheduling straight- 
fonvar%;second: by usin a conservative algorithm be- 
tween clusters, Local Jime Warp might reduce the 
parallelism of the simulated model. In an event as 
no performance results were presented for Leal h e  
Warp, it is difficult to compare it to CTW. 
To date, work on determining optimal checkpoint- 

in intervals has centered around determinin inter- & for individual LPs. In our approach &s are 
grouped into clusters and the checkpoints are based 
on the inter-arrival times of messages to the clusters. 
No attempt is made to seek an optimal interval for 
individual LPs. However, as we shall see, substantial 
memory savings are obtamed. 

In [17], the authors make the im ortant point that 
in selectmg a checkpoint interval Er Time W v ,  it 
is important to distmnuiah between memory-oDtrmal 

where a1 is the average number of events executed 
in forward execution between rollbacks for x = 1, 6, 
is the average time to save one state of the LP and 
6, is the average execution time of an event in normal 
forward execution. Experimental results indicate that 
the optimal length is actually closer to x+. In [14], 
the authors resent an algonthm which incorporates 
the effects of  rollback behavior on the length of the 
checkpoint interval. An iterative procedure in which 
N events are executed in each iteration determines the 
eventual value of The value of N is selected empir- 
ically and has t o t e  large enou h for the simulation 
to have reached steady state. %e number of itera- 
tions depends on the model simulated. In addition, 
the authors do not address the question of whether 
the iterations actually converge. 

In [20l the authors develop an adaptive checkpoint- 
@g al onthm based on the use of exponential smooth- 

%he authors derive an ex ression for the value 
zg imin ,  the checkpoint in teAwhich  minimizes the 
execution time of the simulation. The expression is: 

where kd, is the number of rollbacks and &b. the 
number of events executed. They make use of this 
e d o n  in calculating the estimate for x after the 
n% observation period. 

Thie expression is given by 
Xn= Xinitial if n = 0 

= [(l - P)Xn-1 + pxmazl if kd, = 0 
= maz(1, [(I - P)Xn-l+ 

pmin(xmin(kh, RA,, 6,, 64, xmaz)l)  otherwise, 

where Xinitial is the initid value for X, xmaz is an 
upper bound on the estimate for Xn, and is a  pa^ 
rameter which determines the relative weigct of past 
values of Xn and the computed minimum value of X, 
Xmin- 

The length of the observation period and the value 
of p are determined empirically, as are kma,, Xinitiol 
and a,/&. Since each of these values must be de- 
termined as a function of the simulated system, the 
adaptive check ointing ap roach suffers from the same 
drawback as &a Lim's agorithm. Unless measure- 
ments are made prior to the use of these al&orithms, 
neither can be optimal. On the other hand, it IS impor- 
tant to keep the overhead engendered by these mea- 
surements as small as possible. 

checLpoints and time-optimal checkpoints. -F&uent 
checkpointing results in faster simulations and a larger 
consumption of memory. 

Several algorithms for checkpointing have ap eared 
in the literature. In [14], Lin develop upper anslower 
bounds for checkpoint mtervals given by the following 
two expressions: 

3 The Algorithm 
Aa we mentioned in the introduction, we make use 
of Time Warp between clusters of LPs and a sequen- 
tial algorithm within each cluster. A cluster is com- 

osed of one or more LPs a Cluster Environment 
CE), a Timezone table, and a Cluster Output Queue P COQ). The COQ holds CO ies of the messages that 

were sent by LPs in the cruster to LPs located in 
different clusters. This is necessary so that when the 
cluster receives either a straggler or an antimessage, 

x- = [(2a1+ 1)6,/6e1'*1 

X+ = \(a1 - l)b,/bel"J 
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Figure 1: Cluster Structure 

antimessages can be sent out to cancel incorrect com- 
putations. The CE is in charge of managing the COQ 
and the Timezone table (defined below) aa well as 
the sendin of antimessages. It is important to note 
that indiui8uOl LPs do not send antimessages. On the 
wholel the cluster behaves like an LP in a purely o p  
timistic system. 

Figure 1 contains a cluster with 3 LPs. For each 
cluster, the simulation is decomposed into a series 
of non-overlapping time intervals we call timezones. 
When the simulation starts, each cluster has only 
one timezone, with interval [O,+oo[. Each time a 
cluster receives a message from another cluster with 
timestamp t (the receive time of the message), it finds 
the timezone interval [ti,ti+l[ into which t fits and 
splits it into two new timezones with intervals [ti$[ 
and [t,ti+l . The message is then forwarded to the 
receiving LL. 
Each LP maintains a Local Simulation Time 

(or LST). In addition, the LP keeps track of the 
Timestamp of the Last Event it processed (or TLE). 

Before an LP rocesses an event, it first checks into 
which timezone t i e  timestamp of the event fits. If that 
timezone is different from that of the last event which 
the LP processed, then the LP checkpoints by sav- 
ing its state; otherwise the LP directly consumes the 
event. More generally, an LP checkpoints each time 
it chan es timezones. When an LP sends a messa e 
to anot%er LP located in the same cluster, it simpfy 
places it in the correspondin input queue of the desti- 
nation LP. If the receiver is kcated in a different clus- 
ter, the sendin LP the message to the Cluster 
Environment. t h e  =hen in charge of placing the 
message in the right cluster (containing the receiving 
LP) and keeping a copy of that messa e in the Cluster 
Output Queue. This is necessary in t%e case in which 
one or more messages have been sent within a time- 
zone that has been mvalidated. When this occurs, the 
CE sends an antimessa e for each of these messages. 
This is achieved by c h e L  whether or not the time- 
zone of the messages in the EOQ are still valid. If they 
are not, the antimessageis removed from the COQ and 
sent. 

Suppose the cluster receives a stra er with 
timestamp t,. As we have seen before, t P e CE cre- 

ates a new timezone and it rolls back all LPs in the 
cluster which have a TLE greater than t, to a check- 
point prior to t,. In addition, the CE will send all the 
necessary antimessages stored in the COQ which have 
a send time greater than t,. The cluster will proceed 
similarly when it receives an antimessage, with the 
difference that it wil l  not create new timezones. Af- 
ter rolling back, the LP 'coasts forward" as in Time 
Warp, not re-sending any messa es produced before 
the time of the stryler Also, t%e LP removes from 
its input queue all o the messages which have a send 
time greater than the timestam of the straggler or 
of the antimessage which cawe l  the-rollback. This 
will not afFect the correctness of the simulation as all 
the LPs in the cluster are rolled back. Hence all of 
the necessary messages will be re enerated. Since the 
events in the cluster are processegin strict timestamp 
order (i.e. lowest timestamp first), the descendants of 
the straggler will be laced correctly in the heap, and 
events at all of the L$s in the cluster will be processed 
in the correct order. 
The LP U h u t  to pmceaw event e. 

bagin 
(1) 
(2) If tr(e) 4 21 than checkpoint 
(3) TLE = tr(ej 
(4) LST = moz(LST,TLE) 
(5)  rimulate event e 
(6) 
(7) 

(9) tr(e') = LST 
(10) 
(11) 

(12) 

find timezone 2, with interval Iti,tj+l[ a.t. TLE E 2, 

LST = LST + rervice time 
for dl eventr e' to send do 

(8) t.(e') = TLE 

if dertinrtion LP of e' is in the aame cluater then 
e' into ita input queue 

give e' to the CE for it to send 
andif 

andfor 
and. 

The LP ir told by the CE to roll back because the cluster haa 
d v e d  an event. 

begin 
/* Clean up the StoteQueue */ 

for d I  stater S E Stote Queue a.t. TLE(S) > &(e) do  

endfor 
find atate S E Stote Queue 

(1) 
(2) 

(3) 

(4) mtorertate S 

(5) 
(6) 

remove S from Stote Queue 

a.t. TLE(S) $ TLE(S') V S' E Stole Queue 

/* Clean up the InputQueue */ 
for d1 eventa e' E Input Queue a.t. t.(e') > tr(e) 

andfor 
/* Coast Forward */ 

while tr(e') < tr(e) where e' ir the next event 

remove e' h m  Input Queue 

(7) 

(12) LST = moz(LST,TLE) 
(13) rimulate event e' 
(14) 
(15) andwhila 

Figure 2: Pseudocode for the Logical Process 

(11) TLE = tr(e') 

LST = LST + rervice time 

and. 
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The cluster haa received event e. 

begin 
(1) 
(2) 
(3) 
(4) 
(5) 

(6) 
(7) 

(8 )  
(9) 

if e is not an antimesaage then 
find timezone 2 with interval [ t i , t i  + 1[ r.t. t r (e)  E 2 
create timezone 21 with interval [ t i * t r (e) (  
create timezone 23 with interval [t+(e),ti+l[ 
r e p l ~  2 by 21 and 23 

endif 
for all LPs in the cluster with a TLE 2 &(e) do 

endfor 
for all antimesclage e-1 E COQ r.t. t,(e") 2 &(e) do 

send antimessage e-l and remove it from the COQ 
endfor 

tell LP to roll back to a state prior to tr(e) 

end. 

An LP passes to the Cluster Environment event e to be sent. 

begin 
(1) 
(2) 
(3) 

send event e to the deatination cluster 
create e-1 where e-1 is the antimesclage of e 
insert e-l into the COQ 

end. 

Figure 3: Pseudocode for the Cluster 
Environment 

The global virtual time (GVT is the virtual time of 
the message or object which is t h e furthest behind in 
the system at a given time. It is necessary to com Ute 
a GVT estimate periodically in order to do gargage 
collection. We make use of a simple token-ring algo- 
rithm [2] as the number of processors which we make 
use of is small (less than 32). 

Our fossil collection algorithm differs somewhat 
from that of Time Warp. In CTW, the state prior 
to the GVT must be saved, while in Time Warp this 
is not necessary. The reason for this is that it is pos- 
sible to roll back prior to the GVT in CTW because 
not every state is checkpointed. Similarly, the events 
prior to the GVT in the LP input queue cannot all be 
removed since it is possible for the LP to rollback to 
a time prior to the GVT, since we might need to re- 
process events with timestamps smaller than the GVT 
while coasting forward. Figures 2 and 3 contain seu- 
docode for the Logical Process and the Cluster Envi- 
ronment. We define t,(e) as the send time of event e 
and t ,  e as the receive time. We also define TLE(S)  
as the Y LE saved in state S. 

3.1 Local vs. Clustered Rollback 
In our algorithm, when a straggler or an antimessage 
arrives at the cluster, all of the LPs which have pro- 
cessed an event with a receive time larger than that of 
the stra gler or of the antimessage will be rolled back. 

This%= the advantage of reducing memory con- 
sumption by discarding all of the messages in mvali- 
dated timezones (as they will be re enerated). How- 
ever, the expense of forcing theseeps to roll back 
each time an antimess e or a straggler arrives at 
the cluster is not negli3le especially if most of the 
events generated b the Lss within that cluster are 
not causally related: In such a caae, only a few of the 

LPs actually need to be rolled back. Hence a compro- 
mise was mu ht in which the decision of rolling back 
is made by t i e  LP itself. In this new scheme, when 
a s t r p  or an antimessage is received, the clus- 
ter up ates its timezone table accordingly and places 
the event into the in ut queue of the receivin LP. 
LPs now behave mu% like they do in a pure%ime 
Warp system: r o h g  back when they detect the ar- 
rival of a str let in their input queue and sending 
anth"ges%en needed. 

Although this scheme might offer less overhead in 
terms of computation, it is more ex ensive in terms 
of memory since all the events in theEP input queues 
have to be kept (as they will not be regenerated). 

We call the latter scheme local rollback, and the 
former scheme clustered rollback. 

3.2 Local vs. Clustered Checkpointing 
Another sim le variant of Clustered Time-Warp was 
ale0 designAin which an LP checkpoints only if it 
receives a message from an LP located in a different 
cluster (rather than checking whether it is entering a 
new timezone). This scheme is very simple to im le- 
ment and requires less computational overhead tgan 
the revious schemes. Even though it is evident that 
an f P  will have fewer checkpoints compared to the 
schemes described earlier, it is not obvlous at all it 
will save more memory. On the contrary, and al- 
though it appears counter-intuitive, this scheme can 
be more greedy. Since the distance between check- 
points is greater, the number of events an LP needs 
to keep (in order to coast forward if it rolls back to 
a state prior to the GVT) tends to grow. Therefore, 
there is a trade-oiE the fewer states an LP saves, the 
more events it needs to keep. In the case of logic simu- 
lation, the size of an event is far from being negligible 
compared to that of a state. Therefore the dlstance 
between check oints should not grow excessively if we 
want to keep t i e  usage of the memory to a minimum. 

We call this scheme local checkpointing as opposed 
to clustered checkpointing in which LPs save their state 
each time they enter a new timezone. 

4 Simulation Model and 
Experiments 

The implementation of the Lo 'c Simulator was per- 
formed on a BBN Butterfiy G!&OOO shared-memory 
multi rocessor and was written in C. Each node of 
the $)utterfly ias 4MB of local memory and a pro- 
cessor in the MC68000 family. The shared-memory is 
actually a virtually shared-memory. 

We only made use of the shared-memory to imple- 
ment a message passing system- therefore no lobal 
shared variable was used to impiement any of t i e  al- 
gorithms. This was done for two reasons: first, the 
results obtained from running the different algorithms 
will not be dependent on the presence of shared mem- 
ory, hence making any comparisons unfair; second, 
porting the simulator to distnbuted memory machines 
such as the Intel Paragon will be more straightforward. 
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As we mentioned in the introduction, we oriented 
our algorithms towards the simulation of logic-level 
VLSI circuits. Our logic simulation model uses three 
discrete logic values: 1, 0 and undefined. To model 
the propagation delay, each gate has a constant ser- 
vice time. All of the common lo 'cal ates were im- 
plemented AND, NAND, NOR., R p f i o p s ,  etc ... 

The circuits used in our stud are di 'tal sequen- 
tial circuits selected from the ISEAS'89 Eenchmarks. 
Many circuits of different sizes have been tested, but 
we only resent the results obtained from simulations 
of two ofthe largest circuits table 1 since the are 

other circuits. 
both representative of the res J r 3  ts we o tained w i d  the 

loo 

A pro am was written to read the descri tion iile 
of the ISFAS benchmarks and to partition t iem into 
clusters. We used a string partitioning algorithm, be- 
cause of its simplicity and especially because results 
have shown that it favors concurrency over cone par- 
titioning; see for example [3 

A simulation run can be d. ecomposed into 3 phases. 
First, each processor starts up by loading the gates ae- 
si ned to it and by creating their correspondmg LPs. 
T%en, each gate which has an initialized state pro- 
duces an event to broadcast its output to the gates 
connected to it. Some of these gates will be trig- 
gered and will propagate their chan es throughout 
the circuit. After a while the system fecomes stable 
and events stop being generated. During the third 
phase, input vectors reviously randomly generated) 
are read and the sim 4 ation is run. Once the termina- 
tion of the system is detected, statistics are collected. 

- 
HmbWdaw*npwhm&uu 

I I I I I I 

4.1 Experiments 
We conducted two cate ories of experiments: one 
was to determine the eiects of cluster size on the 
performance of each algorithm, and a second set of 
experiments to compare the performance (memory 
and execution time) of the algorithms with that of 
Time Warp. We used an aggressive cancellation mech- 
anism. 

In the case of CRCC (Clustered Rollback, Clus- 
tered Checkpoint larger clusters will result in more 
LPs being rolled kack m the event that a 
an antimessage is received. For LRCC 
back, Clustered Checkpoint) and LRLC 
back, Local Check oint) smaller clusters result in a 
larger number of CEeCkpoints and in greater memory 
usage. 

In fipres 4 and 5 we show the results obtained from 
simulating both circuits on 20 processors with different 
cluster sizes. 

In figures 4a and 4b we show the peak memory 
usage vs. the number of clusters per processor for C1 
and C2 respectively. We define "peak memo wage" 
as the maximum amount of memory n e e d J b y  any 

loo 

D Q CTW-); 
j m.u ~ ( u ~ c F ) ;  

i - m  ; 
i *.o CTWamc); 
...................................... 

- 
Hnrbwd-pVPIUVWlU 

I I I I I 

host during the entire simulation. It is dependent on 
the number of states and the number of events stored 
in memory (the ratio state sizeleuent size was about 
1.8 in our implementation). Both raphs indicate a 
rather stable behavior on the part of IRCC and LRLC 
with a minimal memory wage occurrin at one cluster 
per processor. we  atso see up to a i o %  difference 
m maximal memory U e between CRCC and Tune 
Warp. CRCC, howeve3 as a large maximal memory 
usage for one and two clusters per processor. However, 

e decreases dramatically, and is lower than 
!Ee% or LRCC from 4 clusters onwards. 

We ale0 observe a difference in the peak memory 
consumption between the two circuits for all of the al- 
gorithms. The reason for this difference between the 
two circuits is that C2 has an activity level nearly 3 
times smaller than that of C1. Consequently, the cal- 
culated GVT tends to be closer to the actual GVT, 
and the fossil collection mechanism is then able to re- 
move most of the useless states and events. 

time vs. the 
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ter receives a stra er or an antimessage, the CE has 

have to be rolled back. This overhead becomes more 
pronounced when the cluster size is large. LRCC is 
a bit slower than pure Time-Warp since the cluster 
needs to  update its timezone table regularly, and be- 
cause LPs check the table each time they are about 
to process an event. As for LRLC, it is shghtly faster 
than Time-Warp because fewer states are saved. In 
addition, the fossil collection mechanism has less work 
to do and can catch up quickly. 

Based on these results, we chose the cluster size for 
each algorithm which gave the best erformance in or- 
der to use them in our second set ofexperiments. For 
LRCC and LRLC we chose one cluster er processor. 
In the case of CRbC we chose 32 and lb clusters per 
processor for CI and ~ 2 .  

In the second set of experiments we obee~ed  the 
behavior of the algorithms, varying the number of pro- 
cessors from 8 to 24. In figure 6, we show the peak 
memory usage of each algorithm vs. the number of 
processors for the circuits C1 and C2 respective1 We 
also show the performance of a Periodic State &vhg 
mechanism which is a modified version of pure Time 

to check all of its @ s to find out whether or not they 

i-psQ * - * =  
im 

Number of Plooess4rs 
I I I I I 
8 12 18 20 24 

a) Circuit C 1  

~. 

k.*UlRCC 
1-M --ocRcc 
/ -pa ! ............................................................ * .omLC - I  f m  

Number of P t o c e m  
I I I I I 
8 12 18 20 24 

b) Circuit C2  

Figure 6: Peak Memory vs. Number of 
Processors 

Warp in which the checkpoint interval is larger than 
one. We chose a checkpoint interval of 3 as it proved 
to be an optimal value for a large range of type of 
simulations 118). In all cases, the proposed algorithms 
consume less memo than pure Time Warp espe- 
cially in the case of%RCC which made use 01 up to 
50% lees memory in Circuit C1. 

In figure 7 we see that all of the algorithms store 
far fewer states than Time W . In circuit C1 LRLC 
storee some 70% fewer states3an pure Time barp. 

In figure 8, we present the simulation time of each 
algorithm w. the number of proceesors. We observe 
that both LRCC and LRLC perform comparably to 

CRCC ie from 30 to 60% slower than 
ETE%arp in these examples. We note that this 
Merence becomes less significant as the number of 
processors mcrease. 

In table 2, we summarize the results b comparing 
each algorithm with pure Time Warp. &r both cir- 
cuits and for each algorithm, we give the minimum, 
the m h u m  and the average percentage difference 
from pure Time Warp for the maximum number of 
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of Processors 

states, the peak usage of memory (in KBytes), and 
the simulation time (i seconds). We first observe that 
each al orithm saves a substantial number of states, 
especidy for LRLC. However, these results do not 
n e c e s d y  directly translate into those obtained for 
total memo usage. Even though Periodic State Sav- 
ing saves 3% of the states on the average (with a 
checkpoint interval of 3), the average memory saved 
does not go beyond 11%. This is because PSS needs to 
keep more events in order to restore LP states during 
the coast forward phase of rollback recovery. The same 
phenomenon is observed for LRLC. On the other hand, 
this does not happen when the Clustered Check oint- 
ing mechanism is employed (ie: LRCC and C k C ) ,  
in which case, the performances are better in terms 
of memory consumption. These results underline the 
fact that simulation models such as Lo 'c Simulation 
in which the size of the state of the L& is not much 
larger than the size of the events, it is important to 
consider the increase of memory needed to store the 
supplementary events due to the checkpoint interval. 

i ............................................... i w l  x .  \ 

Numberd Pmcessom 

8 12 16 20 24 

b)  Circuit C2 

Figure 8: Simulation Time vs. Number of 
Processors 

As to the simulation time, only CRCC is much 
slower than pure Time Warp, whereas the other algo- 
rithms exhibited a speed comparable to Time Warp. 
It should be noted that the current implementation 
of our simulator is not completely optimized (em- 
phasis was put on the correctness of the simulator 
rather than its erformance), so better results might 
be forthcoming !or CRCC in the near future. 

5 Conclusion 
We have described in this paper the Clustered Time 
Warp algorithm (CTW), whch makes use of Time 
Warp between clusters of LPs and a sequential algo- 
rithm within each cluster. Time Warp is (without 
regard to LP schedulin traditionally implemented 

lief that CTW is useful when a model is comprised 
of a larqe number of LPs havin low computational 
g r a n b t y ,  such as logic level dS1 models. 

In this spirit, we presented three checkpointing al- 

between the individual eb s of a model. It is our be- 
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Table 2: Performance Summary 

gorithms for use with CTW and implemented them 
in a digital logic simulator. Two circuits were used: 
an 18,000 gate circuit and a 20,000 gate circuit. The 
18,000 ate circuit had an adivity level nearly three! 
times tfat of the 20,000 gate circuit. 
Each of the checkpointing algorithms re resented 

a different memory vs. execution time tra&eoff. As 
we have seen in the precedin section, the CRCC algo- 
rithm saved between 35 and 80% of the maximal mem- 
ory used in a Time Warp simulation. However, the 
pnce for this was a reduction in the s eed of the al o- 
rithm from 30 to 60% as com ared to k m e  Warp. l%e 
other two algorithms (LRLE and LRCC) decreased 
the maximal memory usage of Time Warp up to 30% 
without sacrificing much execution speed. Our results 
also pointed out a stable behavior of the algorithms 
with respect to the number of clusters emplo d. With 
this range of choices among check ointing 3 
it is possible to choose an algorittgm d e p e n & f t z  
the memory requirements of the simulation. 

We believe that the clustering a proach is useful 
for other urposes as well. One SUA example is dy- 
namic 102 balancing, since instead of havin to m m  
individual LPe from one processor to anot%er, clus- 
ters of LPs can be moved. Another point to note is 
that because message cancellations are performed at 
the cluster level, they tend to take place more quickly 
than if they are done on an LP level. Hence it IS pos- 
sible that CTW could avoid cascading rollbacks. We 
are presently at work in both of these areas. 
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