
Clustered Time Warp and Logic Simulation

HerVC A d +and Carl lhpper
School of Computer Science

McGiU University, M o n t f i , Canada E3A 2A7
E d : hervecBPcs.mcgill.ca, carlOmagic.cs.mcgill.ca

Abstract

We present in this paper, a hybrid algorithm which
makes use of h n e Warp between clusters of LPs and
a se uential algorithm within the cluster. Time Warp
is 3 course, traditionally implemented between in-
dividual LPs. The algonthm was implemented in a
digital lo 'c simulator, and its performance compared
to that ofTime Warp.

Restin U on this platform we develo a family
of three &e&pointing alporithms, each ofwhich oc-
cupies a different point m the spectrum of possible
trade-offs between memo usage and execution time.
The algorithms were imzemented on several digital
logic circuits and their speed, number of states saved
and maximal memory consum tion were compared to
those of Time Warp. One of tge algorithms saved be-
tween 35 and 50% of the maximal memory consumed
by Time Warp (depending upon the number of proces-
sors used), while the other two decreased the maximal
usage up to 30%. The latter two algorithms exhib-
ited a speed comparable to Time Warp, while the first
algorithm was 30-60% slower.

These al orithms are also sim ler to implement
than optima checkpointing algoritEms.

1 Introduction
Two diametrically opposed classes of algorithms have
been developed for the synchronization of paral-
lel simulations-the conservative ap roach ins ired by
Chandy, Misra [5], and Bryant b], and tge opti-
mistic a proach pioneered by Jefferson (12 The two
approa&es differ fundamentally in how t k ey main-
tam causality in the simulations. The conservative
method relies U on a process to block until such time
that it knows tiat events may be executed in strict
timestamp order. In the optimlstic approach processes
are under no such restriction. A process is free to ex-
ecute events as they arrive at the process. The con-
sequence of making use of blocking in the consem
tive ap roach is the possible formation of deadlocks
[ll, l6f In the optimistic approach messages may
arrive which are not in strict timestamp order (i.e.
stragglers). The process is then obliged to roll back

*also with the Hutchison Avenue Software Corporation,
MontrW, Canada

to a state before the str er arrived, and to can-

sent. This cancellation is accomplished by the use
of so-called antimessages, which "annihiite" the in-
correctly sent messages upon meeting them in input
queues. The interested reader may wish to consult [7]

cel the effect of messages T? w ch should not have been

ime Warp paradigm-that of memory management
resulting from the necessity to save states [7] and of
unstable behavior [15]. A closely related problem is
that of Time Warp running out of memory. In this
case fossil collection can simply not liberate enough
s e for the simulation to continue. Approaches to
t cp rob lem include the cancelback protocol and the
use of arti6cial rollback.

Time Warp's unstable behavior is a consequence
of low computational granularity; antimessages are
not capable of annihilating prevlously sent messaps
quickly enou h. This can lead to a series of cascading
rollbacks, a levastating effect.

An application area such as logic simulation poses
a severe challenge to Time W for precisely these
reasons. In a logic simulationTe number of LPs is
extremely large-a small circuit wil l have several tens
of thousands of gates. This cannot help but have an in-
fluence on the problem of memory mana ement. The
computational granularity of a lo 'c simufation is low,
bringing with it the posrnbility oflong rollbacks. The
presence of feedback loop in circuits brings with it
an increased possibility for rollbacks. Nevertheless a
good deal of effort has one into parallel logic simuis
tion because reducing &e time of uniprocessor simu-
lators can have a significant impact on the design of
VLSI systems. The interested reader misht wish to
consult (11 for a survey of attem ts in thls area. [3]
describes an optimistic protocol for logic simulation,
in which an upper bound on the simulator's time ad-
vance was added to Time Warp. Promising results
were obtained.

With these difliculties in mind, we feel that a hybrid
algorithm would be appropriate for lo 'c simulation.
In this ap roach we make use of Time%arp between
clusters ofLPs belonging to different rocessors and
we a sequential algonthm within the cyusters. In our
a roach, a process known as the cluster environment
(&J is associated with each cluster. A motivation for
its evelopment was the notion that a circuit could
be partitioned prior to the simulation so that different
functional units would reside on different processors.

112
0-8186-7120-3/95 $04.00 0 1995 IEEE

We describe several checkpointing algorithms which
are a natural consequence of this a proach, in that
they a ply to all of the LPs in a cruster instead of
indlvi&al LPs. Each of these algorithms occupies a
different spot in the space-time continuum of trade-
offs inherent in checkpointing [l

We feel that the clusterin of Ps has the potential
to reduce the number of ro%backs inherent in Time
W . This is the subject of on-going research and is
n o x c u s s e d in this paper.

In what follows, section 2 contains a description
of results related to those in our paper section 3 con-
tains a description of our clustering and checkpointin
algorithms, section 4 describes our experiments a n t
results, and the conclusion follows.

2

2 Related results
A number of attempts have been made to combine the
optimistic and conservative approaches. [21] allows a
process to proceed optimistically but avoids sending
potentially erroneous messages to other LPs. [15] em-
ploys a wmdow protocol to prevent LPs from getting
too far a art in simulated time.

In [l!fthe authors present an algorithm in which
LPs are grouped into clusters, Time Warp is used
within the clusters and a conservative algorithm is
used between clusters. By wa of comparison, our
algorithms make use of Time \K..g between clusters
and a sequential algorithm within t e cluster. We feel
that Clustered Time Warp (CTW) is more appro ri-
ate for massive fine grained simulations such as &g-
ital logic simulation than Local Time Warp for two
reasons: first, CTW takes advantage of the fact that
LPs in a cluster share the same address space, thereby
makin their s nchronization and scheduling straight-
fonvar%;second: by usin a conservative algorithm be-
tween clusters, Local Jime Warp might reduce the
parallelism of the simulated model. In an event as
no performance results were presented for Leal h e
Warp, it is difficult to compare it to CTW.
To date, work on determining optimal checkpoint-

in intervals has centered around determinin inter- & for individual LPs. In our approach &s are
grouped into clusters and the checkpoints are based
on the inter-arrival times of messages to the clusters.
No attempt is made to seek an optimal interval for
individual LPs. However, as we shall see, substantial
memory savings are obtamed.

In [17], the authors make the im ortant point that
in selectmg a checkpoint interval Er Time W v , it
is important to distmnuiah between memory-oDtrmal

where a1 is the average number of events executed
in forward execution between rollbacks for x = 1, 6,
is the average time to save one state of the LP and
6, is the average execution time of an event in normal
forward execution. Experimental results indicate that
the optimal length is actually closer to x+. In [14],
the authors resent an algonthm which incorporates
the effects of rollback behavior on the length of the
checkpoint interval. An iterative procedure in which
N events are executed in each iteration determines the
eventual value of The value of N is selected empir-
ically and has t o t e large enou h for the simulation
to have reached steady state. %e number of itera-
tions depends on the model simulated. In addition,
the authors do not address the question of whether
the iterations actually converge.

In [20l the authors develop an adaptive checkpoint-
@g al onthm based on the use of exponential smooth-

%he authors derive an ex ression for the value
zg imin , the checkpoint in teAwhich minimizes the
execution time of the simulation. The expression is:

where kd, is the number of rollbacks and &b. the
number of events executed. They make use of this
e d o n in calculating the estimate for x after the
n% observation period.

Thie expression is given by
Xn= Xinitial if n = 0

= [(l - P)Xn-1 + pxmazl if kd, = 0
= maz(1, [(I - P)Xn-l+

pmin(xmin(kh, RA,, 6,, 64, xmaz)l) otherwise,

where Xinitial is the initid value for X, xmaz is an
upper bound on the estimate for Xn, and is a pa^
rameter which determines the relative weigct of past
values of Xn and the computed minimum value of X,
Xmin-

The length of the observation period and the value
of p are determined empirically, as are kma,, Xinitiol
and a,/&. Since each of these values must be de-
termined as a function of the simulated system, the
adaptive check ointing ap roach suffers from the same
drawback as &a Lim's agorithm. Unless measure-
ments are made prior to the use of these al&orithms,
neither can be optimal. On the other hand, it IS impor-
tant to keep the overhead engendered by these mea-
surements as small as possible.

checLpoints and time-optimal checkpoints. -F&uent
checkpointing results in faster simulations and a larger
consumption of memory.

Several algorithms for checkpointing have ap eared
in the literature. In [14], Lin develop upper anslower
bounds for checkpoint mtervals given by the following
two expressions:

3 The Algorithm
Aa we mentioned in the introduction, we make use
of Time Warp between clusters of LPs and a sequen-
tial algorithm within each cluster. A cluster is com-

osed of one or more LPs a Cluster Environment
CE), a Timezone table, and a Cluster Output Queue P COQ). The COQ holds CO ies of the messages that

were sent by LPs in the cruster to LPs located in
different clusters. This is necessary so that when the
cluster receives either a straggler or an antimessage,

x- = [(2a1+ 1)6,/6e1'*1

X+ = \(a1 - l)b,/bel"J

113

Cluster

I I

/ I

Figure 1: Cluster Structure

antimessages can be sent out to cancel incorrect com-
putations. The CE is in charge of managing the COQ
and the Timezone table (defined below) aa well as
the sendin of antimessages. It is important to note
that indiui8uOl LPs do not send antimessages. On the
wholel the cluster behaves like an LP in a purely o p
timistic system.

Figure 1 contains a cluster with 3 LPs. For each
cluster, the simulation is decomposed into a series
of non-overlapping time intervals we call timezones.
When the simulation starts, each cluster has only
one timezone, with interval [O,+oo[. Each time a
cluster receives a message from another cluster with
timestamp t (the receive time of the message), it finds
the timezone interval [ti,ti+l[into which t fits and
splits it into two new timezones with intervals [ti$[
and [t,ti+l . The message is then forwarded to the
receiving LL.
Each LP maintains a Local Simulation Time

(or LST). In addition, the LP keeps track of the
Timestamp of the Last Event it processed (or TLE).

Before an LP rocesses an event, it first checks into
which timezone t i e timestamp of the event fits. If that
timezone is different from that of the last event which
the LP processed, then the LP checkpoints by sav-
ing its state; otherwise the LP directly consumes the
event. More generally, an LP checkpoints each time
it chan es timezones. When an LP sends a messa e
to anot%er LP located in the same cluster, it simpfy
places it in the correspondin input queue of the desti-
nation LP. If the receiver is kcated in a different clus-
ter, the sendin LP the message to the Cluster
Environment. t h e =hen in charge of placing the
message in the right cluster (containing the receiving
LP) and keeping a copy of that messa e in the Cluster
Output Queue. This is necessary in t%e case in which
one or more messages have been sent within a time-
zone that has been mvalidated. When this occurs, the
CE sends an antimessa e for each of these messages.
This is achieved by c h e L whether or not the time-
zone of the messages in the EOQ are still valid. If they
are not, the antimessageis removed from the COQ and
sent.

Suppose the cluster receives a stra er with
timestamp t,. As we have seen before, t P e CE cre-

ates a new timezone and it rolls back all LPs in the
cluster which have a TLE greater than t, to a check-
point prior to t,. In addition, the CE will send all the
necessary antimessages stored in the COQ which have
a send time greater than t,. The cluster will proceed
similarly when it receives an antimessage, with the
difference that it wil l not create new timezones. Af-
ter rolling back, the LP 'coasts forward" as in Time
Warp, not re-sending any messa es produced before
the time of the stryler Also, t%e LP removes from
its input queue all o the messages which have a send
time greater than the timestam of the straggler or
of the antimessage which cawe l the-rollback. This
will not afFect the correctness of the simulation as all
the LPs in the cluster are rolled back. Hence all of
the necessary messages will be re enerated. Since the
events in the cluster are processegin strict timestamp
order (i.e. lowest timestamp first), the descendants of
the straggler will be laced correctly in the heap, and
events at all of the L$s in the cluster will be processed
in the correct order.
The LP U h u t to pmceaw event e.

bagin
(1)
(2) If tr(e) 4 21 than checkpoint
(3) TLE = tr(ej
(4) LST = moz(LST,TLE)
(5) rimulate event e
(6)
(7)

(9) tr(e') = LST
(10)
(11)

(12)

find timezone 2, with interval Iti,tj+l[a.t. TLE E 2,

LST = LST + rervice time
for dl eventr e' to send do

(8) t.(e') = TLE

if dertinrtion LP of e' is in the aame cluater then
e' into ita input queue

give e' to the CE for it to send
andif

andfor
and.

The LP ir told by the CE to roll back because the cluster haa
d v e d an event.

begin
/* Clean up the StoteQueue */

for d I stater S E Stote Queue a.t. TLE(S) > &(e) do

endfor
find atate S E Stote Queue

(1)
(2)

(3)

(4) mtorertate S

(5)
(6)

remove S from Stote Queue

a.t. TLE(S) $ TLE(S') V S' E Stole Queue

/* Clean up the InputQueue */
for d1 eventa e' E Input Queue a.t. t.(e') > tr(e)

andfor
/* Coast Forward */

while tr(e') < tr(e) where e' ir the next event

remove e' h m Input Queue

(7)

(12) LST = moz(LST,TLE)
(13) rimulate event e'
(14)
(15) andwhila

Figure 2: Pseudocode for the Logical Process

(11) TLE = tr(e')

LST = LST + rervice time

and.

114

The cluster haa received event e.

begin
(1)
(2)
(3)
(4)
(5)

(6)
(7)

(8)
(9)

if e is not an antimesaage then
find timezone 2 with interval [t i , t i + 1[r.t. t r (e) E 2
create timezone 21 with interval [t i * t r (e) (
create timezone 23 with interval [t+(e),ti+l[
r e p l ~ 2 by 21 and 23

endif
for all LPs in the cluster with a TLE 2 &(e) do

endfor
for all antimesclage e-1 E COQ r.t. t,(e") 2 &(e) do

send antimessage e-l and remove it from the COQ
endfor

tell LP to roll back to a state prior to tr(e)

end.

An LP passes to the Cluster Environment event e to be sent.

begin
(1)
(2)
(3)

send event e to the deatination cluster
create e-1 where e-1 is the antimesclage of e
insert e-l into the COQ

end.

Figure 3: Pseudocode for the Cluster
Environment

The global virtual time (GVT is the virtual time of
the message or object which is t h e furthest behind in
the system at a given time. It is necessary to com Ute
a GVT estimate periodically in order to do gargage
collection. We make use of a simple token-ring algo-
rithm [2] as the number of processors which we make
use of is small (less than 32).

Our fossil collection algorithm differs somewhat
from that of Time Warp. In CTW, the state prior
to the GVT must be saved, while in Time Warp this
is not necessary. The reason for this is that it is pos-
sible to roll back prior to the GVT in CTW because
not every state is checkpointed. Similarly, the events
prior to the GVT in the LP input queue cannot all be
removed since it is possible for the LP to rollback to
a time prior to the GVT, since we might need to re-
process events with timestamps smaller than the GVT
while coasting forward. Figures 2 and 3 contain seu-
docode for the Logical Process and the Cluster Envi-
ronment. We define t,(e) as the send time of event e
and t , e as the receive time. We also define TLE(S)
as the Y LE saved in state S.

3.1 Local vs. Clustered Rollback
In our algorithm, when a straggler or an antimessage
arrives at the cluster, all of the LPs which have pro-
cessed an event with a receive time larger than that of
the stra gler or of the antimessage will be rolled back.

This%= the advantage of reducing memory con-
sumption by discarding all of the messages in mvali-
dated timezones (as they will be re enerated). How-
ever, the expense of forcing theseeps to roll back
each time an antimess e or a straggler arrives at
the cluster is not negli3le especially if most of the
events generated b the Lss within that cluster are
not causally related: In such a caae, only a few of the

LPs actually need to be rolled back. Hence a compro-
mise was mu ht in which the decision of rolling back
is made by t i e LP itself. In this new scheme, when
a s t r p or an antimessage is received, the clus-
ter up ates its timezone table accordingly and places
the event into the in ut queue of the receivin LP.
LPs now behave mu% like they do in a pure%ime
Warp system: r o h g back when they detect the ar-
rival of a str let in their input queue and sending
anth"ges%en needed.

Although this scheme might offer less overhead in
terms of computation, it is more ex ensive in terms
of memory since all the events in theEP input queues
have to be kept (as they will not be regenerated).

We call the latter scheme local rollback, and the
former scheme clustered rollback.

3.2 Local vs. Clustered Checkpointing
Another sim le variant of Clustered Time-Warp was
ale0 designAin which an LP checkpoints only if it
receives a message from an LP located in a different
cluster (rather than checking whether it is entering a
new timezone). This scheme is very simple to im le-
ment and requires less computational overhead tgan
the revious schemes. Even though it is evident that
an f P will have fewer checkpoints compared to the
schemes described earlier, it is not obvlous at all it
will save more memory. On the contrary, and al-
though it appears counter-intuitive, this scheme can
be more greedy. Since the distance between check-
points is greater, the number of events an LP needs
to keep (in order to coast forward if it rolls back to
a state prior to the GVT) tends to grow. Therefore,
there is a trade-oiE the fewer states an LP saves, the
more events it needs to keep. In the case of logic simu-
lation, the size of an event is far from being negligible
compared to that of a state. Therefore the dlstance
between check oints should not grow excessively if we
want to keep t i e usage of the memory to a minimum.

We call this scheme local checkpointing as opposed
to clustered checkpointing in which LPs save their state
each time they enter a new timezone.

4 Simulation Model and
Experiments

The implementation of the Lo 'c Simulator was per-
formed on a BBN Butterfiy G!&OOO shared-memory
multi rocessor and was written in C. Each node of
the $)utterfly ias 4MB of local memory and a pro-
cessor in the MC68000 family. The shared-memory is
actually a virtually shared-memory.

We only made use of the shared-memory to imple-
ment a message passing system- therefore no lobal
shared variable was used to impiement any of t i e al-
gorithms. This was done for two reasons: first, the
results obtained from running the different algorithms
will not be dependent on the presence of shared mem-
ory, hence making any comparisons unfair; second,
porting the simulator to distnbuted memory machines
such as the Intel Paragon will be more straightforward.

115

As we mentioned in the introduction, we oriented
our algorithms towards the simulation of logic-level
VLSI circuits. Our logic simulation model uses three
discrete logic values: 1, 0 and undefined. To model
the propagation delay, each gate has a constant ser-
vice time. All of the common lo 'cal ates were im-
plemented AND, NAND, NOR., R p f i o p s , etc ...

The circuits used in our stud are di 'tal sequen-
tial circuits selected from the ISEAS'89 Eenchmarks.
Many circuits of different sizes have been tested, but
we only resent the results obtained from simulations
of two ofthe largest circuits table 1 since the are

other circuits.
both representative of the res J r 3 ts we o tained w i d the

loo

A pro am was written to read the descri tion iile
of the ISFAS benchmarks and to partition t iem into
clusters. We used a string partitioning algorithm, be-
cause of its simplicity and especially because results
have shown that it favors concurrency over cone par-
titioning; see for example [3

A simulation run can be d. ecomposed into 3 phases.
First, each processor starts up by loading the gates ae-
si ned to it and by creating their correspondmg LPs.
T%en, each gate which has an initialized state pro-
duces an event to broadcast its output to the gates
connected to it. Some of these gates will be trig-
gered and will propagate their chan es throughout
the circuit. After a while the system fecomes stable
and events stop being generated. During the third
phase, input vectors reviously randomly generated)
are read and the sim 4 ation is run. Once the termina-
tion of the system is detected, statistics are collected.

-
HmbWdaw*npwhm&uu

I I I I I I

4.1 Experiments
We conducted two cate ories of experiments: one
was to determine the eiects of cluster size on the
performance of each algorithm, and a second set of
experiments to compare the performance (memory
and execution time) of the algorithms with that of
Time Warp. We used an aggressive cancellation mech-
anism.

In the case of CRCC (Clustered Rollback, Clus-
tered Checkpoint larger clusters will result in more
LPs being rolled kack m the event that a
an antimessage is received. For LRCC
back, Clustered Checkpoint) and LRLC
back, Local Check oint) smaller clusters result in a
larger number of CEeCkpoints and in greater memory
usage.

In fipres 4 and 5 we show the results obtained from
simulating both circuits on 20 processors with different
cluster sizes.

In figures 4a and 4b we show the peak memory
usage vs. the number of clusters per processor for C1
and C2 respectively. We define "peak memo wage"
as the maximum amount of memory n e e d J b y any

loo

D Q CTW-);
j m.u ~ (u ~ c F) ;

i - m ;
i *.o CTWamc);
......................................

-
Hnrbwd-pVPIUVWlU

I I I I I

host during the entire simulation. It is dependent on
the number of states and the number of events stored
in memory (the ratio state sizeleuent size was about
1.8 in our implementation). Both raphs indicate a
rather stable behavior on the part of IRCC and LRLC
with a minimal memory wage occurrin at one cluster
per processor. we atso see up to a i o % difference
m maximal memory U e between CRCC and Tune
Warp. CRCC, howeve3 as a large maximal memory
usage for one and two clusters per processor. However,

e decreases dramatically, and is lower than
!Ee% or LRCC from 4 clusters onwards.

We ale0 observe a difference in the peak memory
consumption between the two circuits for all of the al-
gorithms. The reason for this difference between the
two circuits is that C2 has an activity level nearly 3
times smaller than that of C1. Consequently, the cal-
culated GVT tends to be closer to the actual GVT,
and the fossil collection mechanism is then able to re-
move most of the useless states and events.

time vs. the

116

pi=y j--m(qpoq

100 i 6.0 m(wq
................................... I..

II)

a 0 1

0 -

20-

40 X * * (. . . . X *
+-.+.-.-. -.-.-.-.-.-.*

20 I-=- - 0 l c x p h n p w ~

b

\
\

D- -------- - - - 0
m., - . . .* u.... dl b.\

U) ; I b - - . - .-.-. * -.-.-.-..

NunbwdClrrW8pP-
I I I I I

I I I I I I I

a) Circuit C1
6 1 0 1 6 2 0 1 6 J O

..
i -*m(49cc)/

i 6 . O O m l L R c I j
i m.x m-;
:-rw ;
!

ter receives a stra er or an antimessage, the CE has

have to be rolled back. This overhead becomes more
pronounced when the cluster size is large. LRCC is
a bit slower than pure Time-Warp since the cluster
needs to update its timezone table regularly, and be-
cause LPs check the table each time they are about
to process an event. As for LRLC, it is shghtly faster
than Time-Warp because fewer states are saved. In
addition, the fossil collection mechanism has less work
to do and can catch up quickly.

Based on these results, we chose the cluster size for
each algorithm which gave the best erformance in or-
der to use them in our second set ofexperiments. For
LRCC and LRLC we chose one cluster er processor.
In the case of CRbC we chose 32 and lb clusters per
processor for CI and ~ 2 .

In the second set of experiments we obee~ed the
behavior of the algorithms, varying the number of pro-
cessors from 8 to 24. In figure 6, we show the peak
memory usage of each algorithm vs. the number of
processors for the circuits C1 and C2 respective1 We
also show the performance of a Periodic State &vhg
mechanism which is a modified version of pure Time

to check all of its @ s to find out whether or not they

i-psQ * - * =
im

Number of Plooess4rs
I I I I I
8 12 18 20 24

a) Circuit C 1

~.

k.*UlRCC
1-M --ocRcc
/ -pa ! .. * .omLC - I f m

Number of P t o c e m
I I I I I
8 12 18 20 24

b) Circuit C2

Figure 6: Peak Memory vs. Number of
Processors

Warp in which the checkpoint interval is larger than
one. We chose a checkpoint interval of 3 as it proved
to be an optimal value for a large range of type of
simulations 118). In all cases, the proposed algorithms
consume less memo than pure Time Warp espe-
cially in the case of%RCC which made use 01 up to
50% lees memory in Circuit C1.

In figure 7 we see that all of the algorithms store
far fewer states than Time W . In circuit C1 LRLC
storee some 70% fewer states3an pure Time barp.

In figure 8, we present the simulation time of each
algorithm w. the number of proceesors. We observe
that both LRCC and LRLC perform comparably to

CRCC ie from 30 to 60% slower than
ETE%arp in these examples. We note that this
Merence becomes less significant as the number of
processors mcrease.

In table 2, we summarize the results b comparing
each algorithm with pure Time Warp. &r both cir-
cuits and for each algorithm, we give the minimum,
the m h u m and the average percentage difference
from pure Time Warp for the maximum number of

117

nr m ;
--Rn y.:
-= C - . O L K c i

-Er* j
7000 \ ...

a) Circuit C 1

m
of states

Numberolpmcessm
I I I I

8 12 16 20 24

b) Circuit C2

Figure 7: Peak Number of States vsl Number
of Processors

states, the peak usage of memory (in KBytes), and
the simulation time (i seconds). We first observe that
each al orithm saves a substantial number of states,
especidy for LRLC. However, these results do not
n e c e s d y directly translate into those obtained for
total memo usage. Even though Periodic State Sav-
ing saves 3% of the states on the average (with a
checkpoint interval of 3), the average memory saved
does not go beyond 11%. This is because PSS needs to
keep more events in order to restore LP states during
the coast forward phase of rollback recovery. The same
phenomenon is observed for LRLC. On the other hand,
this does not happen when the Clustered Check oint-
ing mechanism is employed (ie: LRCC and C k C) ,
in which case, the performances are better in terms
of memory consumption. These results underline the
fact that simulation models such as Lo 'c Simulation
in which the size of the state of the L& is not much
larger than the size of the events, it is important to
consider the increase of memory needed to store the
supplementary events due to the checkpoint interval.

i ... i w l x . \

Numberd Pmcessom

8 12 16 20 24

b) Circuit C2

Figure 8: Simulation Time vs. Number of
Processors

As to the simulation time, only CRCC is much
slower than pure Time Warp, whereas the other algo-
rithms exhibited a speed comparable to Time Warp.
It should be noted that the current implementation
of our simulator is not completely optimized (em-
phasis was put on the correctness of the simulator
rather than its erformance), so better results might
be forthcoming !or CRCC in the near future.

5 Conclusion
We have described in this paper the Clustered Time
Warp algorithm (CTW), whch makes use of Time
Warp between clusters of LPs and a sequential algo-
rithm within each cluster. Time Warp is (without
regard to LP schedulin traditionally implemented

lief that CTW is useful when a model is comprised
of a larqe number of LPs havin low computational
g r a n b t y , such as logic level dS1 models.

In this spirit, we presented three checkpointing al-

between the individual eb s of a model. It is our be-

118

Table 2: Performance Summary

gorithms for use with CTW and implemented them
in a digital logic simulator. Two circuits were used:
an 18,000 gate circuit and a 20,000 gate circuit. The
18,000 ate circuit had an adivity level nearly three!
times tfat of the 20,000 gate circuit.
Each of the checkpointing algorithms re resented

a different memory vs. execution time tra&eoff. As
we have seen in the precedin section, the CRCC algo-
rithm saved between 35 and 80% of the maximal mem-
ory used in a Time Warp simulation. However, the
pnce for this was a reduction in the s eed of the al o-
rithm from 30 to 60% as com ared to k m e Warp. l%e
other two algorithms (LRLE and LRCC) decreased
the maximal memory usage of Time Warp up to 30%
without sacrificing much execution speed. Our results
also pointed out a stable behavior of the algorithms
with respect to the number of clusters emplo d. With
this range of choices among check ointing 3
it is possible to choose an algorittgm d e p e n & f t z
the memory requirements of the simulation.

We believe that the clustering a proach is useful
for other urposes as well. One SUA example is dy-
namic 102 balancing, since instead of havin to m m
individual LPe from one processor to anot%er, clus-
ters of LPs can be moved. Another point to note is
that because message cancellations are performed at
the cluster level, they tend to take place more quickly
than if they are done on an LP level. Hence it IS pos-
sible that CTW could avoid cascading rollbacks. We
are presently at work in both of these areas.

References
[l] M.L. Bailey, J.V. Briner, RD. Chamberlain, "Parallel

Logic Simulation of VLSI Systen~", ACM Computing
Surveys, vol. 26, no.3,. September 1994, pp. 255-295

121 S. Bellenot, "Global Virtual Time Algorithms",
PADS90, pp. 122-127, VO. 22, PO. 1, 1990

[3] J.V. Briner, Jr., "Faet Parallel Simulation of Digital

[4] $E. B&t, Simuktions of Packet 8ommulllcation
S st-" PADS91 Apaneim Calif., p. 71-71.

Architecture Computer system^", T.R-188, MIT
LCSi, 1977

[SI K. Chaudy, J. Misra, "Distributed Simulation:A Case
Studey in Design and Vdcation of Distributed Pro-
grams", IEEE 'Ikw. Software Ehg., S-5, Sept. 1079

[6] K.M. Chandy and J. Misra, 'Asynchronous Dis-
tributed Simulation via Sequence of Parallel Com-
putations", Comm. ACM, Vo1.24, No.11, pp.198-205,
April 1981.

[I RM. Fujimoto, "Parallel Discrete Event Simulation",

[8] N. K r i d d i r , C.%pper, "A Performance Analysis
of Time Warp", 1992 Znt. Conf, on pamllel P m . ,

IS] D. Glazer and C. 'Ikopper, "On local Balancing and
Pro- Migration in Time Warp", IEEE !lkans. Par-
all. Dist. Comp., Vol. 4, No. 3 pp. 318-328, Mar. 1993.

[lo] B. Groselj and C. 'Ikopper, "A Deadlock Resolution
Scheme for Dwtributed Simulation", Proceedings of
the SCS Eastern Multiwnfennee SCS Simulation S a

[ll] B. Groselj and C. 'hpper, "The distributed simula-
tion of dmtered proceasea", Distributed Computing,

[12] D.R Jefteraon, "Virtual Time", ACM %M. Pmg.
Lang. Syst., Vol. 7, No. 3, pp. 404425, July 1985.

[13] Y. Lin, "Understanding the Limits of Optimistic
and Conservative Parallel Simulation", Ph.D. thesis,
Dept. of Computer Science and Engineering, Univer-
sity of Waehington, TR 90-08-02, August 1990.

[14] Y. Lin et al, "Selecting the Checkpoint Interval in
Time Warp Simulation", PADS93 pp. 3-10, vol. 23,
no. 1, May 1993.

[15] B. Lubachevsky, A. Schwartz, A. Weiss, "Rollback
Sometima Works ... if Filtered", Proc. 1989 Winter
Simulation Conference, pp. 630-639, December 1989

[16] J. Misra, "Distributed Disaete-Event Simulation",
ACM Computing Surveys, Vo1.18, No.1, pp.39-65,
Mar.1986.

[17] B. R Preiss, I. MacIntyre, W. Loucks, "On the Trade-
off between Time and Space in Optimistic Parallel
Discrete-Event Simulation", PADS92pp. 33-42.

[18] B. K Prum, W . Loucks, 1. MacIntyre, "Effects of
the Checkpoint Interval on Time and Space in Time
Warp", ACM 'Ikansactions on Modeling and Com-
puter Simulation, July 1994

1191 E. Rajaei, R A@, L.E. Thorellu, "The Local Time
Warp Approach to Parallel Simulation", PADS93

[20] R R o ~ g t m and R Ayani, "Adaptive Checkpointing
in Time Warp"PADS94, pp. 110-117.

[21] J. Steinman, "SPEEDES: A Unified Approach to Par-
allel Simulation", PADS92, SCS Simulation Series,
vol. 24, no.3, pp. 75-84

CACM, V01.33, N0.10, pp.31-53, 1990.

Chicago, Illinois

rim, vol. 21, no. 2, pp. 108-112.

vol.4,pp. 111-121,1991.

119

