Clustered Time Warp and Logic Simulation

Hervé Avril *and Carl Tropper
School of Computer Science
McGill University, Montréal, Canada H3A 2A7
Email : herveQcs.mcgill.ca, carl@magic.cs.mcgill.ca

Abstract

We present, in this paper, a hybrid algorithm which
makes use of Time Warp between clusters of LPs and
a sequential algorithm within the cluster. Time Warp
is, of course, traditionally implemented between in-
dividual LPs. The algorithm was implemented in a
digital logi% simulator, and its performance compared

to that of Time Warp.

Restin, ucion this platform we develop a family
of three checkpointing algorithms, each of which oc-
cupies a different point in the spectrum of possible
trade-offs between memory usage and execution time,
The algorithms were implemented on several digital
logic circuits and their speed, number of states saved
and maximal memory consumption were compared to
those of Time Warp. One of the algorithms saved be-
tween 35 and 50% of the maximal memory consumed
by Time Warp (depending upon the number of proces-
sors used), while the other two decreased the maximal
usage up to 30%. The latter two algorithms exhib-
ited a speed comparable to Time Warp, while the first
algorithm was 30-60% slower.

These algorithms are also simpler to implement
than optimal checkpointing algorithms.

1 Introduction

Two diametrically opposed classes of algorithms have
been developed for the synchronization of paral-
lel simulations-the conservative approach inspired by
Chandy, Misra [5], and Bryant ﬁ], and tﬁe opti-
mistic approach pioneered by Jefferson [121i1 The two
approaches differ fundamentally in how they main-
tain causality in the simulations. The conservative
method relies upon a process to block until such time
that it knows that events may be executed in strict
timestamp order. In the optimistic approach processes
are under no such restriction. A process is free to ex-
ecute events as they arrive at the process. The con-
sequence of making use of blocking in the conserva-
tive approach is the possible formation of deadlocks
[11, 16]. In the optimistic approach messages may
arrive which are not in strict timestamp order (i.e.

stragglers). The process is then obliged to roll back

*also with the Hutchison Avenue Software Corporation,
Montréal, Canada

0-8186-7120-3/95 $04.00 © 1995 IEEE

112

to a state before the straggler arrived, and to can-
cel the effect of messages which should not have been
sent. This cancellation is accomplished by the use
of so-called antimessages, which "annihilate” the in-
correctly sent messages upon meeting them in input
queues. The interested reader may wish to consult [7]
or [16] for surveys of work in parallel simulation.
erience with Time Warp over the last several
as revealed two fundamental problems with the
ime Warp paradigm-that of memory management
resulting from the necessity to save states [7] and of
unstable behavior [15]. A closely related problem is
that of Time Warp running out of memory. In this
case fossil collection can simply not liberate enough
sﬁe for the simulation to continue. Approaches to
this problem include the cancelback protocol and the
use of artificial rollback.

Time Warp's unstable behavior is a consequence
of low computational granularity; antimessages are
not capable of annihilating previously sent messages
quickly enou(fh. This can lead to a series of cascading
rollbacks, a devastating effect.

An application area such as logic simulation poses
a severe challenge to Time Warp for precisely these
reasons. In a logic simulation the number of LPs is
extremely large-a small circuit will have several tens
of thousands of gates. This cannot help but have an in-
fluence on the problem of memory management. The
computational granularity of a logic simulation is low,
bringing with it the possibility of long rollbacks. The
presence of feedback loops in circuits brings with it
an increased possibility for rollbacks. Nevertheless, a
good deal of effort has gone into parallel logic simula-
tion because reducing the time of uniprocessor simu-
lators can have a significant impact on the design of
VLSI systems. The interested reader might wish to
consult [1] for a survey of attempts in this area. [3]
describes an optimistic protocol for logic simulation,
in which an upper bound on the simulator’s time ad-
vance was added to Time Warp. Promising results
were obtained.

With these difficulties in mind, we feel that a hybrid
algorithm would be appropriate for logic simulation.
In this approach we make use of Time Warp between
clusters of LPs belonging to different processors and
use a sequential algorithm within the clusters. In our
aE%roach, a process known as the cluster environment
(is associated with each cluster. A motivation for
its development was the notion that a circuit could
be partitioned prior to the simulation so that different
functional units would reside on different processors.

We describe several checkpointing algorithms which
are a natural consequence of this approach, in that
they ?ipply to all of the LPs in a cluster instead of
individual LPs. Each of these algorithms occupies a
different spot in the space-time continuum of trade-
offs inherent in checkpointing {17)].

We feel that the clustering of LPs has the potential
to reduce the number of rollbacks inherent in Time
qugm This is the subject of on-going research and is
not discussed in this paper.

In what follows, section 2 contains a description
of results related to those in our paper, section 3 con-
tains a description of our clustering and checkpointi
algorithms, section 4 describes our experiments an
results, and the conclusion follows.

2 Related results

A number of attempts have been made to combine the
optimistic and conservative approaches. [21] allows a
process to proceed optimistically but avoids sending
potentially erroneous messages to other LPs. [15] em-
ploys a window protocol to prevent LPs from getting
too far apart in simulated time.

In [19] the authors present an algorithm in which
LPs are grouped into clusters, Time Warp is
within the clusters and a conservative algorithm is
used between clusters. By way of comparison, our
algorithms make use of Time between clusters
and a sequential algorithm within the cluster. We feel
that Clustered Time Warp (CTW) is more appropri-
ate for massive fine grained simulations such as gig-
ital logic simulation than Local Time Warp for two
reasons: first, CTW takes advantage of the fact that
LPs in a cluster share the same address space, thereby
making their sg'nchronization and scheduling straight-
forward;second, by using a conservative algorithm be-
tween clusters, Local Time Warp might reduce the
parallelism of the simulated model. In any event, as
no performance results were presented for Local Time
Warp, it is difficult to compare it to CTW.

To date, work on determining optimal checkpoint-
ing intervals has centered around determining inter-

for individual LPs. In our approach LPs are
grouped into clusters and the checkpoints are based
on the inter-arrival times of messages to the clusters.
No attempt is made to seek an optimal interval for
individual LPs. However, as we shall see, substantial
memory savings are obtained.

In [17], the authors make the important point that
in selecting a checkpoint interval for Time Warp, it
is important to distinguish between memory-optimal
checkpoints and time-optimal checkpoints. Frequent
checkpointing results in faster simulations and a larger
consumption of memory.

Several algorithms for checkpointing have appeared
in the literature. In [14], Lin develops upper amy lower
bounds for checkpoint intervals given by the following
two expressions:

x~ = [2ey +1)6,/6.1/%]

xt = (o - 1)8,/6,'?)

113

where a; is the average number of events executed
in forward execution between rollbacks for x = 1, §,
is the average time to save one state of the LP and
8, is the average execution time of an event in normal
forward execution. Experimental results indicate that
the optimal length is actually closer to x*. In [14],
the authors present an algorithm which incorporates
the effects of rollback behavior on the length of the
checkpoint interval. An iterative procedure in which
N events are executed in each iteration determines the
eventual value of 1 The value of N is selected empir-
ically and has to be large enough for the simulation
to have reached steady state. The number of itera-
tions depends on the model simulated. In addition,
the authors do not address the question of whether
the iterations actually converge. .

In [20] the authors develop an adaptive checkpoint-
ing algorithm based on the use of exponential smooth-
ing. The authors derive an expression for the value
of Xmin, the checkpoint inte: which minimizes the
execution time of the simulation. The expression is:

Xmin = r2(Robn/kobs)(6a/6c)l/2]

where ko, is the number of rollbacks and R, the
number of events executed. They make use of this
exﬁreseion in calculating the estimate for x after the
nth observation period.

This expression is given by
Xn= Xinitial if n =0
= [(1 = p)xn-1 + pxmaz] if kobs =0
= maz(1, [(1 - p)xn-1+
pmin(xmi“(kobn Robn 6!; 66)1 Xmaz)]) otherwise,

where Xinitial i8 the initial value for X, Xmas i8 an
upper bound on the estimate for x,,, and p is a pa-
rameter which determines the relative weight of past
values of x,, and the computed minimum value of x,

min-~

X The length of the observation period and the value
of p are determined empirically, as are kmaz, Xinitial
and 6,/6.. Since each of these values must be de-
termined as a function of the simulated system, the
adaptive checkdpointing approach suffers from the same
drawback as does Lin’s algorithm. Unless measure-
ments are made prior to tl%e use of these algorithms,
neither can be optimal. On the other hand, it 1s impor-
tant to keep the overhead engendered by these mea-
surements as small as possible.

3 The Algorithm

As we mentioned in the introduction, we make use
of Time Warp between clusters of LPs and a sequen-
tial algorithm within each cluster. A cluster is com-
osed of one or more LPs, a Cluster Environment
CE), a Timezone table, and a Cluster Output Queue
COQ). The COQ holds copies of the messages that
were sent by LPs in the cluster to LPs located in
different clusters. This is necessary so that when the
cluster receives either a straggler or an antimessage,

Cluster

(XM

Figure 1: Cluster Structure

antimessages can be sent out to cancel incorrect com-
putations. The CE is in charge of managing the COQ
and the Timezone table (defined below) as well as
the sending of antimessages. It is important to note
that individual LPs do not send antimessages. On the
whole, the cluster behaves like an LP in a purely op-
timistic system.

Figure 1 contains a cluster with 3 LPs. For each
cluster, the simulation is decomposed into a series
of non-overlapping time intervals we call timezones.
When the simulation starts, each cluster has only
one timezone, with interval [0,4+oc0[. Each time a
cluster receives a message from another cluster with
timestamp ¢ (the receive time of the message), it finds
the timezone interval [t;,t;41[into which ¢ fits and
splits it into two new timezones with intervals [t;,t[
and [t,t;+1&.) The message is then forwarded to the
receiving LP.

Each LP maintains a Local Simulation Time
(or LST). In addition, the LP keeps track of the
Timestamp of the Last Event it processed (or TLE).

Before an LP processes an event, it first checks into
which timezone the timestamp of the event fits. If that
timezone is different from that of the last event which
the LP processed, then the LP checkpoints by sav-
ing its state; otherwise the LP directly consumes the
event. More generally, an LP checkpoints each time
it changes timezones. When an LP sends a message
to another LP located in the same cluster, it simp
places it in the corresponding input queue of the desti-
nation LP. If the receiver is located in a different clus-
ter, the sendinﬁ‘LP the message to the Cluster
Environment. The CE is then in charge of placing the
message in the right cluster (containing the receiving
LP) and keeping a copy of that message in the Cluster
Output Queue. This is necessary in the case in which
one or more messages have been sent within a time-
zone that has been invalidated. When this occurs, the
CE sends an antimessag‘:or each of these messages.
This is achieved by checki E:whether or not the time-
zone of the messages in the COQ are still valid. If they
are not, the antimessage is removed from the COQ and
sent.

Suppose the cluster receives a straggler with
timestamp ¢,. As we have seen before, the CE cre-

114

ates a new timezone and it rolls back all LPs in the
cluster which have a TLE greater than ¢, to a check-
point prior to ¢,. In addition, the CE will send all the
n antim stored in the COQ which have
a send time greater than ¢,. The cluster will proceed
similarly when it receives an antimessage, with the
difference that it will not create new timezones, Af-
ter rolling back, the LP “coasts forward”, as in Time
Warp, not re-sending any messages produced before
the time of the straggler. Also, the LP removes from
its input queue all of the messages which have a send
time greater than the timestamp of the straggler or
of the antimessage which caused the rollback. This
will not affect the correctness of the simulation as all
the LPs in the cluster are rolled back. Hence all of
the necessary messages will be regenerated. Since the
events in the cluster are processed in strict timestamp
order (i.e. lowest timestamp first), the descendants of
the straggler will be placed correctly in the heap, and
events at all of the LPs in the cluster will be processed
in the correct order.

The LP is about to process event e.

begin
(1) find timezone Z;, with interval [t;, ;41 s.t. TLE € Z),
(2) ift,(e) € Zi, then checkpoint
() TLE=1.(¢
(4) LST =maxz(LST,TLE)
(5) simulate event e
(6) LST = LST + service time
(7) for all events ¢’ to send do
(8) ts(e')=TLE
9) te(e') = LST
(10) if destination LP of ¢ is in the same cluster then
(11) insert ¢’ into its input queue
else
(12) give ¢’ to the CE for it to send
endif
endfor
end.

The LP is told by the CE to roll back because the cluster has
received an event.

begin
/* Clean up the StateQueue */
for all states S € State Queue s.t. TLE(S) > t,(e) do
remove S from State Queue
endfor
find state § € State Queue
s.t. TLE(S) £ TLE(S')V §' € State Queue
restore state S
/* Clean up the InputQueue */
for all events ¢’ € Input Queue s.t. 1,(¢') > t;(¢)
remove ¢’ from Input Queue
endfor

1)
2

6]
@

(8)
©

/* Coast Forward */

while t,(¢’) < t,(e) where ¢’ is the next event

TLE = t,(e')

LST = maz(LST,TLE)

simulate event ¢’
(14) LST = LST + service time
(15) endwhile

end.

(M

(11)
(12)
(13)

Figure 2: Pseudocode for the Logical Process

The cluster has received event e.

begin

if e is not an antimessage then
find timezone Z with interval [t;,ti + 1] s.t. t,(¢) € Z
create timezone Z; with interval [¢;, t,(¢)|
create timezone Z; with interval [t,(e), ti41[
replace Z by Z; and Z;

endif

for all LPs in the cluster with a TLE > t,(e) do
tell LP to roll back to a state prior to t.(e)

endfor

1)
(2)
(3)
(4)
)

(6)
M

(8) for all antimessage e~! € COQ s.t. t,(e~!) 2 t,(e) do
9) send antimessage e—! and remove it from the COQ
endfor
end.

An LP passes to the Cluster Environment event ¢ to be sent.

begin
send event e to the destination cluster
create e~! where e~! is the antimessage of ¢
insert ™! into the COQ

end.

(1)
(2)
®)

Figure 3: Pseudocode for the Cluster
Environment

The global virtual time (GVT) is the virtual time of
the message or object which is the furthest behind in
the system at a given time. It is necessary to compute
a GVT estimate periodically in order to do garbage
collection. We make use of a simple token-ring algo-
rithm [2] as the number of processors which we make
use of is small (less than 32).

Our fossil collection algorithm differs somewhat
from that of Time Warp. In CTW, the state prior
to the GVT must be saved, while in Time Warp this
is not necessary. The reason for this is that it is pos-
sible to roll back prior to the GVT in CTW because
not every state is checkpointed. Similarly, the events
prior to the GVT in the LP input queue cannot all be
removed since it is possible for the LP to rollback to
a time prior to the GVT, since we might need to re-
process events with timestamps smaller than the GVT
while coasting forward. Figures 2 and 3 contain pseu-
docode for the Logical Process and the Cluster Envi-
ronment. We define ¢,(¢) as the send time of event e
and t,(e) as the receive time. We also define TLE(S)
as the T'LE saved in state S.

3.1 Local vs. Clustered Rollback

In our algorithm, when a straggler or an antimessage
arrives at the cluster, all of the LPs which have pro-
cessed an event with a receive time larger than that of
the straggler or of the antimessage will be rolled back.

This has the advantage of reducing memory con-
sumption by discarding all of the messages in invali-
dated timezones (as they will be regenerated). How-
ever, the expense of forcing these iPs to roll back
each time an antimessage or a straggler arrives at
the cluster is not negligible, especially if most of the
events generated by the LBs within that cluster are
not causally related. In such a case, only a few of the

115

LPs actually need to be rolled back. Hence a compro-
mise was sought in which the decision of rolling back
is made by the LP itself. In this new scheme, when
a straﬁgler or an antimessage is received, the clus-
ter updates its timezone table accordingly and places
the event into the input queue of the receiving LP.
LPs now behave much like they do in a pure Time
Warp system: rolling back when they detect the ar-
rival of a straggler in their input queue and sending
antimessages when needed.

Although this scheme might offer less overhead in
terms of computation, it is more ex;i‘ensive in terms
of memory since all the events in the LP input queues
have to be kept (as they will not be regenerated).

We call the latter scheme local rollback, an
former scheme clustered rollback.

the

3.2 Local vs. Clustered Checkpointing

Another simple variant of Clustered Time-Warp was
also designed in which an LP checkpoints only if it
receives a message from an LP located in a different
cluster (rather than checking whether it is entering a
new timezone). This scheme is very simple to imﬁle-
ment and requires less computational overhead than
the frevious schemes. Even though it is evident that
an LP will have fewer checkpoints compared to the
schemes described earlier, it is not obvious at all it
will save more memory. On the contrary, and al-
though it appears counter-intuitive, this scheme can
be more greedy. Since the distance between check-
points is greater, the number of events an LP needs
to keep (in order to coast forward if it rolls back to
a state prior to the GVT) tends to grow. Therefore,
there is a trade-off: the fewer states an LP saves, the
more events it needs to keep. In the case of logic simu-
lation, the size of an event is far from being negligible
compared to that of a state. Therefore the distance
between checkpoints should not grow excessively if we
want to keep tﬁe usage of the memory to a minimum.

We call this scheme local checkpointing as opposed
to clustered checkpointing in which LPs save their state
each time they enter a new timezone.

4 Simulation
Experiments

Model and

The implementation of the Logic Simulator was per-
formed on a BBN Butterfly GP1000 shared-memory
multig;rocessor and was written in C. Each node of
the Butterfly has 4MB of local memory and a pro-
cessor in the MC68000 family. The shared-memory is
actually a virtually shared-memory.

We only made use of the shared-memory to imple-
ment a message passing system; therefore no global
shared variable was used to impiement any of the al-
gorithms. This was done for two reasons: first, the
results obtained from running the different algorithms
will not be dependent on the presence of shared mem-
ory, hence making any comparisons unfair; second,
porting the simulator to distributed memory machines
such as the Intel Paragon will be more straightforward.

As we mentioned in the introduction, we oriented
our algorithms towards the simulation of logic-level
VLSI circuits. Our logic simulation model uses three
discrete logic values: 1, 0 and undefined. To model
the propagation delay, each gate has a constant ser-
vice time. All of the common logical gates were im-
plemented: AND, NAND, NOR, Flip-Flops, etc ...

The circuits used in our study are digital sequen-
tial circuits selected from the ISCAS’89 Benchmarks.
Many circuits of different sizes have been tested, but
we only present the results obtained from simulations
of two of the largest circuits (table 1) since they are
both representative of the results we obtained with the
other circuits.

inputs | oufputs| Sip-flops | number of gates|
C1|s35832 | 35 | 320 | 1,728 18,148
C2|s38584 | 38 | 304 | 1,426 21,021

Table 1: Circuit C1 (835932) and C2 (s38584)

A pro%'am was written to read the description file
of the ISCAS benchmarks and to partition them into
clusters. We used a string partitioning algorithm, be-
cause of its simplicity and especially because results
have shown that it favors concurrency over cone par-
titioning; see for example [3].

A simulation run can be decomposed into 3 phases.
First, each processor starts up by loading the gates as-
signed to it and by creating their corresponding LPs.
Then, each gate which has an initialized state pro-
duces an event to broadcast its output to the gates
connected to it. Some of these gates will be trig-
gered and will propagate their changes throughout
the circuit. After a while the system becomes stable
and events stop being generated. During the third
phase, input vectors S)reviously randomly generated)
are read and the simulation is run. Once the termina-
tion of the system is detected, statistics are collected.

4.1 Experiments

We conducted two categories of experiments: one
was to determine the effects of cluster size on the
performance of each algorithm, and a second set of
experiments to compare the performance (memory
and execution time) of the algorithms with that of
Time Warp. We used an aggressive cancellation mech-
anism.

In the case of CRCC (Clustered Rollback, Clus-
tered Checkpoint), larger clusters will result in more
LPs being rolled back in the event that a st er or
an antimessage is received. For LRCC (Local Roll-
back, Clustered Checkpoint) and LRLC (Local Roll-
back, Local Checkpoint) smaller clusters result in a
larger number of checkpoints and in greater memory
usage.

aii figures 4 and 5 we show the results obtained from
simulating both circuits on 20 processors with different
cluster sizes.

In figures 4a and 4b, we show the peak memory
usage vs. the number of clusters per processor for C1
and C2 respectively. We define “peak memo

usage”
as the maximum amount of memory need

by any

116

o Peak Memory
| Usage (KBytes)
]
600
]
bV amiea O=
“'dp-o’ ''''''' ~
X8 Meeoo,,, R R LR A -
T o <
O= < CTW (CRCC)
%+ & CTW (LACC)
200 1 o .0 CIWRALS)
O=eO TW
100 |-
Number of Clusters per Processor
1 1 1 1 1 1
3 10 [2 F3)
a) Circuit C1
600 yioo) 0= -0 CTW{LRLC)
) o0 TW
400 Lo X
T
m& w ettt O
o me omem "
mx \D-—n =0
B ‘*D—‘—-
100 |-
Number of Clusters per Processor
1 | | 1 |
50 100 150 200 250
b) Circuit C2

Figure 4: Peak Memory vs. Number of
Clusters per Processor

host during the entire simulation. It is dependent on
the number of states and the number of events stored
in memory (the ratio state size/event size was about
1.8 in our implementation). Both graphs indicate a
rather stable behavior on the part of LRCC and LRLC
with a minimal memory usage occurring at one cluster
er processor. We also see up to a 40% difference
in maximal memory usage between CRCC and Time
Warp. CRCC, however, has a large maximal memory
usage for one and two clusters per processor. However,
the e decreases dramatically, and is lower than
eith;:-s?ﬁu;c or LRCC from 4 clusters onwards.

We also observe a difference in the peak memo:
consumption between the two circuits for all of the al-
gorithms. The reason for this difference between the
two circuits is that C2 has an activity level nearly 3
times smaller than that of C1. Consequently, the cal-
culated GVT tends to be closer to the actual GVT,
and the fossil collection mechanism is then able to re-
move most of the useless states and events.

Figures 5a and 5b show the simulation time vs. the
number of clusters per host. As we can see, CRCC
has a significant overhead when compared to Time
Warp. This is mainly due to the fact that some LPs
are unnecessarily rolled back. Also, each time a clus-

-y (seconds) o < CTW,
ool 3.5 e
L ' o—0 TW
'
)
et]
o ‘\
~o o
T S
|- —————
o
40-*“_“,...\(........ T EEEER R x
o A) - e it o <
20}
Number of Clusters per Processor
1 I 1 1 1 1
5 10 15 2 - 0
a) Circuit C1
Simulation Time
[(seconds) il e
100 |- O <0 CTW(LALG)
o—0 TW
3]
-]
80 b\
[
\
0 b
- B s o
LI AR Heoeoooouenannsne x
20 -
Number of Clusters per Processor
1 ! 1 | 1
60 100 150 200 250
b) Circuit C2

Figure 5: Simulation Time vs. Number of
Clusters per Processor

ter receives a strai%et or an antimessage, the CE has
to check all of its LPs to find out whether or not they
have to be rolled back. This overhead becomes more
pronounced when the cluster size is large. LRCC is
a bit slower than pure Time-Warp since the cluster
needs to update its timezone table regularly, and be-
cause LPs check the table each time they are about
to process an event. As for LRLC, it is shightly faster
than Time-Warp because fewer states are saved. In
addition, the fossil collection mechanism has less work
to do and can catch up quickly.

Based on these results, we chose the cluster size for
each algorithm which gave the best performance in or-
der to use them in our second set of experiments. For
LRCC and LRLC, we chose one cluster 2pg::' Processor.
In the case of CRCC, we chose 32 and 128 clusters per
processor for C1 and C2.

In the second set of experiments we observed the
behavior of the algorithms, varying the number of pro-
cessors from 8 to 24. In }igure 6, we show the peak
memory usage of each algorithm vs, the number of
processors for the circuits C1 and C2 respectively. We
also show the performance of a Periodic State Saving
mechanism which is a modified version of pure Time

117

Peak Memory Usage (KBytes)
600 }=
500 =~
«wol- j -~°_._..g
300 i~ n~\o_‘:;’.-‘-.;.—"a
200 ™w cTw
B om0 Purs ¥~ "0 CRCC
pss X ¥ LACC
100 |- — o .LRe
: Nun:borolP[rooeaao:s
] 12 16 20 24
a) Circuit C1
Peak Memory Usage (KBytes)
300 [~ _.=0
5 R
:.. a/’ \
T N\ ceeX
200 p— D'",(' .'x.‘.\.;—’a
i ™ ¢Tw
O—0 Pure o- -0 CRCC
100 — % « X LRCC
— PSS o .o lae
i Number of Processors
]] | | i
8 12 16 20 24
b) Circuit C2
Figure 6: Peak Memory vs. Number of

Processors

Warp in which the checkpoint interval is larger than
one. We chose a checkpoint interval of 3 as it proved
to be an optimal value for a large range of type of
simulations [18]. In all cases, the proposed algorithms
consume less memory than pure Time Warp, espe-
cially in the case of CRCC which made use of up to
50% less memory in circuit C1.

In figure 7 we see that all of the algorithms store
far fewer states than Time Warp. In circuit C1, LRLC
stores some 70% fewer states than pure Time ’Wu-p

In figure 8, we present the simulation time of each
algorithm vs. the number of processors. We observe
that both LRCC and LRLC perform comparably to
Time Warp., CRCC is from 30 to 60% slower than
pure Time Warp in these examples. We note that this
difference becomes less significant as the number of
processors increase,

In table 2, we summarize the results by comparing
each algorithm with pure Time Warp. For both cir-
cuits and for each algorithm, we give the minimum,
the maximum and the average percentage difference
from pure Time Warp for the maximum number of

z
|

EEERRE

Peak Number w o
o— o~ -0 CRCC
of States . PP‘;; % « ¥ LACC

1000 |- TTror=r
Number of Processors
R

b) Circuit C2

Figure 7: Peak Number of States vs. Number
of Processors

states, the peak usage of memory (in KBytes), and
the simulation time (in seconds). We first observe that
each algorithm saves a substantial number of states,
especially for LRLC. However, these results do not
necessarily directly translate into those obtained for
total memory usage. Even though Periodic State Sav-
ing saves 30% of the states on the average (with a
checkpoint interval of 3), the average memory saved
does not go beyond 11%. This is because PSS needs to
keep more events in order to restore LP states during
the coast forward phase of rollback recovery. The same
phenomenon is observed for LRLC. On the other hand,
this does not happen when the Clustered Checkpoint-
ing mechanism 18 employed (ie: LRCC and CRCC),
in which case, the performances are better in terms
of memory consumption. These results underline the
fact that simulation models such as Logic Simulation
in which the size of the state of the LPs is not much
larger than the size of the events, it is important to
consider the increase of memory needed to store the
supplementary events due to the checkpoint interval.

118

Number of Processors
1 | | | I
8 12 16 20 24
a) Circuit C1
Simulation Time O- 0 CTW(CRCC)
a3 cTw
(seconds) o~ .0 crwm
80 b=
60 =
4 -
20 —
B Number of Processors
1 1 1] 1
8 12 18 20 24
b) Circuit C2
Figure 8: Simulation Time vs. Number of
Processors

As to the simulation time, only CRCC is much
slower than pure Time Warp, whereas the other algo-
rithms exhibited a speed comparable to Time Warp.
It should be noted that the current implementation
of our simulator is not completely optimized (em-
phasis was put on the correctness of the simulator
rather than its performance), so better results might
be forthcoming for CRCC in the near future.

5 Conclusion

We have described in this paper the Clustered Time
Warp algorithm (CTW), which makes use of Time
Warp between clusters of LPs and a sequential algo-
rithm within each cluster. Time Warp is (without
regard to LP schedulin, i)traditiona.ll implemented
between the individual f s of a model. It is our be-
lief that CTW is useful when a model is comprised
of a large number of LPs having low computational
granularity, such as logic level VLSI models.

In this spirit, we presented three checkpointing al-

States Memory Simulation
Time

Min [Max | Avg | Min [aax T Avg [Min [Mex[Avg

PSS 12563 |0 |6 jejofj2a|o0]|o

c1 LAC |60 (73|65 8 {25616 | 2 |6 | ¢
LARCC |20 |34 |27 |12 |32 |22 |16 | & |10
CRCC| 24 | 65 | 42 133 |40 | 41 |76 | 48 | 61
PSS |25 |38 |33)8 [18|1n]2]0]
co|lrc|os|os |52 |4 24|11 |26
LARCC| 26 |87 |32 |22 |57 | a1 | 16 |-10|-14
CRCC| 14 |40 | 20 | 16 | 41 |30 |20 |-22] 28

Table 2: Performance Summary

gorithms for use with CTW and implemented them
in a digital logic simulator. Two circuits were used:
an 18,000 gate circuit and a 20,000 gate circuit. The
18,000 gate circuit had an activity level nearly three
times that of the 20,000 gate circuit.

Each of the checkpointing algorithms represented
a different memory vs. execution time trade-off.
we have seen in the preceding section, the CRCC algo-
rithm saved between 35 and 50% of the maximal mem-
ory used in a Time Warp simulation. However, the
price for this was a reduction in the speed of the algo-
rithm from 30 to 60% as compared to Time Warp. 'Ishe
other two algorithms (LRLC and LRCC) decreased
the maximal memory usage of Time Warp up to 30%
without sacrificing much execution speed. Our results
also pointed out a stable behavior of the algorithms
with respect to the number of clusters employed. With
this range of choices among checkpointing (ﬁorithms,
it is possible to choose an algorithm depending upon
the memory requirements of the simulation.

We believe that the clustering approach is useful
for other purposes as well. One such example is dy-
namic load balancing, since instead of having to move
individual LPs from one processor to another, clus-
ters of LPs can be moved. Another point to note is
that because message cancellations are performed at
the cluster level, they tend to take place more quickly
than if they are done on an LP level. Hence it is pos-
sible that CTW could avoid cascading rollbacks. We
are presently at work in both of these areas.

References

[1] M.L. Bailey, J.V. Briner, R.D. Chamberlain, ” Parallel
Logic Simulation of VLSI Systems”, ACM Computing
Surveys, vol. 26, no.3,. September 1994, pp. 255-295

[2] S. Bellenot, "Global Virtual Time Algorithms”,
PADS90, pp. 122-127, vo. 22, no. 1, 1990

[3] 3.V. Briner, Jr., "Fast Parallel Simulation of Digital
Systems”, PADS91, Anaheim, Calif., pp. 71-77.

[4] RyE Bryant, Simulations of Packet Bommunication
Architecture Computer Systems”, T.R.-188, MIT
LCSi, 1977

[5] K. Chandy, J. Misra, "Distributed Simulation:A Case
Studey in Design and Verification of Distributed Pro-
grams”, IEEE Trans. Software Eng., S-5, Sept. 1979

119

(6] K.M. Chandy and J. Misra, “Asynchronous Dis-
tributed Simulation via Sequence of Parallel Com-
putations”, Comm. ACM, Vol.24, No.11, pp.198-205,
April 1981.

[7] R.M. Fujimoto, “Parallel Discrete Event Simulation”,
CACM, Vol.33, No.10, pp.31-53, 1990.

[8] N. Krivossidis, C.Tropper, A Performance Analysis
of Time Warp”, 1992 Int. Conf, on parallel Proc.,
Chicago, lllinois

[9] D. Glazer and C. Tropper, “On local Balancing and

Process Migration in Time Warp”, IEEE Trans. Par-
all. Dist. Comp., Vol. 4, No. 3 pp. 318-328, Mar. 1993.

[10] B. Groselj and C. Tropper, A Deadlock Resolution
Scheme for Distributed Simulation”, Proceedings of
the SCS Eastern Multiconference SCS Simulation Se-
ries, vol. 21, no. 2, pp. 108-112.

[11] B. Groselj and C. Tropper, "The distributed simula-
tion of clustered processes”, Distributed Computing,
vol.4,pp. 111-121,1991.

[12] D.R. Jefferson, “Virtual Time”, ACM Trans. Prog.
Lang. Syst., Vol. 7, No. 3, pp. 404425, July 1985.

{13] Y. Lin, "Understanding the Limits of Optimistic
and Conservative Parallel Simulation”, Ph.D. thesis,
Dept. of Computer Science and Engineering, Univer-
sity of Washington, TR 90-08-02, August 1990.

[14] Y. Lin et al, "Selecting the Checkpoint Interval in
Time Warp Simulation”, PADS9S pp. 3-10, vol. 23,
no. 1, May 1993.

[15] B. Lubachevsky, A. Schwartz, A. Weiss, ”Rollback
Sometimes Works ... if Filtered”, Proc. 1989 Winter
Simulation Conference, pp. 630-639, December 1989

[16] J. Misra, “Distributed Discrete~Event Simulation”,
ACM Computing Surveys, Vol.18, No.l, pp.39-65,
Mar.1986.

[17] B. R. Preiss, I. MacIntyre, W. Loucks, ”"On the Trade-
Off between Time and Space in Optimistic Parallel
Discrete-Event Simulation”, PADS98pp. 33-42.

[18] B. R. Preiss, W. Loucks, I. Maclntyre, "Effects of
the Checkpoint Interval on Time and Space in Time
Warp”, ACM Transactions on Modeling and Com-
puter Simulation, July 1994

(19] H. Rajaei, R. Ayani, L.E. Thorellu, "The Local Time
Warp Approach to Parallel Simulation”, PADS9S

[20] R. Ronngren and R. Ayani, " Adaptive Checkpointing
in Time Warp” PADS9{, pp. 110-117.
[21] J. Steinman, "SPEEDES: A Unified Approach to Par-

allel Simulation”, PADS92, SCS Simulation Series,
vol. 24, no.3, pp. 75-84

